
electronics

Article

Bi-Objective Workflow Scheduling on Heterogeneous
Computing Systems Using a Memetic Algorithm

Yujian Zhang 1,2,* , Fei Tong 1,2 , Chuanyou Li 1,3 and Yuwei Xu 1,2

����������
�������

Citation: Zhang, Y.; Tong, F.; Li, C.;

Xu, Y. Bi-Objective Workflow

Scheduling on Heterogeneous

Computing Systems Using a Memetic

Algorithm. Electronics 2021, 10, 209.

https://doi.org/10.3390/electronics

10020209

Received: 15 December 2020

Accepted: 14 January 2021

Published: 18 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Key Laboratory of Computer Network and Information Integration, Southeast University,
Nanjing 211189, China; ftong@seu.edu.cn (F.T.); cyli@seu.edu.cn (C.L.); xuyw@seu.edu.cn (Y.X.)

2 School of Cyber Science and Engineering, Southeast University, Nanjing 211189, China
3 School of Computer Science and Engineering, Southeast University, Nanjing 211189, China
* Correspondence: yjzhang@seu.edu.cn

Abstract: Due to the high power bills and the negative environmental impacts, workflow scheduling
with energy consciousness has been an emerging need for modern heterogeneous computing systems.
A number of approaches have been developed to find suboptimal schedules through heuristics by
means of slack reclamation or trade-off functions. In this article, a memetic algorithm for energy-
efficient workflow scheduling is proposed for a quality-guaranteed solution with high runtime
efficiency. The basic idea is to retain the advantages of population-based, heuristic-based, and local
search methods while avoiding their drawbacks. Specifically, the proposed algorithm incorporates an
improved non-dominated sorting genetic algorithm (NSGA-II) to explore potential task priorities and
allocates tasks to processors by an earliest finish time (EFT)-based heuristic to provide a time-efficient
candidate. Then, a local search method integrated with a pruning technique is launched with a low
possibility, to exploit the feasible region indicated by the candidate schedule. Experimental results on
workflows from both randomly-generated and real-world applications suggest that the proposed
algorithm achieves bi-objective optimization, improving makespan, and energy saving by 4.9% and
24.3%, respectively. Meanwhile, it has a low time complexity compared to the similar work HECS.

Keywords: energy efficiency; heterogeneous computing system; workflow scheduling; bi-objective;
memetic algorithm

1. Introduction

A heterogeneous computing system (HCS) refers to a system that incorporates differ-
ent types of processing units (PUs). It has been ubiquitous in both scientific and industrial
applications, not only because it can provide parallel processing and high performance
powered by large numbers of PUs, but also due to its high efficiency and scalability derived
from the complementarity of diverse types of PUs [1]. For example, more than half of the
top 10 supercomputing systems in the world employ CPU-accelerator heterogeneous archi-
tectures to maximize performance and efficiency [2]. Besides the optimization in hardware
organization and architecture, the efficiency of a HCS heavily depends on the effective
utilization of the PUs inside. Hence, extensive efforts have been made in task schedul-
ing approaches [3–13], which are commonly regarded as software techniques to improve
system efficiency. Generally, a parallel application to run in a HCS can be decomposed
into a set of lightweight tasks with precedence constraints, which can be described by a
directed acyclic graph (DAG) or a workflow. Traditional workflow scheduling schemes
concentrate on minimizing the total completion time, namely makespan, without violating
precedence constraints.

However, it has been found that the single metric from the aspect of time efficiency is
insufficient to evaluate modern HCSs, since their power consumption has become a crit-
ical issue due to the high cost of energy along with the negative environmental impacts.
According to the report by National Resources Defense Council (NRDC) in the USA,

Electronics 2021, 10, 209. https://doi.org/10.3390/electronics10020209 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-9531-9828
https://orcid.org/0000-0002-0629-4543
https://doi.org/10.3390/electronics10020209
https://doi.org/10.3390/electronics10020209
https://doi.org/10.3390/electronics10020209
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10020209
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/10/2/209?type=check_update&version=2

Electronics 2021, 10, 209 2 of 20

the data centers in 2013 consumed 91 billion kWh of electricity, comparable to the produc-
tion of 34 large coal-fired power plants [14]. Furthermore, global data centers are predicted
to cost 5% of the world’s electricity production while causing 3.2% of the worldwide carbon
emissions by 2025 [15]. On the other hand, a large portion of PUs tend to have relatively
low average utilization, spending most of their time in the 10–50% utilization range [16],
which results in a massive waste of electricity and resources. Therefore, a growing number
of workflow scheduling approaches have been developed to accommodate the needs for
energy reduction coupled with makespan minimization [17–25]. With the aid of the dy-
namic voltage frequency scaling (DVFS) technique that has been incorporated into common
processors, schedulers are enabled to reduce the energy consumption at the expense of
processing speed, which may increase the overall completion time of the application. Re-
garding the incompatibility of the two interests, a trade-off between makespan and energy
consumption, or bi-objective optimization, still remains a challenge for energy-efficient
workflow schedulers.

