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Abstract: Despite years of evolution of recommender systems, improving prediction accuracy re-
mains one of the core problems among researchers and industry. It is common to use side information
to bolster the accuracy of recommender systems. In this work, we focus on using item categories,
specifically movie genres, to improve the prediction accuracy as well as coverage, precision, and
recall. We derive the user’s taste for an item using the ratings expressed. Similarly, using the col-
lective ratings given to an item, we identify how much each item belongs to a certain genre. These
two vectors are then combined to get a user-item-weight matrix. In contrast to the similarity-based
weight matrix in memory-based collaborative filtering, we use user-item-weight to make predictions.
The user-item-weights can be used to explain to users why certain items have been recommended.
We evaluate our proposed method using three real-world datasets. The proposed model performs
significantly better than the baseline methods. In addition, we use the user-item-weight matrix to
alleviate the sparsity problem associated with correlation-based similarity. In addition to that, the
proposed model has a better computational complexity for making predictions than the k-nearest
neighbor (kNN) method.

Keywords: collaborative filtering; kNN; categorical features; recommender systems; similarity

1. Introduction

With the growth of information technology and the Internet, there is a seemingly
never-ending flood of information on the web. However, searching for a specific item
through a large amount of information is very challenging. Specifically, it is much more
difficult to find items that best suit their needs and preferences when more choices are
available. Recommender systems primarily emerged to solve this problem of information
overload [1]. The task of the recommendation system is to connect information and users
who are interested in it. It also helps users find information that is valuable to them. Thereby
achieving a win-win situation for information consumers and information producers. For
example, if you read suggested articles in a news aggregator app, you often find that it
suits your taste. In fact, the recommendation engine computes your preferences based on
your past behavior and then selects it from many news sources and pushes it to you.

Recommender systems have evolved dramatically over the last few decades. As a
result, various algorithms and methods have been proposed to perform recommendations,
including content-based methods (CB) and collaborative filtering methods (CF). These
methods use different mechanisms to personalize the recommendations for different users
in the system. However, the performance is not consistent across the range of application
areas and different input types. Content-based recommenders require the rich content
descriptions (e.g., metadata, descriptions, topics, etc.) of the items consumed by the user in
the past [2]. For example, content-based e-commerce platform recommenders will generally
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rely on detailed information such as product category, description, prices, and producers.
In contrast, collaborative filtering (CF) recommendation algorithms analyze a series of
historical feedback (ratings) behaviors of users to find specific patterns to predict items to
recommend [3,4]. The underlying assumption is that users who have similar tastes will
rate the items similarly [5]. It is the most widely implemented technique in RS [1]. Many e-
commerce companies, such as Amazon.com [6] and JD.com [7], rely on CF to offer their cus-
tomers recommendations. In addition to these two specifics types, various other methods,
including, but not limited to demographic-based, knowledge-based, communality-based,
and utility-based, are often combined to form a hybrid recommender [1,8].

According to [3], the existing collaborative filtering recommendations algorithm can
be further classified into two common classes: memory-based and model-based. The
memory-based algorithm is essentially a heuristic algorithm that makes rating predictions
based on the entire set of items the user previously rated. The ratings are predicted based
on rating similarity between users. In contrast, the model-based algorithms [3,9] exploit
ratings to learn a model. The learned model is then used to make predictions. Many
machine-learning algorithms such as decision-tree [10], SVM [11], and naïve Bayes [12] are
often used for this purpose. Despite the advancement of CF, several major problems [13]
with CF remain unsolved. These include (1) data sparsity problem: Often, this problem
happens when the items do not have enough users’ ratings. In most situations, the
predictions’ accuracy is unsatisfactory since there are not enough ratings for making a good
prediction [14]. (2) Cold-Start problem: it occurs when a new user joins the system. For the
new user, the system does not have the prior ratings. Hence, it is difficult for the system to
recommend any item. Similarly, new items also have the same problem. Since the item has
not been rated by any user, it will not be recommended to anyone. Other recent approaches
have employed user personality, mood recognition, and digital art analysis to improve
recommendation effectiveness [15,16].

