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Abstract: Deep Neural Networks (DNNs) are commonly used methods in computational intelligence.
Most prevalent DNN-based image classification methods are dedicated to promoting the performance
by designing complicated network architectures and requiring large amounts of model parameters.
These large-scale DNN-based models are performed on all images consistently. However, since
there are meaningful differences between images, it is difficult to accurately classify all images by a
consistent network architecture. For example, a deeper network is fit for the images that are difficult
to be distinguished, but may lead to model overfitting for simple images. Therefore, we should
selectively use different models to deal with different images, which is similar to the human cognition
mechanism, in which different levels of neurons are activated according to the difficulty of object
recognition. To this end, we propose a Hierarchical Convolutional Neural Network (HCNN) for
image classification in this paper. HCNNs comprise multiple sub-networks, which can be viewed
as different levels of neurons in humans, and these sub-networks are used to classify the images
progressively. Specifically, we first initialize the weight of each image and each image category,
and these images and initial weights are used for training the first sub-network. Then, according
to the predicted results of the first sub-network, the weights of misclassified images are increased,
while the weights of correctly classified images are decreased. Furthermore, the images with the
updated weights are used for training the next sub-networks. Similar operations are performed on all
sub-networks. In the test stage, each image passes through the sub-networks in turn. If the prediction
confidences in a sub-network are higher than a given threshold, then the results are output directly.
Otherwise, deeper visual features need to be learned successively by the subsequent sub-networks
until a reliable image classification result is obtained or the last sub-network is reached. Experimental
results show that HCNNs can obtain better results than classical CNNs and the existing models based
on ensemble learning. HCNNs have 2.68% higher accuracy than Residual Network 50 (Resnet50)
on the ultrasonic image dataset, 1.19% than Resnet50 on the chimpanzee facial image dataset, and
10.86% than Adaboost-CNN on the CIFAR-10 dataset. Furthermore, the HCNN is extensible, since
the types of sub-networks and their combinations can be dynamically adjusted.

Keywords: computational intelligence; image classification; HCNNs; progressive deep learning;
disease screening

1. Introduction

With the development of computer vision technologies, many visual tasks, such as
object detection, semantic segmentation, and image classification, have been widely applied
in many fields [1–3]. Image classification is one of the most common and important visual
tasks [4–6], and a large number of models have been proposed based on traditional machine
learning methods and deep learning methods [7–9]. Recently, Convolutional Neural
Network(CNN)-based image classification methods, such as AlexNet [10], Visual Geometry
Group 16 (VGG16) [11], ResNet [12], and Densely Connected Networks (DenseNet) [13,14],
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were widely applied in many visual tasks. Generally speaking, the networks with fewer
layers usually extract the low-level visual features, while the networks with more layers
can extract the more abstract visual features.

These primary research works focus on how to extract distinguishable local features
to improve the image classification performance. In practice, however, there are large num-
bers of various types of objects, and many images suffer from poor illumination conditions,
varying degrees of occlusion, similarities between objects, and so on. It is difficult to accu-
rately classify all images by a consistent model, which presents great challenges to image
classification [15,16]. For human beings, different types of objects are recognized through
different processes, and people tend to quickly make judgments on easy-to-recognize ob-
jects based on their own subjective and objective cognition or prior knowledge. Meanwhile,
people need further analysis and understanding for relatively difficult-to-recognize objects,
and may further perform information abstraction and knowledge reasoning. Therefore,
we contend that there are meaningful differences between images, and various models
encounter various difficulties when attempting to accurately classify them. For example,
images with appropriate lighting conditions are more easily classified correctly by the
model than those with strong or weak lighting conditions; it is easier to perform disease
screening on medical images for prominent lesions [17,18]. Therefore, we should select
the appropriate networks according to the particular tasks. However, in most traditional
CNN-based methods, all images need to be sent to the same classification process, which
neglects the differences in discrepant classification difficulties for different images [19–21].

Inspired by the mechanism of human cognition and the fact that different images
present different levels of cognitive difficulty, we design a hierarchical integrated deep
learning model named HCNN. The HCNN treats multiple CNNs as sub-networks and uses
them progressively for feature extraction [22,23]. Specifically, the simple sub-networks are
used to extract visual features for the images that are easy to classify accurately. Moreover,
the complex sub-networks are used to extract the more abstract visual features, which
are more suitable for the images which are more difficult to accurately classify. The final
classification results are obtained by integrating the results of these sub-networks. Most
existing models integrate multiple CNNs by fusing the high-level feature/decision of the
CNNs to obtain a final result. Our HCNN selectively extracts the composite features of
multiple sub-networks in different levels, which is more reasonable and complies with the
process of human cognition.