Given the NP-complete complexity of its general form [26], the problem of bi-objective
workflow scheduling is even more complicated, since the scheduling algorithm needs to
take additional considerations for frequency selections and makespan-energy trade-offs,
other than task-to-processor mappings and precedence constraint satisfaction. From the
experience of traditional time-efficient workflow scheduling schemes, the methodologies
to solve the scheduling problem can be dichotomized into two major groups, namely
heuristic and metaheuristic [4,8,9]. The heuristic-based algorithms normally have high
runtime efficiency as they narrow down the search process to an extremely limited solution
space by a set of efficient rule-based policies. These rules have significant effects on
the results, but are not likely to be consistent for a wide range of problems. In contrast,
the metaheuristic-based algorithms are less efficient because of the high computational
cost generated by the incorporated combinatorial process, but they have demonstrated
robust performance in various scheduling problems due to their power in searching more
solution regions [8–13]. Furthermore, the metaheuristic group can be classified into two
subcategories: single solution-based (e.g., tabu search, simulated annealing, and local
search) and population-based (e.g., genetic algorithm and particle swarm optimization) [27].
The single solution-based method exploits more solutions along a promising trajectory
from a single starting point, while the population-based method concurrently track a set
of seeding schedules to explore more solution space. Each of the two methods has its
own strengths and weaknesses, but have high complementarity to each other. To this
end, the memetic algorithm (MA) appears to be a natural choice, but is rarely applied
to the problem of energy-efficient workflow scheduling. Formally, a memetic algorithm
is a population-based metaheuristic composed of an evolutionary framework and a set
of local search algorithms that are activated within the generation cycle of the external
framework [28].

In this article, a memetic algorithm for workflow scheduling on a DVFS-enabled
HCS, namely MA-DVFS, is proposed to optimize makespan and energy consumption
for executing a parallel application. Moreover, to avoid the extreme points on the Pareto
front (e.g., low energy consumption with large makespan, and vice versa), as well produce
a quality-guaranteed solution, MA-DVFS introduces a baseline that is also used as a
seeding point during the bi-objective optimization search. The overall scheme generally
involves three major phases. The first phase is task prioritizing, which has already revealed
its significant effect on the quality of schedules [3,4]. Each task permutation under the
precedence constraints indicates an independent portion of the solution space, which can
be explored by a population-based method. The second phase is inspired by the fact that
minimizing makespan usually helps with energy reduction. Thus, an earliest finish time
(EFT)-based heuristic is utilized to provide a time-efficient candidate solution in the given
portion. Based on this candidate, a local search method is applied with a certain probability
to exploit better solutions in the third phase. To accommodate bi-objective optimization,

Electronics 2021, 10, 209 3 of 20

the improved non-dominated sorting genetic algorithm (NSGA-II) [29] is employed for the
evolutionary framework. The main contributions of this article are listed below.

• A memetic algorithm for energy-efficient workflow scheduling is proposed to integrate
the abilities of exploration and exploitation with a relatively low time complexity.
The search process towards optimal schedules is expected to spread intentionally and
deeply.

• A novel local search algorithm incorporated with a pruning technique is developed to
accelerate the exploitation process. Furthermore, it is proven that launching the local
search with a low probability is sufficient for a stable result.

• A baseline solution generated by a time-efficient scheduling algorithm is introduced as
a good seed, as well as a direction for the evolutionary search, ensuring the bi-objective
optimization to produce quality-guaranteed schedules.

• Extensive simulations are conducted to validate the proposed algorithm by com-
parisons with related algorithms on workflows of both randomly-generated and
real-world applications. Experimental results reveal the superior performance and
the high efficiency of the proposed algorithm.

The rest of this article is organized as follows: Section 2 briefly reviews related work
and existing approaches. Section 3 describes the system model, the application model,
and the energy model used in this article. Section 4 details the proposed algorithm, while
Section 5 gives the experimental results and analyses. Conclusions and suggestions for
future work are provided in Section 6.

2. Related Work

A workflow means a group of tasks and their dependencies, while workflow schedul-
ing is the allocation of tasks to resources without violating precedence constraints. There
can be multiple objectives for workflow scheduling. In this article, we concentrate on the
overall completion time (makespan) and the total energy consumption while executing
the workflow. In this section, we first review related work on time-efficient workflow
scheduling, which has been extensively studied, then investigate recent energy-efficient
workflow scheduling schemes.

2.1. Time-Efficient Workflow Scheduling

The goal of time-efficient scheduling is to minimize the makespan. Existing ap-
proaches fall into two major groups: heuristic [3–7] and metaheuristic [8–13].

The heuristic-based group can be further classified into three subcategories: list [3–5],
clustering [6], and duplication scheduling [7]. They normally offer suboptimal solutions
with polynomial time complexity. Among these heuristics, the majority is list scheduling,
which is usually composed of two phases: a task prioritizing phase to arrange task exe-
cution sequences and a processor selection phase to designate the best processor for each
individual task. For example, the heterogeneous earliest finish time (HEFT) algorithm [3]
considers upward rank values as task priorities and selects processors by an earliest finish
time (EFT)-based heuristic. In the predict earliest finish time (PEFT) algorithm [4], an opti-
mistic cost table (OCT) that implements a look-ahead feature is used for task prioritization,
as well as processor selection to obtain makespan improvements. Similarly, the improved
PEFT (IPEFT) algorithm [5] calculates task priorities with a pessimistic cost table (PCT)
and selects processors with extra considerations of the critical tasks, so that the makespan
can be further optimized. However, the performance of list scheduling algorithms relies
on rule-based policies. Once the task sequence is determined, the search of list schedul-
ing is narrowed down to a quite small portion of the solution space, thus producing a
local optimal solution. The other two heuristic-based subcategories, clustering [6] and
duplication [7], make a strong assumption that enough processors are available for the
clustering process and task duplication, respectively, which cannot be satisfied in most
real-world applications. Moreover, these algorithms require higher time complexity than
list scheduling.