The success of online business transactions in e-commerce depends greatly on the
effective design of the recommendation mechanism. Similar to the RSs, which use side in-
formation to boost prediction accuracy [17,18], this study proposes a recommender system
that can generate personalized product recommendations based on category information.
The metric is derived based on how much a user has liked a specific category and how
much of a specific categorical feature belongs to an item. First, we obtain user-categories,
how much the user likes the categories, using only the ratings. It is done by aggregating
the user ratings given to all categories (ratings for all items) and normalizing the resulting
categorical preference values. Similarly, the items-categories are calculated for each item
using the user category values calculated from the previous step. The dot–product of these
two feature vectors (user-categories and item-categories) results in a scaler weight value for
a specific user-item pair. In contrast to the similarity matrix, the user-item-weight matrix is
a rectangular matrix that ideally does not contain any empty entries. This taste matrix is
then used to weight the predicted ratings. Inspired by the traditional kNN method, we
proposed a novel method of choosing neighbors based on the users’ taste matrix. With the
proposed method, we get surprisingly better improvements compared with other baseline
methods. The specific contributions of this study are as follows:

1. Propose a new weighting matrix that replaces a traditional similarity matrix in
memory-based CF to increase the quality of the predictions;

2. Alleviate sparsity in the weight matrix;
3. Empirically prove the efficacy of the proposed model using three real-world datasets;
4. Proposed a novel approach for explainability in recommender.

Accordingly, our experimental results show that the proposed model outperforms
other benchmark methods in recommendation accuracy. We also tested the proposed
method with three additional metrics, namely precision, recall, and coverage, to evaluate
the recommendation quality. Our method significantly outperforms all the baselines,
including traditional kNN-based methods, and has a similar performance as the state-of-
the-art methods. The proposed framework can also be effectively applied to any online e-



Electronics 2021, 10, 214 3 of 17

commerce system, helping sellers promote their products and services, only using customer
ratings and item features.

The rest of the article is arranged as follows: In the next section, we formalize the
proposed model. In Section 3, we present the results of the experiments conducted to
evaluate the model. Before the conclusion, we discuss the implications and limitations of
the model. We conclude the article by briefly discussing the overview of the study and
future work.

2. Proposed Model
2.1. Preliminaries (Problem Statement)

Let ru,i, rv,i ∈ R|U|×|I| be the ratings of users u, v ∈ U for item i ∈ I in the rating
matrix R|U|×|I|. Given the user’s rating history, the goal is to predict ratings for the items
that the user has not yet rated. This is often done by taking k neighbors similar to the target
user and weighting their rating with the similarity between two users. The basic k-nearest
neighbor (kNN) formula shown below will be used as our baseline algorithm.

ˆr
u,

.
i
=

∑v∈Nk
i (u)

Simu,v × rv,i

∑v∈Nk
i (u)

Simu,v
(1)

In this equation, ˆr
u,

.
i

is the prediction to of item i for user u, Nk
i (u) is the set of k

neighbors of user u that have rated the item i, rv,i is the rating given to item i by the
neighbor v and Simu,v is the similarity between user u and user v. The similarity between
u and v is calculated using Pearson’s correlation, which is given by:

Simu,v =
∑i∈Iu∩Iv

(
ru,i − r

u,
.
i

)(
rv,i − r

v,
.
i

)
√

∑i∈Iu∩Iv

(
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u,
.
i

)2
∑i∈Iu∩Iv

(
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v,
.
i

)2
(2)

In Equation (2), based on the correlation of user u, v’s commonly rated items, we can
get the similarity between two users.

2.2. Model

In memory-based methods CF, the similarity between users (or items) serves as a
weight matrix, which is just one of the most important factors that affect the accuracy of
the prediction. Many possible other factors could be used to improve prediction accuracy
or even enhance the system’s performance.

The proposed method uses explicit and implicit categorical features such as genre to
find a user’s preference for a specific item. First, we use the user’s rating and categories
of the item to calculate the user-categories. The collective user-categories of all users who
have rated a specific item is then used to find actual categories of the item (item-categories).
In movie datasets, this vector defines how much a specific movie (item) belongs to a
genre (category). The user-categories vector is then combined with the item-categories
vector to find the user-item-weight score, which measures how much a user likes a specific
movie. The idea is that if the user has a higher preference for a certain category (please
note that we categorize movies by genre. Thus, the keyword category and genre are used
interchangeably). The movie has a higher score for that category; the predicted rating will
be higher. The method is described below.