Furthermore, the multi-class joint loss is designed to offer the features of the samples
within the same category higher similarity, while the similarity between the features of
different categories is made as low as possible. Gradient descent is used to train the entire
network end-to-end. Finally, several experiments are conducted on a medical image dataset,
two common image classification datasets (CIFAR-10, CIFAR-100 [24]), and a chimpanzee
dataset [25]. The comparison experimental results show that the HCNN achieves superior
performance to the existing related models. Moreover, ablation experiments prove that our
model’s performance is superior to that of each single network and combinations of several
sub-networks. In addition, it is worth noting that the HCNN has good scalability, since the
types and combinations of CNN modules can be dynamically adjusted depending on the
specific tasks involved.

The main contributions of this paper are as follows:
(1) We propose a progressive image classification model, named HCNN, which can

progressively use its sub-network modules (with different depths of network layers) to
extract different levels of visual features from images, while the classification results of
different images are output by corresponding sub-network modules. In brief, the HCNN
can use the sub-network modules with fewer network layers to quickly yield image
classification results for the images that are easy to classify accurately, while the images that
are difficult to classify accurately need to pass through more complex sub-network modules.

(2) A multi-class joint loss is designed to reduce the distance between the features of
samples within the same category, while increasing the distance between the features of
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samples in different categories. In addition, gradient descent is used for the entire model
training end-to-end.

(3) The performance and scalability of the HCNN are verified on four image classifi-
cation datasets. The comparison and ablation experimental results show that the HCNN
achieves significant performance improvements compared with existing models and com-
binations of several sub-networks.

This paper is organized as follows. In Section 2, we review the related image clas-
sification models, ensemble learning models, and metric learning models and describes
their relationships with our model. In Section 3, we elaborate the basic framework and
loss functions of HCNNs and give the model implementation process in the test stage.
In Section 4, we compare HCNNs and eight related methods on our own ultrasonic image
dataset and three public image datasets. We also perform validation experiments to further
analyze the HCNNs. The final conclusion is given in Section 5.

2. Related Work

Image classification is one of the most important visual tasks in computer vision. Due
to the rapid development of deep learning technologies and its superior performance in
computer vision, image classification methods based on DNNs have become increasingly
mature. To accurately classify images, various types of artificial visual features are de-
signed, and the visual features are automatically learned by DNNs. Related classifiers are
then used to distinguish the categories of the images. To date, a large number of deep
learning-based image classification methods have been proposed [26,27] and have been
widely used in different computer vision tasks. In addition, several improved models have
been successively proposed to improve the image classification performance. Xi et al. [28]
proposed a parallel neural network by combining texture features. This model can extract
features that are highly correlated with facial changes, and thus achieves better perfor-
mance in facial expression recognition. Hossain et al. [29] developed an automatic date
fruit classification system to satisfy the interest of date fruit consumers. Goren et al. [30]
collected the street images taken by roadside cameras to form a dataset, and then designed
a CNN to check the vacancy in the collected dataset. To form an efficient classification
mechanism that integrates feature extraction, feature selection, and a classification model,
Yao et al. [31] proposed an end-to-end image classification method based on an aided
capsule network and applied it to traffic image classification. An image classification
framework for securing against indistinguishable plaintext attacks was proposed by Has-
san et al. [32]. This framework performs a secure image classification on the cloud without
the need for constant device interaction. To solve the multi-class classification problems,
Vasan et al. [33] proposed a new method to convert raw malware binaries into color images,
which are used by the fine-tuned CNN architecture to detect and identify malware families.

A single CNN may be impacted by gradient disappearance, gradient explosion, and
other similar factors, while network models based on ensemble learning have better immu-
nity to these adverse factors due to the cooperative complementation of multiple CNNs.
For example, Ciregan et al. [34] designed a method by utilizing multiple CNNs, which are
trained by using the same training datasets. These trained CNNs are then used to obtain
multiple prediction results, which are in turn fused to obtain the final result. This method
employs the simple addition of the predicted results of different CNNs, which it treats in iso-
lation. Frazao et al. [35] assigned different weights to multiple CNNs; the CNNs with better
performance have higher weights, and therefore have greater impacts on the final results.
An integration of CNNs is used to detect polyps by Tajbakhsh et al. [36]; this approach can
accurately identify the specific types of polyps by using their color, texture, and shape fea-
tures. Ijjina et al. [37] proposed a human action prediction method, which combines several
CNNs and uses the best predicted result as the final result. Although these methods use
multiple neural network modules to carry out related classification tasks, the modules are
independent of each other and the interactions between models are ignored. To solve these
problems, Adaboost CNN models have been proposed. For example, Taherkhani et al. [38]
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combined several CNN sub-networks based on the Adaboost algorithm. These CNN sub-
networks have the same network structure; thus, the transfer learning method can be used
between adjacent layers, and the last CNN sub-network module outputs the final results.
The model in [38] is unable to selectively and progressively use the CNN sub-networks
for feature extraction, and the testing images need to go through all CNN sub-networks to
obtain the final results.