Electronics 2021, 10, 209 4 of 20

In comparison to heuristic-based approaches, metaheuristic ones usually incorporate
a combinatorial search. The quality of the solution can be improved by more iterations,
at the expense of more computational cost. Recently, most well-known metaheuristics,
such as the genetic algorithm (GA) [8–10], ant colony optimization (ACO) [11], particle
swarm optimization (PSO) [12], and tabu search (TS) [13], have been successfully applied
to workflow scheduling. For example, a novel heuristic-based hybrid genetic-variable
neighborhood search (GVNS) algorithm [8] adopts the task priorities generated by HEFT
and combines a genetic algorithm with a variable neighborhood search (VNS) algorithm
to exploit the intrinsic structure of the solutions. The multiple priority queues genetic
algorithm (MPQGA) [9] incorporates an evolutionary framework with a heuristic-based
algorithm, where a genetic algorithm is used to offer task priorities and the EFT-based
heuristic is employed for task-to-processor mappings. Based on that, the task scheduling
algorithm using multiple priority queues and a memetic algorithm (MPQMA) [10] lever-
ages a genetic algorithm along with a hill climbing method to assign a priority to each task
while using the EFT-based heuristic for processor selections. These algorithms appear to
have different encoding schemes or different evolutionary operations, but they happen to
coincide in collaboration with heuristics or local search methods. This is due to the fact
that the search incurs a large solution space and high computational cost, especially when
the scale of the workflow grows. The hybrid scheme has revealed its effectiveness and
efficiency in this research field.

2.2. Energy-Efficient Workflow Scheduling

In practice, most HCSs are built for high performance computing. Thus, time effi-
ciency is almost always the first priority for workflow scheduling, even with additional
considerations. In this case, both energy consumption and makespan should be taken into
account in energy-efficient workflow scheduling. According to the outcome expectancy of
the algorithms, existing approaches can be divided into two categories: namely indepen-
dently [17–22] and simultaneously [23–25,30].

In the independent mode, a “two-pass” method is widely used, in which a time-
efficient schedule is provided in the first pass by a separate time-efficient scheduler, such as
HEFT [3], then the slack time in the schedule is reclaimed for energy reduction in the second
pass. For examples, R-DVFS [17] reviews a given schedule and executes the task along the
same path as uniformly as possible using the lowest available frequency. The enhanced
energy-efficient scheduling (EES) [18] heuristic performs energy reduction by executing
the nearby tasks on the same processor at a uniform frequency for global optimality. In the
group-then-individual (GTI) algorithm [19], the working frequency level of each task would
be rescaled in the group of assigned processors and then individually, to obtain global
optimization. The maximum-minimum-frequency DVFS (MMF-DVFS) method [20] and
the multiple voltage–frequency selection DVFS (MVFS-DVFS) method [21] leverage linear
combinations of multiple frequency levels to execute tasks so that the slack time in the given
schedule can be fully utilized. Furthermore, our previous work, the linear-programming
DVFS (LP-DVFS) algorithm [22], gives the best combination of multiple frequencies for
energy minimization through a linear-programming method. These algorithms can achieve
bounded schedule qualities since the makespan has been determined by a time-efficient
scheduler beforehand. Thus, makespan can be regarded as a deadline constraint during the
energy optimization, which also implies that there is no room for makespan improvement.

In the simultaneous mode, makespan and energy consumption are considered at
the same time, usually through a global function, in which trade-offs are made for each
task in every decision episode. For examples, the energy-conscious scheduling (ECS)
heuristic [23] develops a relative superiority (RS) metric to balance time and energy fac-
tors for each task-to-processor mapping, and relies on a makespan-conservative energy
reduction (MCER) process for further optimization. Based on this study, a hybridization of
the genetic algorithm with ECS, namely HECS [24], is proposed to explore more solution
space. Furthermore, respecting that ECS is costly in CPU time, HECS develops a multi-start

Electronics 2021, 10, 209 5 of 20

approach to make the algorithm run faster. Another similar bi-objective heuristic EECS [25]
is proposed to enhance ECS by developing a new global function with considerations
on more factors and replacing MCER with a new global energy saving (GES) technique.
The effectiveness of these algorithms heavily depends on the objective function. Mean-
while, these algorithms always incorporate a further optimization phase (e.g., MCER and
GES), which is essentially a local search method and computationally expensive. On the
other hand, they cannot provide quality-guaranteed schedules due to the lack of guiding
information, such as a deadline constraint.