Let G = {g1, g2, · · · , gk, · · · , gm} be set of all categories of the items in the data set.
Item i ∈ I can be represented in terms of a vector of categories

→
g.

i
as in the following equation.

→
g.

i
= {gi1, gi2, . . . , gik, . . . , gim} (3)

Since all movies are labeled with one or more genres by the producers, a movie always
has at least one category (i.e., |gik = 1| > 0). For all the items i ∈ Iu rated by the user u
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and if the category gik = 1, then gik = ru(i), composing a new vector
→
g
∗
i from

→
g.

i
. The

user-categories vector of user u can be calculated as follows:

→
su =

∑i∈Iu

→
g∗.

i

||∑ i∈Iu

→
g∗.

i
||

1

(4)

where
→
su indicates the user-categories of the user u and denominator is the sum of total

ratings in
→
g∗.

i
. The denominator can also be interpreted as the total collective ratings given

to all genres by user u. Please note that this value is always greater than or equal to the
user u’s total rating. The value of each entry in the resulting vector

→
su represents the user

u’s degree of preference for the respective genre. One of the metric’s advantages is that
it defines the user’s preference for a specific genre as a continuous value rather than a
discrete value.

As mentioned earlier, movies are classified by producers or experts. However, this
classification does not consider the viewers’ opinions. Initially, we represented it as a
binary vector

→
g.

i
in Equation (4). Since collaborative filtering uses other users’ views while

making predictions, it is intuitive that the movie recommendation using genre information
would increase the prediction accuracy. It is also intuitive to consider all user’s ratings
(i.e., user’s preference) to estimate the movies’ actual genres, rather than simply relying on
producers or experts. We use the user-categories vector

→
su in Equation (5) to calculate new

genre values
→
c .

i
for movies as follows:

→
c .

i
=

∑u∈Ui

→
su × ru,i

‖∑u∈Ui

→
su × ru,i‖1

(5)

where ru,i is the user u’s rating for item i. Similar to the elements of
→
su, elements of

→
c .

i
are

normalized and range between zero and one. The final user-item-weight score is calculated
by taking the dot product of both the user’s taste

→
su and

→
ci as follows:

wu,i =
→
su
⊗ →

c .
i

(6)

where wu,i is user-item-weight.
The prediction ˆru,i is made by mean rating ru of the target user u adding to the bias

part as follows:

ˆru,i =
∑j∈Nk(u) wu,j × ru,j

∑j∈Nk(u) wu,j
, (7)

Please note that instead of using k similar users as the nearest neighbors, we use the k
highest user-item-weight value in this user’s rating history. We assume these selected items
are the items this user knows best, so we can use these items’ rating to make the prediction
for the item i. It is common in real-world scenarios to find users with no neighbors due to
the high item-to-user ratio. In these special cases, where users have no neighbor (when the
user rate very few items), a common practice is to assign the mean rating to the prediction.
This would result in all predictions for the target user be the same. However, in our method,
since the user-item-weight score wu,j for each user-item pair is unique in Equation (7), the
prediction will be different for each item.

2.3. Algorithm

The generate_weight method in Algorithm 1 outlines the steps involved in the genera-
tion of the weight matrix. As seen in lines 2 and 3, we first initialize

→
su and

→
c .

i
with 19 zeros

(an entry for each genre). We loop through all the items to find their genres, from lines 8–12
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and in line 13
→
su is then normalized. For

→
su, as shown in line 9, we can get each user’s rated

items and
→
g.

i
of this item by Equation (3). The rating is then used to replace the element

with a value of 1 in the array to get
→
g∗.

i
as shown in line 10. The

→
su is then used to calculate

new genre weight
→
c .

i
for the item i (lines 16–25). For

→
c .

i
, as shown in line 21, we first get the

users of this item, check these users’ taste, and multiply each entry by the rating, as shown
in line 21. Therefore, as shown in line 26, the user-item-weight score wu,i can be derived by
the dot product of

→
su and

→
c .

i
. Once the user-item-weight score is generated, we can make

the predictions by Equation (7).

Algorithm 1. Pseudocode for calculating the user-item-weight score (wu,i) algorithm.