A key problem with the semantic understanding of images is that of learning a good
metric to measure the similarity between images. Deep metric learning-based methods have
been proposed to learn the appropriate similarity measures between pairs of samples, while
samples with higher similarities are classified into a single category according to the dis-
tances between samples. These approaches have been widely used for image retrieval [39],
face recognition [40], and person re-identification [41]. For example, Schroff et al. [42] pro-
posed a face recognition system named FaceNet, and a triplet loss was designed to measure
the similarities between samples. Wang et al. [43] proposed a general weighting framework
for a series of existing pair-based loss functions by fully considering three similarities for
pair weighting, and then collecting and weighting the informative pairs. These metric
learning methods focus on optimizing the similarity of image pairs. Furthermore, center
loss is proposed by Wen et al. [44] to define a category center for each category, as well as
to minimize the distance within one category. Wang et al. [45] proposed an angular loss,
which considers the angle relationship to learn a better similarity metric, while the angular
loss aims at constraining the angle at the negative point of triplet triangles.

The related works mentioned above mainly involve DNNs, ensemble learning, and
metric learning. Meanwhile, there are intrinsic correlations between these fields. In general,
ensemble learning needs to use multiple DNN models, and the design of both ensemble
learning and DNNs should be on the basis of the theory of metric learning. Specifically,
the proposed HCNN is an ensemble learning model based on DNNs for the image classifi-
cation task, and the multi-class joint loss is designed for the HCNN according to the basic
theory of metric learning.

3. The Proposed Hierarchical CNNs (HCNNs)

In order to classify different images in real life, we design a hierarchical progressive
DNN framework, named Hierarchical CNNs (HCNNs), which consists of several sub-
networks. The images need to go through one or more sub-networks so as to obtain a more
reliable classification result. In this paper, we refer to the definitions of samples in self-
paced learning methods [46]: the samples that are easy for models to identify are defined as
easy samples, while the difficult-to-identify samples are denoted as hard samples. In this
section, we will describe the overall structure of the HCNN and its loss function. Multiple
CNNs are combined to form HCNNs, which can progressively carry out the sub-networks
to classify the images; the cross-entropy loss and triple loss are combined for model training
to more accurately extract the distinguishing features of the images.

3.1. The Model Framework of HCNNs

Based on the basic concept of ensemble learning, we try to aggregate multiple CNNs
into a strong image classification model [1,47,48]. However, unlike traditional ensemble
learning methods or Adaboost CNNs [38], which consist of the same type of sub-networks
that are indiscriminately trained and tested, our HCNN consists of several different types
of CNNs as the sub-networks, and these sub-networks are trained progressively in order.
In this paper, we choose Alexnet [10], VGG16 [11], Inception V3 [49], Mobilenet V2 [50],
and Resnet-50 [12] as the basic sub-networks (see Figure 1). In addition, there are no limits
on the number of sub-networks and their types. At the training stage, images are assigned
weights to express the difficulties encountered by models in accurately classifying them.
If an image can not be accurately classified by a sub-network, its weight will be increased.
Images with updated weights are then input into the next sub-network for extracting
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more abstract and effective visual features. In this section, we will elaborate on HCNNs in
more detail.

Figure 1. An overview of HCNNs. In this paper, the HCNN consists of five sub-networks,
i.e., Alexnet, VGG16, Inception V3, Mobilenet, and Resnet-50. Each image sample has its weight for
the specific sub-networks. D1, · · · , D5 represent the image weights for the sub-networks, respectively.
Each sub-network combines the results of the previous sub-networks to make decisions.

Assume that HCNNs have M sub-networks, and they are trained one by one. Let wm
i

be the weight of the i-th image for the m-th sub-network, and Dm = {wm
1 , wm

2 , . . . , wm
n }.