Besides the above categories, a number of research works focus on energy-efficient
workflow scheduling on specific applications. For example, as the streaming jobs on
Hadoop can be formulated as a DAG, two types of energy-efficient workflow schedul-
ing heuristics are proposed for the energy efficiency extension on YARN (yet another
resource negotiator) [31]. To address the energy consumption of interconnection networks,
a heuristic list-based network energy-efficient workflow scheduling (NEEWS) algorithm is
proposed to investigate the efficiency of the computing nodes, as well as the interconnection
networks in the HCS [32].

In summary, although metaheuristics and hybrid methods have been successfully
used for time-efficient workflow scheduling, few have been applied to energy-efficient
scenarios. The HECS approach provides a combination of the genetic algorithm and an
ECS-based method, which is CPU-expensive and lacks intentional exploitation. In this
article, a hybrid scheme MA-DVFS based on the memetic algorithm is proposed to realize
bi-objective optimization with high runtime efficiency.

3. Models and Problem Formulation

In this section, we describe the system, application, and energy models used in our
work, then formulate the optimization problem we studied.

3.1. System Model

A HCS consists of a set H of m heterogeneous processors that are fully connected by a
high-speed network. Each processor pi is DVFS-enabled and has a discrete set of voltages
Vi = {Vi,1, Vi,2, . . . , Vi,Mi} coupled with a discrete set of frequencies fi = { fi,1, fi,2, . . . , fi,Mi},
where Mi is the number of pi’s voltage/frequency levels. The power consumption of
pi running at Vi,j/ fi,j is denoted as Pi,j. The DVFS technique enables processor pi to
utilize either the maximum voltage/frequency level Vi,max/ fi,max for high performance or
the minimum voltage/frequency level Vi,min/ fi,min for power savings. For example, the
Intel i7-4770K CPU consumes approximately 64 watts during idle time, while its power
consumption increases to 148 watts during peak time. Compared to the execution time
of one task (at least 1 s), the switching overhead between different voltage/frequency
levels (30–150 µs) can be ignored [33]. Table 1 lists the voltage/frequency pairs of four
real-world processors. It can be observed that variations in both voltage and frequency
occur simultaneously.

Table 1. The voltage/frequency pairs of four commodity processors.

Level
AMD Athlon-64 Intel Pentium M AMD Opteron 2218 AMD Turion MT-34

V (V) f (GHz) V (V) f (GHz) V (V) f (GHz) V (V) f (GHz)

1 1.5 2.0 1.484 1.4 1.30 2.6 1.20 1.8
2 1.4 1.8 1.463 1.2 1.25 2.4 1.15 1.6
3 1.3 1.6 1.308 1.0 1.20 2.2 1.10 1.4
4 1.2 1.4 1.180 0.8 1.15 2.0 1.05 1.2
5 1.1 1.2 0.956 0.6 1.10 1.8 1.00 1.0
6 1.0 1.0 - - 1.05 1.0 0.90 0.8
7 0.9 0.8 - - - - - -

Electronics 2021, 10, 209 6 of 20

3.2. Application Model

A large-scale application is decomposed into a set of lightweight tasks for parallel pro-
cessing, which are commonly described by a directed acyclic graph (DAG) or a workflow.
A workflow G = (V, E, W, C) is mainly comprised of n nodes and e edges, which represent
tasks and dependencies, respectively. Due to the heterogeneous architecture, the execution
time of task vi ∈V varies among different processors, and the computation cost of task vi
executed on processor pj (at its maximum frequency level) is defined as wi,j. For n proces-
sors, we have an n×m matrix W to describe the computation cost distribution of workflow
G. An edge ei,j ∈ E denotes that task vj cannot be started until it finishes data transmission
from task vi, which implies a strict partial order on task set V. The communication cost
between task vi and task vj is defined as ci,j. For e edges, we have a set C to describe the
communication cost distribution of workflow G. Figure 1 illustrates a sample workflow
with 10 tasks and its complementary matrix W of the computation cost on four processors
in Table 1. For more clarity, a set of related definitions is given as follows.

!

! " # $

%

&

'

(

)

"
#

$

"

!

#

"

#

!"#$ %! %" %# %$

! !" !! # !$

% & !' !% !(

) !) * !(#

' !" !% !' &

$ # (!* !(

* (!$!& (

(!' !(# !)

& # !* !(!"

!% !(& !'

!" !& !' * &
$ #

"

!

#
!

)*

Figure 1. A sample workflow with 10 tasks and the complementary matrix.

Definition 1. vi≺evj: denotes the partial order between task vi and task vj if ∃ei,j ∈ E.

Definition 2. pred(vi): denotes the set of all predecessor tasks of task vi. A task with pred(vi) = ∅
is called an entry task, namely ventry.

Definition 3. succ(vi): denotes the set of all successor tasks of task vi. A task with succ(vi) = ∅
is called an exit task, namely vexit.

Definition 4. Critical path: denotes the longest path from an entry task to an exit task, including
all computation and communication costs.

Definition 5. CCR (communication-to-computation ratio): denotes the ratio of the average com-
munication cost to the average computation cost. A high CCR value indicates a communication-
intensive workflow, while a low CCR value implies a computation-intensive workflow.

Definition 6. ti: denotes the actual execution time of task vi in a given schedule, which can be
calculated by:

ti =
f j,max

f j,actual
×wi,j, (1)

where wi,j is task vi’s computation cost when running on processor pj and f j,max and f j,actual are
the maximum frequency level and the actual working frequency level, respectively.