1: procedure Generate_Weight (RatingMatrix)
2: →

su = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
3: →

ci = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
4: n_users = length(RatingMatrix.row)
5: for i = 0, i ++, i < n_users do
6: u = RatingMatrix.row(i)
7: n_items = length(u)
8: for j = 0, j ++ , j < n_items do
9:

→
g .

i
= getItemCate(u[j])

10:
→
g∗.

i
= addRatings

(→
g .

i
, RatingMatrix[i][j]

)
11: →

su + = g∗i
12: end for
13:

→
su =

→
su / sum

(→
su

)
14: end for
15: n_items = length(RatingMatrix.coloum)
16: for i = 0, i ++, i < n_items do
17: item = RatingMatrix.coloum[i]
18: n_users = length(item)
19: for j = 0, j ++, j < n_users do
20: sitem[j] = getUserTaste(item[j])
21:

→
c = sitem[j] × RatingMatrix[item][item[j]]

22:
→
c .

i
+ =

→
c

23: end for
24:

→
c .

i
=
→
c .

i
/ sum

( →
c .

i

)
25: end for
26: wu,i =

→
su
⊗ →

c .
i

27: return wu,i
28: end procedure

2.4. A Toy Example

Consider the following case in which there are three users and five movies in the
system. The total number of genres is three (sci-fi, romance, fiction). We are using a small
number of users, items, and genres simply for convenience. Tables 1 and 2 show user-item
ratings and item-genre settings.
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Table 1. The item-user rating matrix.

Items\User User 1 User 2 User 3

Item 1 5 ∗ 4
Item 2 4 5 4
Item 3 ∗ 4 ∗
Item 4 ∗ 5 ∗
Item 5 5 1 ∗

* represents the user has not yet rated the item.

Table 2. The item-genre matrix.

Items\Genres Sci-fi Romance Fiction

Item 1 1 0 0
Item 2 1 1 0
Item 3 0 1 0
Item 4 0 1 1
Item 5 1 0 0

User 1 is only focused on sci-fi movies. User 2 likes only romantic movies. For user 3,
who is our target user, item 5 is the item that is not rated by the target user. We also want to
have a prediction for this item based on user 1 and user 2’s history data. First, we calculate
the taste of each user. We use user 1’s taste to explain the process. Table 3 shows the data
used for user 1’s taste vector (

→
su) calculation:

Table 3. The user 1’s taste calculation matrix.

Items\Genres Sci-fi Romance Fiction Total per Item

Item 1 5 0 0 5
Item 2 4 4 0 8
Item 3 0 0 0 0
Item 4 0 0 0 0
Item 5 5 0 0 5

Total per genre 14 4 0 18
Taste (

→
su) 0.78 0.22 0 0

In Table 3, we distributed user 1’s rating for a specific item to the genres it belongs
to, according to Equation (4). For example, as seen in Table 1. user 1 has rated item 2,
a score of 4 stars; and Table 2 shows that item 2 has two genres (Sci-fi and romance).
Therefore, in Table 3. Each entry for item 2 (sci-fi and romance) gets a 4. In short,
wherever there is 1 in Table 2, if user 1 has rated the respected item, then 1 is replaced
with the rating. Next, the taste scores are calculated using Equation (6). Sci-fi entry of
→
su[0] = (5 + 4 + 5) / 18 = 14 / 18 = 0.78. Similarly, for the romance entry of the taste vector
→
su[1] = (4 + 4) / 1 8 = 8 / 18 = 0.22. The fiction entry remains 0 since the user 1 has not
rated any item that has genre fiction. Then, we can use the taste vector

→
su to represent the

user’s preference.
We then use all the users who rated a specific item to calculate its new genre values

→
c .

i
using Equation (5). Table 4 shows the genre values for item 1:
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Table 4. Item 1’s new genre weight.

Users\Genres Sci-fi Romance Fiction Total per User

User 1 3.89 1.11 0 5
User 2 0 0 0 0
User 3 2.67 1.33 0 4

Total per genre 6.56 2.44 0 9
Genre weights

(→
c .

i

)
0.73 0.27 0

The results of the dot-product of
→
su and

→
c .

i
as in Equation (5), are used as entries wu,i

of the final user-item-weight matrix W, which is shown in Table 5:

Table 5. The use-item-weight score (W) matrix.