Here, i ∈ {1, 2, . . . , n}, m ∈ {1, 2, . . . , M}, while n is the number of all images in the
training dataset.

First of all, the weights of all images need to be initialized. We therefore input all these
training images with their initial weights into the first sub-network (Alexnet, m = 1) for
model training.

D1 = {w1
1, w1

2, . . . , w1
n}, (1)

where w1
i = 1/n, i = 1, · · · , n. The first sub-network is then trained through multiple

iterations. The gradient descent is used to update its parameters in each iteration. Finally,
the trained sub-network can give the predictions:

ym
i = Gm(xi), (2)

where Gm(·) represents the m-th sub-network, and ym
i is the predicted label of the i-th

sample by the m-th sub-network Gm. Next, we select the samples that meet the condition
of ym

i 6= ti, where ti is the ground truth of the category label of the i-th sample. We further
use the following equation to calculate the weighted error rate εm of the m-th sub-network
Gm(·) on all selected samples in the training set:

εm =
Ni_s

∑
i_s=1

wm
i_s, (3)
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where wm
i_s is the weight of the i_s-th selected samples for Gm(·), and Ni_s is the number of

selected samples. Subsequently, εm is used to obtain the weight coefficient αm of Gm, which
denotes the importance coefficient of Gm in HCNNs:

αm =
1
2

log
1− εm

εm . (4)

As Equation (4) shows, αm is inversely proportional to εm, i.e., with a smaller error rate
εm, the corresponding sub-network will have larger values of the importance coefficient
throughout the whole model. Furthermore, αm is used to update the weights of the samples
to train the next sub-network.

For the images that meet the condition ym
i = ti, we have

w(m+1)
i = wm

i exp(−αm). (5)

Otherwise,
w(m+1)

i = wm
i exp(αm). (6)

Then,
D(m+1) = {w(m+1)

1 , w(m+1)
2 , ..., w(m+1)

n }. (7)

Therefore, if the predicted results ym
i exhibit a high degree of agreement with the true

labels ti of the images, then the weights of the images for the next sub-network decrease;
otherwise, their weights increase. We then use the image samples with their updated
weights to train the next sub-network for multiple iterations.

For a dataset containing a small number of samples, the initial and updated weights of
the samples are applicable to training of HCNNs. However, if the dataset consists of a large
number of samples, there is a risk of gradient explosion occurring during model training
due to the loss values being too small (possibly even approaching zero); this means that
the network parameters cannot be updated normally. To solve this problem, we use the
weights of samples to obtain the category weights using Equation (8):

C(m+1)
j =

Kj

∑
k_j=1

w(m+1)
k_j , (8)

where C(m+1)
j represents the weight of the j-th category for the (m + 1)-th sub-network,

and w(m+1)
k_j is the weight of the k_j-th sample belonging to the j-th category, which has Kj

samples. We then use C(m+1)
j as the weights of the samples belonging to the j-th category

(Equation (9)).

w
′(m+1)
k_j = C(m+1)

j . (9)

Therefore, before training each sub-network, we need to update the weights of all
samples according to the weights of their corresponding categories. The sub-network will
then pay more attention to the samples with larger weights.

HCNN is a scalable model, and its architecture is illustrated in Figure 1. In addition,
HCNN enhances the correlation between different sub-networks by transmitting the feature
vectors and the sample weights in the previous sub-network to the next sub-network.

3.2. Multi-Class Joint Loss in HCNNs

During model training, we constantly updated the weights of the image categories
and the images to express the difficulties encountered by the model. We then needed to
design the loss function, which can guide the model to extract the specific visual features
from different images. In addition, this loss function should attempt to make the difference
in the visual features within the same category as small as possible, while the difference in
the visual features in different categories should be as large as possible.
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Cross-entropy loss with category weights. The cross-entropy function LC is a clas-
sic and commonly used loss function. In this paper, to enable the HCNN to select its
corresponding sub-networks and therefore extract the visual features in different levels,
a category weight is assigned to each image category; subsequently, the new cross-entropy
loss with category weights can be expressed by the following equation:

L
′(m+1)
C = Cm

j L(m+1)
C . (10)

Here, L
′(m+1)
C is the cross-entropy loss with category weights for the (m + 1)-th sub-

network, and L(m+1)
C is the traditional cross-entropy loss.

Weighted triplet loss. For image classification, the problem may arise that there may
be less similarity between images within the same category, while there is more similarity
between images in different categories; as a result, it is difficult to effectively improve the
image classification performance. The triplet loss can guide models to learn the visual
features to further cluster the samples within the same category and separate the samples
of different categories. Therefore, we use a weighted triplet loss in each sub-network.
This guides HCNNs to extract more discriminative visual features between the samples of
different categories, as shown in Figure 2.