Electronics 2021, 10, 209 7 of 20

Definition 7. AST(vi): denotes the actual start time (AST) of task vi.

Definition 8. AFT(vi): denotes the actual finish time (AFT) of task vi.

Definition 9. EST(vi, pj): denotes the earliest start time (EST) of task vi when executing on
processor pj. It is given by:

EST(vi, pj) = max
{

avail(pj), max
vk∈pred(vi)

{AFT(vk) + ck,i}
}

, (2)

where avail(pj) denotes the earliest available time of processor pj.

Definition 10. EFT(vi, pj): denotes the earliest finish time (EFT) of task vi when executing on
processor pj. It is given by:

EFT(vi, pj) = EST(vi, pj) + wi,j. (3)

Definition 11. makespan: denotes the overall completion time of a workflow, which is determined
by the actual finish time of the last exit task. It can be represented by:

makespan = max
succ(vi)=∅

{
AFT(vi)

}
. (4)

3.3. Energy Model

During the whole execution period of a workflow, each individual processor in the
HCS is either activated to run tasks or in the idle state for receiving data. Therefore,
the overall energy consumption is comprised of two parts: the active part and the idle
part [23], given by:

Etotal = Eactive + Eidle. (5)

The active part Eactive is contributed by the execution of all tasks, which can be
calculated by:

Eactive =
n

∑
i=1

(
Pi×ti

)
, (6)

where Pi is the power consumption for executing task vi. The idle part Eidle is consumed by
processors in the idle state before the completion of all tasks, which can be calculated by:

Eidle =
m

∑
j=1

(
Pj,ilde×tj,idle

)
, (7)

where Pj,idle is the power consumption of processor pj in the idle state and tj,idle is the idle
time of processor pi before the application completes.

3.4. Problem Formulation

In this article, we consider static scheduling in which task dependencies and the cost
distribution are given beforehand. Based on the above models, the problem of energy-
efficient workflow scheduling can be described as: Given a workflow G, we need to search
for a schedule π that includes task prioritization, processor assignment, and frequency
selection, so that the overall completion time makespan and the total energy consump-

Electronics 2021, 10, 209 8 of 20

tion Etotal can be minimized simultaneously. It can be classified as a typical bi-objective
optimization problem, which can be formulated by:

min
{

makespan(π), Etotal(π)
}

subject to :

(1) AFT(vi) + ci,j≤AST(vj), ∀vi≺evj, vi, vj∈V

(2) ∑m
j=1 ∑

Mj
k=1 xi,j,k = 1, ∀i∈{1, 2, . . . , n}, ∀xi,j,k∈π

. (8)

where Constraint (1) ensures that the precedence constraints in the workflow are not
violated and xi,j,k = 1 represents that task vi is scheduled to run on processor pj at frequency
level f j,k, otherwise xi,j,k = 0. Consequently, Constraint (2) implies that a task is executed
only once by using one frequency level.

4. The MA-DVFS Algorithm

This section presents the detailed description of the proposed algorithm, including
the overall algorithm flow and the concepts of the memetic algorithm.

4.1. The Algorithm Flow

The main algorithm flowchart of the proposed MA-DVFS is demonstrated in Figure 2,
which can be divided into three parts: First, a multi-objective evolutionary algorithm,
e.g., NSGA-II, is employed as the main framework to explore a new solution space, as
well as to evaluate individuals in each generation. Second, an EFT-based heuristic is
utilized to point out a time-efficient schedule in the specified portion of the solution space.
Third, a local search method integrated with a pruning technique is adopted with a low
probability to exploit energy-efficient schedules in the given region. After several rounds
of repeats, the best solution is reported.

Stop Criteria Met?

Population Initialization

Start

Selection

Crossover

Mutation EFT-based Heuristic

Local Search

Fitness Evaluation

Next GenerationReport Best Schedule

Stop

NO

YES

Task Priority

Processor

Processor/Frequency

Figure 2. The algorithm flowchart of the memetic algorithm (MA)-dynamic voltage frequency scaling
(DVFS). EFT, earliest finish time.

Electronics 2021, 10, 209 9 of 20

From the aspect of the final schedule, the task priority queue is produced by the
evolutionary algorithm, which indicates a feasible region in the solution space, as shown
in Figure 3. The processor/frequency selections are determined by the EFT-based heuristic
together with the local search method. The overall algorithm leverages a combination of
population-based, heuristic-based, and local search methods to coordinate exploration and
exploitation for bi-objective workflow scheduling.

8.(72%.* 8:'&+

)
%*
%-

%W
'
2%
.
*
XY
.
'
(

!

+' +(

+)

+!"*"

+)

+)
%

$%&'()*'+&,

Figure 3. Feasible regions indicated by different task priority queues.

4.2. Encoding Scheme and Search Space Analysis

Encoding of individuals is one of the most fundamental and important steps in an
evolutionary algorithm. In the scenario of energy-efficient workflow scheduling, each
solution consists of three segments, including task, processor, and frequency, as illustrated
in Figure 4. The task segment contains a permutation of integers 1, 2, . . . , n, representing a
valid task priority queue, which must be one of the topological orders of the workflow [9].
Each gene in the processor segment can be an arbitrary index ranging from one to m, while
each gene in the frequency segment is restricted to the corresponding interval from one
to Mi of the candidate processor pi. Hence, each column of the individual represents one
element of the schedule. For example, the first column in Figure 4 denotes x1,3,1 = 1, which
represents that task v1 is scheduled to run on processor p3 using frequency f3,1.