Items\Users User 1 User 2 User 3

Item 1 0.63 0.33 0.58
Item 2 0.50 0.36 0.49
Item 3 0.31 0.41 0.35
Item 4 0.31 0.41 0.35
Item 5 0.60 0.33 0.55

As seen in Table 5, the W matrix has a similar shape to the original rating matrix in
Table 1 (item-by-user). In addition, please note that Table 5 is full (no zero entries), and it is
likely less sparse than a similarity-based weight matrix since the commonly rated genre is
more likely than two users having a common item.

In memory-based CF methods, it is common to precalculate the similarity matrix.
Similarly, the user-item-weight matrix can be precalculated, making prediction calculation
faster. Once we have the user-item-weight matrix, we can then calculate the prediction
using Equation (7). For example, when k is 2, the predicted rating for user 3 for item 5 is
4 (3.58 = (5 × 0.60 + 1 × 0.33) / (0.60 + 0.33)). Please note that this value will generally
be a floating number and sometimes higher than the maximum of the rating-scale. In the
implementation, we can address this issue by simply rounding off to the nearest integer
and setting a ceiling value with the maximum of the rating-scale. This is a common practice
in the industry.

In contrast with well-known explainable recommendation systems [1,19–21], the
proposed method can explain how user and item are related using features of the item and
the user’s preference. The feature vectors in the above example describe both the user and
the target item. We derive these two vectors using only rating and categories. Model-based
CF can also derive similar vectors. However, explaining them will be difficult as latent
features have no real meaning as categories like movie genres.

3. Evaluation
3.1. Data Set

In this paper, we use three available public datasets at MovieLens (GroupLens, Uni-
versity of Minnesota, Minneapolis, MN, USA) to evaluate the method’s prediction ac-
curacy [22]. (1) ML-100k (this is the most commonly used dataset for memory-based
RS [18,22] ), (2) ML-latest-small, and (3) ML-1m. The details are provided in Table 6.

Table 6. Details of the datasets.

Dataset No. ratings No. Users No. Items Rating Scale

ML-100k 100,000 1000 1700 1 to 5
ML-latest-small 100,836 610 9742 0.5 to 5

ML-1m 1,000,209 6040 3900 1 to 5
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3.2. Experimental Setup

The algorithm implementation uses the Surprise by Hug et al. [23], a python-based
framework widely used by the research community and industry. It is highly modular
and comes with the implementation of several benchmark recommendation algorithms. In
order to cater to the high memory requirement of the memory-based CF methods, due to
the large weight matrix is stored in the memory, we conducted the experiments on an Intel
Core i5 2.3 GHz (Intel Corporation, Santa Clara, CA, USA) with an 8 GB RAM MacBook
Pro (Apple Inc., Cupertino, CA, USA).

The complete code used for the experiment is publicly shared on Github.com. See the
Supplementary Materials for the code repository link.

In the code implementation, the data entries for user-item ratings are presented in the
form of tuples containing the user ID, item ID, ratings, and times stamps. We performed
five-fold cross-validation on each test method for all the data sets.

We use the following comparison methods in our experiments:

1. UW: Our proposed method, as in Equation (7);
2. correlation: The basic kNN algorithm, as in Equation (1), with k neighbors, is chosen

using Pearson’s similarity;
3. MSD: The basic kNN algorithm, as in Equation (1), with k neighbors, is chosen using

mean squared distance (MSD) similarity;
4. cosine: The basic kNN algorithm, as in Equation (1), with k neighbors, is chosen using

cosine similarity;
5. Jaccard: The basic kNN algorithm, as in Equation (1), with k neighbors, is chosen

using Jaccard similarity;
6. PIP: The method proposed in Ahn [24];
7. CJMSD: The method proposed in Bobadilla et al. [25].