Figure 2. An illustration of the influence of triplet loss on visual feature learning.

Assume that we have a series of image samples {x1, x2, ..., xn}, and {y1, y2, ..., yn} are
their true labels. We then define an anchor image ua, a positive image sample u+, and a
negative image sample u−. More specifically, ua is an image in one category, u+ is another
image in the same category with ua, and u− is an image in another category that differs
from the category of ua. During model training, we can obtain a triplet set consisting of Ua,
U+, and U− in each batch, and then randomly select the corresponding samples to form a
triple S = {ua, u+, u−} as the input of each sub-network. We can then obtain the triplet
loss Lm

T for the m-th sub-network:

Lm
T = Max

{
d( f a, f+)− d( f a, f−) + α, β

}
. (11)

Here, f a, f+, and f− represent the visual features extracted by the m-th sub-network
from the images of ua, u+, u−, respectively, while d(·) is the Euclidean distance. Moreover,
α is a threshold parameter used to distinguish between the positive and negative samples
of the anchor samples. β is a parameter that is close to 0 without being equal to 0. Triplet
loss is used to reduce the distance between the features of ua and u+ and expand the
distance between the features of ua and u−, as shown in Figure 2. Then, triplet loss can be
used to solve the following three situations in HCNNs.
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Case I: If d( f a, f+) + α < d( f a, f−), then Lm
T = β. This situation shows that the current

sub-network can accurately classify these three image samples; thus, there is no need to
pay more attention to them in the subsequent sub-networks.

Case II: d( f a, f+) < d( f a, f−) < d( f a, f+) + α. This situation shows that high similar-
ity exists among these three image samples, and the current sub-network finds it difficult
to distinguish them. This triple S then needs to pass through the subsequent sub-networks
with more complex network structures.

Case III: d( f a, f−) < d( f a, f+). This situation shows that the current sub-network
cannot distinguish these image samples, and that their more abstract features need to be
extracted by the subsequent sub-networks.

Weighted multi-class joint loss function. HCNNs can progressively classify images and
achieve visual feature learning at different levels. In addition, in each batch during model
training, a weighted multi-class joint loss function is designed by combining cross-entropy
loss with category weights and weighted triplet loss.

Lm = L
′(m)
C + γLm

T . (12)

Here, Lm is the weighted multi-class joint loss for the m-th sub-network. γ is a
hyperparameter; in this paper, γ = 0.5.

3.3. Model Testing

To test the proposed model, we need to provide a threshold Hm for each sub-network
so as to make the model output the final classification results. When image classification
confidence in the m-th sub-network is higher than Hm, this prediction is reliable; otherwise,
the credibility of the image classification results is lower. Generally speaking, the values of
Hm can be set larger, which ensures that the difficult-to-identify images can pass through
the subsequent sub-networks with more complex network structures. Figure 3 shows the
simple process of image classification of HCNNs.

Figure 3. Progressive image classification by HCNNs in the test stage.

In more detail, the testing process of HCNNs with M sub-networks can be described
as follows.
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Step 1: The test image is input into the m-th sub-network for visual feature learning
(m = 1 for the first sub-network). The model then outputs the probability distribution
of the image classification results Pm = {pm

1 , pm
2 , ..., pm

N_C}, where N_C is the number of
image categories.
Step 2: A comparison is drawn between the maximum classification probability pm

k =
Max(Pm) and Hm.
Step 3: If pm

k ≥ Hm or m = M, then the model outputs the classification results correspond-
ing to pm

k ; otherwise, m = m + 1, and return to Step 1.

4. Experimental Results and Analysis

To verify the effectiveness and superiority of the proposed HCNN, we implement
our model on two challenging image classification datasets (our ultrasonic prostate image
dataset and the chimpanzee dataset [25]) and two commonly used image classification
datasets (CIFAR-10 and CIFAR-100 [24]). Furthermore, we also utilize several related
existing DNN models for comparative experimental analysis. In addition, we conduct
ablation experiments to verify the influences of different sub-networks.