!"#$

%&'()##'&

*&)+,)-(.

! " # $ % & ' () !*

% ! # " " ! % ! ! %

! # " " % ! ! # ! "

%&/0"&.

#,%%1)0)-!"&.

Figure 4. Encoding of a solution.

In fact, the encoding process reveals a huge search space. Task prioritizing has at
most n! possibilities when all tasks are independent. Moreover, there can be Mn possible
assignments in the processor/frequency selection phase, where M = ∑m

j=1 Mj represents
all frequency levels in the HCS. Thus, the search space of the energy-efficient workflow
scheduling problem is in the order of O(n!×Mn), which challenges the search ability and
efficiency of conventional evolutionary algorithms.

4.3. Population Initialization

The evolutionary algorithm starts from an initial population, the quality of which
is critical for the search process and the final result. The initial population consists of
popSize individuals, in each of which the task segment can be randomly generated under
precedence constraints while the rest of the segments can be filled by an EFT-based heuristic
and the local search method described later. Specifically, the task segments in the initial
population are chosen from the set of topological orders for diversification. With a good
uniform coverage, the individuals can be well spread to cover the whole feasible solution
space [9], as demonstrated in Figure 3. However, the quality of the initial population

Electronics 2021, 10, 209 10 of 20

cannot be guaranteed if it is generated in a totally random manner. In this case, a good
seeding schedule can be introduced to improve the population quality and convergence
speed. Meanwhile, it can be utilized as a reference point in the solution space to guide the
searching process.

Based on the above idea, the process of population initialization is depicted in
Algorithm 1. First, a seeding individual π0 is generated by the HEFT algorithm and added
into the initial population pop (Line 1). Then, a task priority queue is randomly chosen
from the set of topological orders with a tabu list to avoid duplication (Line 3). Each task
in the queue is allocated to a processor by an EFT-based heuristic to generate a schedule
πi (Line 4). After popSize− 1 rounds of repeats, the rest of the individuals of the initial
population are finally generated.

Algorithm 1. Population initialization.

Input: G, H, popSize

Output: pop

1: Generate a seeding individual π0 by HEFT and add it to pop

2: for i = 1 to popSize− 1 do

3: Randomly generate a task priority queue by topological sorting with a tabu list

4: Allocate tasks to processors by the EFT-based heuristic to generate a schedule πi

5: Add πi to pop

6: end for

7: return pop

4.4. Fitness Evaluation and Pareto Archive

Fitness in an evolutionary algorithm represents how close a given solution is to the
optimum solution. In single objective optimization, a fitness function (also known as the
evaluation function) is defined to evaluate a solution. In time-efficient workflow scheduling,
makespan can be used for fitness evaluation, where a smaller makespan implies a better
fitness. In the bi-objective scenario, a fitness function also can be defined by normalization,
but the coefficients of the fitness function need to be tested and optimized. Instead, MA-
DVFS applies the non-dominated sorting of NSGA-II to evaluate the fitness of each solution.
The non-dominated sorting aims to divide a solution set into a number of disjoint ranks,
by means of comparing the values of the same objective. The non-dominated comparison
operator is defined as follows.

Definition 12. πa≺πb: πa is said to be better than πb, if and only if ∀i∈{1, 2}, fi(πa)≤ fi(πb)
and at least ∃j∈{1, 2}, f j(πa)≤ f j(πb), where f1, f2 represent makespan and Etotal , alternatively.

After non-dominated comparison, solutions of a smaller rank are better than those of a
larger rank, and solutions of the same rank are viewed equally important. Solutions of the
smallest rank comprise a Pareto set, which is the ultimate goal for bi-objective optimization.

In order to obtain quality-guaranteed schedules, as well as to accelerate the conver-
gence speed, we introduce a Pareto archive to store and maintain schedules that are better
than the seeding solution during each cycle of the generation. The population evaluation
process is shown as Algorithm 2. First, the current population pop is evaluated by the
non-dominated sorting (Line 1). Then, schedules better than the seeding solution π0 are
regarded as good candidates and stored in pop′′ (Lines 2–7). Finally, each schedule in
pop′′ is added to paretoArchive if it did not already exist (Line 8). Note that when updat-
ing paretoArchive, the non-dominated sorting order is always maintained simultaneously.
In this case, if the size of paretoArchive is limited, solutions in the tail can be dropped.

Electronics 2021, 10, 209 11 of 20

Algorithm 2. Population evaluation.

Input: π0, pop, paretoArchive

Output: pop′, paretoArchive

1: Apply non-dominated sorting in NSGA-II to pop to generate pop′

2: pop′′←∅

3: for each individual πi∈pop′ do

4: if πi≺π0 then

5: Add πi to pop′′

6: end if

7: end for

8: Update paretoArchive with pop′′ to obtain a new paretoArchive′

9: return pop′ and paretoArchive′

4.5. Evolutionary Operations

To produce offspring for the next generation, evolutionary algorithms have to use the
current population to create the children by a series of evolutionary operations, including
crossover, mutation, and selection. In MA-DVFS, the evolutionary framework is mainly
used to explore diverse task priority queues. In this case, the above operations are applied to
the task segment, which is commonly used in population-based methods for time-efficient
workflow scheduling [9,24].