3.3. Evaluation Metrics

One of the most common evaluation metrics used for prediction accuracy is the mean
absolute error (MAE) [23,26]. MAE measures the absolute difference between the actual
value and predicted values as an error. MAE treats all errors equally. MAE is calculated
as follows:

MAE =
1∣∣R̂∣∣ ∑

ˆru,i∈R̂

|ru,i − ˆru,i| (8)

where ru,i and ˆru,i are the actual rating and predicted rating, respectively, and
∣∣R̂∣∣ is the total

number of predicted ratings. We also use the three other additional quality measures to
evaluate the quality of the recommendations used by Rendle et al. [27], namely; precision,
recall, and coverage. Precision at k is the proportion of the recommended items relevant in
the set of top k-ranked items. This is calculated as follows:

Prec@k =

∣∣topk
(

R̂
)
≥ γ ∩ topk(R) ≥ γ

∣∣∣∣topk
(

R̂
)
≥ γ

∣∣ (9)

where topk
(

R̂
)

is set the top k item ratings, R is the set of actual rating, and γ is the
threshold for ratings to be relevant. Similarly, recall at k is the proportion of recommended
relevant items in the top k-ranked items. This is given as follows:

Recall@k =

∣∣topk
(

R̂
)
≥ γ ∩ topk(R) ≥ γ

∣∣
|topk(R) ≥ γ| , (10)

The coverage represents the percentage of recommended items over the potential
items. This is calculated as follows:

coverage =

∣∣R̂∣∣
|U| × |I| × 100, (11)
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3.4. Results

In this section, we present the results of several experiments for each of the data sets.

3.4.1. Results on ML-100k Dataset

Figure 1 illustrates the prediction accuracy results obtained for the ML-100k dataset
for the different methods being studied.

Figure 1. Prediction accuracy was obtained using different methods for the ML-100k data set.
MAE—mean absolute error.

Figure 1 shows the results of the ML-100k dataset. When the k’s value is increased,
UW has the performances significantly better than the traditional methods. The result
shows that at k = 50, our method has an increase of 15.30% in MAE against correlation
and 18.94% in MAE against cosine and 11.35% against MSD. These improvements suggest
increasing the number of user-item weight in the prediction process better reflects users’
true taste.

As seen in the bottom part of Figure 1, we also did the experiments to compare
proposed methods with several state-of-art methods, including Jaccard, PIP, and CJMSD.
Although there is no improvement in MAE against these methods, our method’s perfor-
mance on the data set mL-100k is relatively very close. For instance, the difference between
the UW and Jaccard results is only 7.86% at k = 50.

In Figure 2, we observed the precision of the seven prediction methods for a given k.
It is clear from the figure that the precision increases as k increases. At k = 40, our method
is better than two traditional methods, 2.22% with correlation and 4.18% with cosine, and
almost the same as the MSD.

Figure 2. Precision was obtained using different methods for the ML-100k data set.
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Compared with CJMSD, PIP and Jaccard, UW underperforms in terms of precision.
However, the difference in improvement is relatively small. Actually, it is only 0.02 lower
than PIP’s best result, which is just 2.58%.

Here, in Figure 3, we observed the Recall of seven methods. As seen in Figure 3,
the Recall of UW is significantly better than that of three different traditional methods
(correlation, Cosine, MSD). Although the results of these three methods improve as k
increases, our method is significantly better for all values of k. At k = 40, the improvement
in recall for UW against cosine is 94.27%, almost double the cosine’s result. For the same k
value, the improvements against MSD and correlation are 33.92% and 55.78%. Compared
with the state-of-art, our method is 2.4% better than Jaccard and fairly close to the other
two methods.

Figure 3. Recall obtained using different methods for the ML-100k data set.

As seen in Figure 4, we observed that the prediction coverage of UW is significantly
better than that of the three traditional methods. Our proposed method has 96.30% improve-
ment against correlation, 147.37% improvement against cosine, and 66.53% improvement
against MSD at k = 50. The result of our methods is also closer to the result of CJMSD and
PIP. For all the k values higher than 30, our method has a better performance than Jaccard.

Figure 4. Coverage for seven methods on ML-100k data set.

3.4.2. Results on ML-Latest-Small Dataset

Figure 5 illustrates the prediction accuracy results obtained for the ML-latest-small
dataset for the seven test methods.
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Figure 5. The prediction accuracy obtained using different methods for the ML-latest-small data set.