4.1. Image Classification Datasets

(1) Ultrasonic image dataset of prostate
There have been related works on medical image datasets [51–54], while there are few

works for prostate cancer screening. The traditional method of prostate cancer screening
usually uses prostate biopsy puncture to obtain the pathological results, which causes great
pain for patients. Therefore, we have collected ultrasonic images of prostate, and attempted
to design CNN-based models for prostate cancer screening. Our ultrasonic image dataset
of prostate has 932 images, which were selected from a number of ultrasonic images
according to doctors’ experience. We divided these ultrasound images into two categories:
the ultrasound images of patients with prostate cancer and those of patients without
prostate cancer.
(2) The chimpanzee facial image dataset

The chimpanzee dataset is provided by Loos et al. in [25]. The chimpanzee facial
images were captured at Zoo Leipzig in Germany and Taï National Park in Africa. There are
large numbers of images with weak or highlight illumination, incomplete facial contours,
partial occlusion by branches or leaves, and inconsistent image sizes. This image dataset is
therefore very challenging for the image classification task. Table 1 presents the details of
the chimpanzee facial images used in this paper. We selected at least five images for each
chimpanzee individual from the entire dataset as our test images.
(3) CIFAR-10 and CIFAR-100

CIFAR-10 and CIFAR-100 contain 60,000 images each, where each color image has
32 × 32 pixels. CIFAR-10 comprises 10 categories (aircraft, car, bird, cat, deer, dog, frog,
horse, boat, truck). As in previous works, we also use 50,000 images for model training
and 10,000 images for testing, and there are no duplicate image samples. In addition, we
select 20% of the training images as the validation image dataset. CIFAR-100 consists of
the image samples of 100 categories, and we also divide these into 50,000 training images
and 10,000 testing images. The training, validation, and testing image sets are allocated
according to a ratio of 9:1:2 in the whole CIFAR-100 image dataset (as shown in Table 1).

Table 1. Datasets summary.

Datasets Category Train Validation Test

Ultrasonic image dataset 2 746 93 93
Chimpanzee facial image
dataset 52 1689 292 540

CIFAR-10 10 40,000 10,000 10,000
CIFAR-100 100 45,000 5000 10,000
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4.2. Experimental Setup

The proposed HCNN is an image classification model based on ensemble learning.
In this paper, we choose Alexnet [10], VGG16 [11], Inception V3 (I_V3) [49], Mobilenet
V2 (M_V2) [50], and Resnet-50 [12] as the basic sub-networks. Of course, in specific tasks,
the types of sub-networks can be changed, and we also can add or subtract sub-networks.
We further implement several existing deep learning models and ensemble learning models
as the comparison models. The experimental results of our model are compared with
these basic sub-networks by using the same parameters. We further make comparisons
of our model with Adaboost-CNN [38] on CIFAR-10, and with Wide-ResNet 40-2 [55],
Wide-ResNet 40-2+CutMix [56], DenseNet-100 [57], and DenseNet-100+CutMix [56] on
CIFAR-100. In addition, to verify the gradual improvements achieved by HCNNs, we draw
comparisons of HCNNs with the single sub-networks and their different combinations.

For each image dataset, we set the batch size to 10, and the initial learning rate is
0.0001. We set γ in Equation (12) to 0.5. The dimensions of f a, f+ and f− in triplet loss are
set to 256 uniformly. All models used in this paper were implemented on three TITAN
Xp GPUs.

4.3. Experimental Results

(1) Experimental results on the ultrasonic image dataset
Prostate cancer screening based on ultrasound images is mainly used to distinguish

whether the patients have prostate cancer or not according to their prostate ultrasound
images. It can be regarded as a binary image classification problem. However, the prostate
ultrasound images are fairly complex, and the lesions are not obvious, so it is difficult for
professional doctors to diagnose prostate diseases only using ultrasound images. Therefore,
there are challenges for the automatic screening of prostate cancer utilizing computer vision
technologies from ultrasound images. In this paper, we try to use several DNN models
to perform the binary image classification task, and the experimental results are shown
in Table 2. We can obtain the following points from the experimental results. First, all
the models used in this paper fail to achieve perfect image classification performance,
and the highest recognition accuracy is lower than 85%, which shows that there is difficulty
in recognizing prostate cancer. Second, Resnet50 achieves better performance among
the single deep network models. It has 4.31% higher accuracy than VGG16, and 5.65%
higher than Inception V3. Third, the models combing multiple networks have increasing
accuracies; for example, “Alexnet+VGG16+Inception V3+Mobilenet V2” has 2.83% higher
accuracy than VGG16. Among these methods, the HCNN with five deep networks achieves
the best performance, and it has 2.68% higher accuracy than Resnet50. Figure 4 shows the
graph of Table 2; we can see that HCNN achieves obvious advantages over other models
in most evaluation indicators. In addition, the performance would be further improved
with the improvement or addition of the sub-networks.