4.5.1. Crossover Operator

Crossover is the process of emulating generation alternation and producing offspring
from selected parents. As previously mentioned, the crossover operator is applied to the
task segment of the schedule. In this case, the operator should be responsible for producing
valid offspring, which means new task priority queues are also topological orders of the
workflow. To this end, we use a topological order preserving heuristic to generate offspring,
as shown in Algorithm 3. First, two individuals are selected from the parent population,
named as Parent1 and Parent2, on which a crossover point is randomly selected (Line 2).
Then, for O f f spring1, genes of the left part are cloned from Parent2 (Line 3) while the rest
are inherited from Parent2 in its original topological order (Lines 4–8), and O f f spring2
is generated in the same way (Lines 9–14). Figure 5 demonstrates a sample process of
the crossover operator. We leverage a single crossover point in MA-DVFS since it has
been proven to be topological order preserving [9] and is simple yet sufficient for task
priority exploration.

! " # $ % & ' () !*!"#$%&'

! % " # & $ () ' !*!"#$%&(

! " # $ % & () ' !*)**+,#-%.'

! " # $ % & ' () !*

! % " # & $ () ' !*

! % " # $ & ' () !*

/#0++01$#2,0-%& /#0++01$#2,0-%&

)**+,#-%.(

!"#$%&'

!"#$%&(

Figure 5. Crossover operation.

Electronics 2021, 10, 209 12 of 20

Algorithm 3. Crossover operator.

Input: Parent1, Parent2

Output: O f f spring1, O f f spring2

1: O f f spring←∅, O f f spring2←∅

2: Choose a random crossover point i∈(1, n)

3: O f f spring1[1..i]←Parent1[1..i]

4: for each j from 1 to n do

5: if Parent2[j] does not exist in O f f spring1 yet then

6: Append Parent2[j] to the tail of O f f spring1

7: end if

8: end for

9: O f f spring2[1..i]←Parent2[1..i]

10: for each j from 1 to n do

11: if Parent1[j] does not exist in O f f spring2 yet then

12: Append Parent1[j] to the tail of O f f spring2

13: end if

14: end for

15: return O f f spring1 and O f f spring2

4.5.2. Mutation Operator

Mutation is analogous to biological mutation, which is used to maintain genetic
diversity. The mutation operator changes a gene with a certain probability, thus helping the
search algorithm escape from local optimal solutions. For a task priority queue, mutation
should be performed without violating the precedence constraints. To this end, once
a mutation point is provided, the closest predecessor and successor can be determined
according to Definitions 2 and 3. Only positions between the predecessor and the successor
(except the mutation point) should be considered as a new position, as shown in Figure 6.
If the new position is selected, the two genes are interchanged to produce a new individual.

! " # $ % & ' () !*.%!(&%

&"*+*!*$$#" $,!!*$$#"
-,).)'#(%&#'()

(*/%&#$')'#(

! " # $ % ' & () !*"!#%&

Figure 6. Mutation operation.

4.5.3. Selection Operator

The selection operator is used to select individuals from the parent population for
breeding the next generation. The primary objective of the selection operator is to em-
phasize the good individuals and eliminate bad ones; thus, the population should be
evaluated, normally by a fitness function, which is not used in MA-DVFS. Instead, we

Electronics 2021, 10, 209 13 of 20

adopt a tournament [34] strategy for selecting candidates. The measurement of fitness of
the population is implemented by the non-dominated sorting as mentioned in Section 4.4;
thus, individuals having the best fitness are then selected.

4.6. Local Search

Since a candidate schedule, which indicates a feasible region in the solution space,
has been determined by the population-based metaheuristic and the EFT-based heuristic,
the goal of the following step is to find the best solution in this region. However, it is a
classic combinatorial optimization problem, which has Mn possible solutions. We leverage
a local search technique to tackle this problem.

Specifically, a hill climbing method is employed to get the local optima. Hill climbing
is one of the local optimization methods, which starts from a given solution and seeks
an improvement by incrementally modifying its configurations. The algorithm of local
search with pruning is described in Algorithm 4. For a given schedule π (Line 1), each
processor/frequency pair can be examined in the order of task priorities in π (Lines 2–17).
Furthermore, two pruning steps, which consider the factors of makespan (Lines 6–8) and
energy (Lines 9–11), respectively, are incorporated into each iteration to narrow down the
searching space, thus reducing the runtime cost of the algorithm significantly. Since the best
solution is recorded during the searching process (Lines 12–14), a local optimum is finally
obtained (Line 18). For example, when the algorithm is applied to the workflow shown in
Figure 7 and the processors listed in Table 1, it can improve the HEFT on energy saving
by 15.9% (no makespan improvement). Meanwhile, the incorporated pruning technique
contributes to the acceleration of the local search process by 69.2%.

Algorithm 4. Local search with pruning.