Similar to the ML-latest-small dataset results, the relative improvements among
different methods are roughly the same. The prediction accuracies of UW still have good
performances among these methods. Our proposed method (UW) even beats Jaccard at
k = 50. The improvements in MAE against correlation, cosine, and MSD at k = 50 are
14.32%, 14.99%, and 12.82%. The values of the user-item-weight matrix are much evenly
spread across the items for this dataset. Meaning item features and user features are well
represented. This could be due to items having more features (19 genres) than in the ML-
100k dataset. In addition, users have more ratings per item in this dataset. Consequently,
the weight-matrix has a much better representation of user features and items features,
leading to better accuracy.

Similar to the results of experiments on the ML-100k dataset, state-of-art methods
perform better than our method and traditional methods.

As seen in Figure 6, we observed the precision of the seven test methods at different
k values. In contrast to the previous dataset, there is more variance in the results for all
the methods. However, as k approaches 50, the precision of all the methods seems stuck
around 0.62, except PIP (which is the best) and cosine (which is the worst).

Figure 6. The Precision obtained using different methods for the ML-latest-small data set.

In Figure 7, we can see significantly better recall values compared with all the test
methods except CJMSD and PIP. At k = 50, the improvement against correlation, cosine,
MSD and Jaccard are 41.49%, 53.65%, 20.92%, and 2.56%, respectively. The general trend
for this data is the same as the previous dataset. The recall values increase as k increases.
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Figure 7. Recall obtained using different methods for the ML-latest-small data set.

As seen in Figure 8, coverage of UW follows a similar trend as Jaccard. However, UW
has better coverage as k values are increased. The performance improvements of UW at
k = 50 against correlation, cosine, MSD, and Jaccard are 63.65%, 84.05%, 44.78%, and 1.84%.
Although there is a gap between the performance of UW and the performances of JMSD
and PIP, the gap narrows as the k value increases.

Figure 8. Coverage for seven methods on ML-latest-small data set.

3.4.3. Results on ML-1m Dataset

Figure 9 illustrates the prediction accuracy results obtained for the ML-1m dataset for
the different methods being studied.

Figure 9. The prediction accuracy obtained using different methods for the ML-1m data set.
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Similar to the results for the above two datasets, the relative improvements among
different methods are roughly the same. UW’s prediction accuracy still has good perfor-
mances among these methods, with an increase of 17.08% in MAE against correlation and
16.24% against cosine and 14.33% against MSD. Jaccard, JMSD and PIP perform better than
our method. However, there is a significant decrease in the difference of performance with
these methods as k is increased.

In Figure 10, we observed the Precision of the seven test methods. The proposed
method’s precision stays around 0.7, despite the increase in k, and cosine follows a similar
trend until it reaches k = 50, where precision falls further down. Correlation and MSD
have better precision at a high k value. Jaccard, JMSD, and PIP perform significantly better
than the traditional methods.

Figure 10. The precision obtained using different methods for the ML-1m data set.

Although we do not have a good performance in Precision in this ML-1m data set, we
have a significantly good Recall result. As seen in Figure 11, The recall of UW is significantly
better than traditional kNN-based methods. This will gradually become apparent as the size
of the dataset grows. Compared with three different traditional methods, the improvement
against cosine is 91.99% while k is equal to 40, the improvements against two other kNN-
based methods, MSD and correlation, is 295.30% and 388.13%. Even compared with the
state-of-art, our result is 1.48% better than Jaccard and fairly close to the other two methods.

Figure 11. Recall obtained using different methods for the ML-1m data set.

As seen in Figure 12, we observed that UW’s coverage is significantly better than the
three traditional methods. The method’s performance has 485.69% improvement against
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correlation, 188.80% improvement against cosine, 380.11% improvement against MSD.
Our method’s result is also close to CJMSD and PIP, as the figure above shows. While
the chosen value of k is higher than 25, our method will have a better performance than
Jaccard. Especially when k is equal to 40, the improvement against Jaccard is 3.16%.

Figure 12. Coverage for seven methods on ML-1m data set.

3.5. Sparsity of Weight Matrix

To compare the weight matrices’ sparsity among different methods, in Figure 10, we
plot the number of empty entries in the weight matrix against the number of users. The
dataset that we are used here is ML-100k.