Table 2. The ablation analysis on the ultrasonic image dataset.

Models ACC F1 Score Recall Precision

Alexnet [10] 0.6989 0.7200 0.8571 0.6207
VGG16 [11] 0.7634 0.7381 0.7381 0.7381
Inception V3 [49] 0.7500 0.7164 0.7273 0.7059
Mobilenet V2 [50] 0.6989 0.6499 0.6190 0.6842
Resnet50 [12] 0.8065 0.7805 0.7619 0.8000

Alexnet+VGG16 0.7361 0.7077 0.7188 0.6970

Alexnet+VGG16+Inception V3 0.7639 0.7385 0.7500 0.7273

Alexnet+VGG16+ 0.7917 0.7693 0.7813 0.7576Inception V3+Mobilenet V2

HCNN 0.8333 0.8125 0.8125 0.8125
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Figure 4. The curve graph of Table 2.

(2) Experimental results on the chimpanzee facial image dataset
There are a large number of challenging chimpanzee facial images in the chimpanzee

facial image dataset [25]; it is therefore difficult for models to achieve good image classi-
fication performance. In this paper, we implement nine different models on this dataset;
the experimental results are shown in Table 3, where we can see that these models, which
perform well on some public image classification databases, do not perform well on this
chimpanzee facial image dataset. The model with the single network that works best is
Resnet50, with 0.7336% accuracy, while the HCNN achieves the highest image classification
accuracy of 74.55%. Figure 5 shows the curves of these models’ performance in related
evaluation indicators, and it can be seen that the HCNN has general advantages over mod-
els with single neural networks and other models with multiple sub-networks in terms of
F1 score, recall, and precision, which clearly demonstrates its effectiveness and superiority.

Table 3. The ablation analysis on the chimpanzee facial image dataset.

Models ACC F1 Score Recall Precision

Alexnet [10] 0.5532 0.5470 0.5428 0.5512
VGG16 [11] 0.6885 0.6836 0.6818 0.6854
Inception V3 [49] 0.7008 0.6976 0.6956 0.6996
Mobilenet V2 [50] 0.5737 0.5699 0.5701 0.5698
Resnet50 [12] 0.7336 0.7327 0.7321 0.7334

Alexnet+VGG16 0.7023 0.7010 0.6998 0.7023

Alexnet+VGG16+Inception V3 0.7234 0.7200 0.7199 0.7201

Alexnet+VGG16+Inception
V3+Mobilenet V2 0.7349 0.7316 0.7288 0.7344

HCNN 0.7455 0.7435 0.7451 0.7419
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Figure 5. The curve graph of Table 3.

(3) Experimental results on CIFAR-10
Table 4 presents the experimental results of nine different models on CIFAR-10; these

models include the sub-networks in HCNNs and their different combinations. For each
model, we carried out 20 epochs of model training. From the results shown in Table 4, we
can see that Resnet50 [12] achieves the best performance among all models with a single
network. Furthermore, the ensemble learning models with different sub-networks achieve
general improvements over the corresponding single-network models, which proves the
effectiveness of ensemble learning models. Therefore, HCNN achieves the final best perfor-
mance, with test accuracy of 92.26% on CIFAR-10, and 1.46–13.45% higher classification
accuracy than the other five basic sub-networks. In addition, HCNN also has advantages
in terms of F1 score, recall, and precision. In Figure 6, the performance difference among
these models can be illustrated more clearly. Although these models achieved better results
on CIFAR-10 than on the ultrasonic image dataset and chimpanzee facial image dataset,
the overall trends of the models’ performance are similar. The reasons may be that the
weights of the training samples for each sub-network in HCNNs are updated according to
the classification results of the previous sub-network. In this way, different sub-networks
can learn the specific features from the images, and present various degrees of difficulty
to the various models that attempt to accurately classify them. Therefore, HCNNs can
progressively learn the visual features at different levels and gradually improve the image
classification performance.

Table 4. The ablation analysis on the CIFAR-10 dataset.

Models ACC F1 Score Recall Precision

Alexnet [10] 0.7881 0.7881 0.7894 0.7868
VGG16 [11] 0.8860 0.8810 0.8818 0.8802
Inception V3 [49] 0.8922 0.8921 0.8928 0.8914
Mobilenet V2 [50] 0.8704 0.8639 0.8647 0.8631
Resnet50 [12] 0.9080 0.9008 0.9011 0.9005

Alexnet+VGG16 0.8877 0.8878 0.8880 0.8877

Alexnet+VGG16+Inception V3 0.9023 0.9086 0.9087 0.9085

Alexnet+VGG16+Inception
V3+Mobilenet V2 0.9104 0.9106 0.9107 0.9105

HCNN 0.9226 0.9221 0.9222 0.9221
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Figure 6. The curve graph of Table 4.