As seen in Figure 13, for all the other methods (since the values for other methods
are very close, they are superimposed), an increase in the number of users increases the
sparsity of the weight matrices; however, for UW, the plot shows a flat zero, meaning the
weight matrix is always full. This is due to the commonly rated item-genres (as each item
has one or more genres) among the users. As discussed earlier, decreasing the sparsity is
important as it impacts the accuracy of the predictions.
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4. Discussion

Although the proposed method has a significantly better quality of perdition on all
metrics against cosine, correlation, and MSD, it is not the same for PIP, CJMSD, and Jaccard.
One of the main advantages of the proposed method is its ability to produce a unique
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prediction for users who have no neighbors in other test methods, which helps improve
the coverage significantly. However, this is not the same as the cold-start problem where
the user has not rated an item or an item has not been rated by any user. In these cases,
our proposed methods will also fail as the weight matrix will have 0 entries for these
users or items. Another problem with the proposed method is that the weight values are
always positive, and prediction involves summing all the weighted ratings. This is not the
case with correlation methods, where some similarity values are negative. Although users
with negative similarities are less likely to be used while making predictions, prediction
calculation involves summing them. Consequently, the weighted values are negated from
the resulting prediction allowing the predictions to be a lower value. This is useful for
predicting values for items the user does not like. We believe this is the main reason why
the prediction accuracy of the proposed method is sometimes low. We plan to do future
exploration in this avenue.

We also checked how a user’s weight vector affects the predictions. For instance, we
choose user 496 (from the MovieLens 100k dataset), the weight score for item 499 is 0.106,
suggesting the user and the item shares relatively similar categorical features. The first four
entries for user-weight and item-weight vectors are 0.0, 0.0983, 0.0473, 0.0152, 0.0490 and
0.0, 0.0947, 0.046, 0.008, 0.069, respectively. The entries reflect the genres (action, adventure,
animation, and children). For brevity, we did write all the entries in the vectors. During
the recommendation process, neighbor weights are taking into account. The cumulative-
weight value for 10 nearest-neighbors is 0.861. As a result, the items get at a rating score
of 3.694. (which is usually rounded up to 4 stars). Therefore, we can easily explain why
this item has been recommended. Unlike the traditional explainable recommenders that
usually suggest "you liked this item because you liked X item", our system can notify the
details of the item as well as the user’s preference. For example, “We think you’ll like
this item because you don’t like action movies and this movie contain the right amount of
adventure and animation. Also, other users like you enjoy this movie”.

In contrast to the correlation-based methods, our method considers all the items’
features while making the prediction. In correlation-based methods, these values are
negated from the predicted value. We see this as unnecessary computation since we
are only trying to find items that the user likes. In fact, in most of the implementation
of correlation-based methods, these negative values are ignored. As seen in the results
reporting in previous sections, our method has a significant advantage over other kNN-
based methods.

5. Conclusions

This study proposed a new algorithm to improve the prediction quality in memory-
based collaborative filtering and show the proposed method’s effectiveness using the
MovieLens datasets. The basic idea is that we use the items’ genre information to find
how much each user likes a specific item. The user-item relations are represented in the
user-item-weight matrix. It is calculated by combining users’ specific categorical features
and item-specific categorical features.

The user-item weights are different for each user-item pair. In contrast to the square-
shaped similarity matrix used by the kNN method, the user-item-weight matrix is rectan-
gular. Since the matrix is less sparse, the proposed method has better coverage than the
kNN method. By experimental evaluations on three real benchmark datasets, we have
shown that the proposed method can improve the prediction accuracy, precision, recall,
and coverage. The method can make predictions in real time provided that the weight
matrix is precomputed. One of the key advantages of the proposed method is that our
method provides an explainable recommendation. In contrast to most of the explainable
recommenders, our method shows how much a specific user likes a specific recommended
item.

The major issue with the proposed method is that the prediction calculation only
considers the addition of the weighted user rating. We plan to address this issue in our
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future work. However, our method can make predictions for the cases where kNN fails.
This is a major advantage over other similarity-based collaborative filtering methods.
Modern recommendation systems rely heavily on deep learning models. We are currently
working on building a reinforcement learning model that incorporates item features to
make predictions.

Supplementary Materials: For reproducibility, we published the code for our experiment at https:
//github.com/chen2018k/cate-trust/.
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