AdaBoost-CNN [38], proposed by Taherkhani et al., is also an ensemble learning model
based on DNNs. Its test accuracy on CIFAR-10 reaches 81.40%, as shown in Table 5. By con-
trast, our HCNN has 10.86% higher accuracy. Adaboost-CNN creates a classification model
with better performance by combining several simple convolutional sub-networks. How-
ever, multiple sub-networks in Adaboost-CNN use the same network structure, and each
sub-network is only fine-tuned on the parameters of its previous sub-network. Therefore,
it is difficult for the model to learn the specific abstract visual features from the images;
this may be the reason for the limited performance of Adaboost-CNN.

Table 5. The experimental analysis of Adaboost-CNN and HCNN on the CIFAR-10 dataset.

Models Acc

Adaboost-CNN [38] 0.8140
HCNN 0.9226

(4) Experimental results on CIFAR-100
CIFAR-100 contains more image categories than CIFAR-10 and is less able to achieve

higher image classification accuracy for classification models. Fourteen different models
are implemented in CIFAR-100, and the experimental results are shown in Tables 6 and 7
and Figure 7. From the test results shown in Table 6, it can be seen that the models
combining different sub-networks achieve better performance than models with a single
neural network, which is similar to Table 4. The HCNN, with a test accuracy of 78.47%,
achieves accuracy that is 9.46% higher than that of Mobilenet V2 and 1.72% higher than
that of Inception V3, which represents the best performance among the single neural
network models.

Moreover, as shown in Table 7, HCNN achieves similar performance to DenseNet-
100+CutMix [56], but is better than other existing network models with complex network
structures. During the image classification process, each image (regardless of whether it is
easy or difficult for the model to accurately classify) needs to go through these complex
network models to extract visual features. In HCNNs, however, different images will
pass through different levels of sub-networks, and the model will learn specific visual
features from images at different levels. Therefore, HCNN achieves better effectiveness
and efficiency for image classification.
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Table 6. The ablation analysis on the CIFAR-100 dataset.

Models ACC F1 Score Recall Precision

Alexnet [10] 0.5347 0.5326 0.5329 0.5323
VGG16 [11] 0.6556 0.6548 0.6556 0.6540
Inception V3 [49] 0.7675 0.7686 0.7690 0.7682
Mobilenet V2 [50] 0.6601 0.6634 0.6645 0.6623
Resnet50 [12] 0.6031 0.6033 0.6034 0.6032

Alexnet+VGG16 0.6623 0.6640 0.6646 0.6635

Alexnet+VGG16+Inception V3 0.7742 0.7767 0.7778 0.7757

Alexnet+VGG16+Inception
V3+Mobilenet V2 0.7798 0.7740 0.7746 0.7735

HCNN 0.7847 0.7846 0.7844 0.7848

Figure 7. The curve graph of Table 6.

Table 7. The experimental results of Adaboost-CNN and HCNN on the CIFAR-100 dataset.

Models Acc

Wide-ResNet 40-2 [55] 0.7473
Wide-ResNet 40-2+CutMix [56] 0.7821
DenseNet-100 [57] 0.7773
DenseNet-100+CutMix [56] 0.7855
HCNN 0.7847

5. Conclusions

At present, all the image classification models treat the images equally. However,
there are meaningful differences between images, so different images should be treated
differently by various models, which would comply with the basic mechanism of human
cognition. Therefore, we propose HCNNs, which classify different images by different
numbers of sub-networks. In HCNNs, the easy-to-identify images are recognized by
simple sub-networks and output the results directly, while images that are more difficult
to identify may need to go through multiple complex sub-networks to extract their more
abstract visual features. Through this image classification mechanism, HCNNs achieve
better image classification performance compared with existing single-network models
and Adaboost CNN with its multiple simple sub-networks. In addition, the HCNN has
better scalability and variability; that is, the number of sub-networks can be increased or
decreased, and the types of sub-networks can be changed according to the specific visual
tasks involved. Therefore, in the future, more detailed models similar to HCNNs may
be constructed based on the complexity of the image classification task, which would
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gradually become closer to the basic mechanism of human cognition, and the models will
have higher recognition accuracy and efficiency.
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