Input: a solution π

Output: a local optimal solution π∗

1: π∗←π

2: for each vi in π∗ from left to right do

3: for each pj∈H do

4: for each f j,k of pj do

5: Reallocate vi to pj at f j,k to formulate a new solution π′

6: if (f j,k == f j,max) && (makespan(x
′
) > makespan(x∗)) then

7: break

8: end if

9: if (vi /∈VCP) && (f j,k == f j,min) && (Etotal(π
′) > Etotal(π

∗)) then

10: break

11: end if

12: if π
′≺π∗ then

13: π∗←π′

14: end if

15: end for

16: end for

17: end for

18: return π∗

Electronics 2021, 10, 209 14 of 20

4.7. The Overall Algorithm

The overall algorithm is described by Algorithm 5. The initial population pop is gener-
ated by Algorithm 1 and evaluated in the next step to initialize the paretoArchive (Line 2).
So far, the seeding solution provided by HEFT has been included in paretoArchive to ensure
the quality of the final result. Then, the algorithm falls into gmax rounds of iterations as a
population-based method algorithm always does. In each generation, a series of evolution-
ary operations, including selection, crossover, and mutation, as described above, is applied
to the current individuals to generate a new population pop′ (Line 5). The EFT-based heuris-
tic used in HEFT is utilized to allocate tasks to processors without considering frequency
assignments (Lines 6–8). The underlying intuition of this strategy is that reducing the total
execution time usually results in a more energy-efficient schedule, since the occupancy of
a HCS consumes energy every second. After that, the new population pop′ is evaluated
while the paretoArchive is updated accordingly by Algorithm 2 (Line 9). Then, the local
search method as defined in Algorithm 4 is launched with a certain sampling rate to a
random subset of the population (Lines 10–14). Finally, the routine replacement strategy
in NSGA-II is applied to form the new generation (Line 15). The evolution process is
terminated when the maximum number of generations is reached. The final solution can
be reported by popping the first item of paretoArchive (Line 17).

Algorithm 5. The MA-DVFS algorithm.

Input: G, H, gmax

Output: π∗

1: Call Algorithm 1 to generate initial population pop

2: Call Algorithm 2 to evaluate pop and initialize paretoArchive

3: g←0

4: while g++< gmax do

5: Selection, crossover, and mutation to generate a new population pop′

6: for each πi in pop′ do

7: Allocate tasks in πi to processors among H by the EFT-based heuristic

8: end for

9: Call Algorithm 2 to evaluate pop‘ and update paretoArchive

10: if Sampling condition is met then

11: Randomly select an individual π from pop′ and paretoArchive

12: Call Algorithm 4 to do local search to produce π′

13: Update paretoArchive with π′

14: end if

15: Combine and sort pop and pop′ to select individuals for the next generation pop

16: end while

17: π∗← the first population in paretoArchive

18: return π∗

According to the procedures of the algorithm, MA-DVFS is able to provide a quality-
guaranteed schedule, benefiting from the seeding schedule and the Pareto archive. Further-
more, with the aid of non-dominated sorting in NSGA-II, MA-DVFS keeps approaching
the Pareto front to obtain bi-objective optimization. The time complexity of MA-DVFS is
analyzed as follows. Each individual needs to execute evolutionary operations, the time

Electronics 2021, 10, 209 15 of 20

complexity of which is O(g×p×e×m), where g is the number of generations, p is the
population size, e is the edge number of the workflow, and m is the number of processors.
Taking the local search into account, the overall time complexity of the algorithm is in the
order of O(g×(p×e×m + (e + n)×M)).

;@3A ;@3W ;@3K ;@3N

;A3W ;A3K ;A3N

;W3W

;W3K ;W3N

;K3K

;K3N

;@3@

;A3A

(a) Gaussian (s = 5)

;A3@

;W3@

;@3@

;W3A

;K3A

;N3@

;A3A

;K3W

;N3A

;P3@

;W3W

;N3W

;P3A

;Y3@

;K3K
;K3@

(b) Laplace (v = 4)

Figure 7. Sample workflow of two real-world applications.

5. Evaluation

In this section, we first present the experimental settings and comparison metrics, then
validate the effectiveness of the proposed algorithm in terms of scheduling performance,
Pareto dominance, and runtime efficiency. In addition, we examine the impact of the local
search possibility to derive a reasonable sampling rate.

5.1. Experimental Setting

We considered experiments on two sets of workflows: randomly-generated application
and real-world application. For the randomly-generated application, we used a synthetic
workflow generation program and followed the same parameters in related work [3,4].
For real-world applications, two well-known parallel applications, including Gaussian
elimination and the Laplace equation solver were considered as the benchmark workflows,
as shown in Figure 7. Rather than the number of tasks, two new parameters, namely
matrix size s and number of variables v, are used to represent the scales of the Gaussian
workflow and the Laplacian workflow, while the total number of nodes in the workflow of
the two applications is equal to s2+s−2

2 and v2, respectively. These applications retain the
same graph structures once the scales of the workflow are fixed, but they can be various
with different CCRs. Besides, the experimental HCSs are comprised of processors listed in
Table 1, and different numbers of processors are considered to simulate different concurrent
environments. Table 2 summarizes the key parameters used in the experiments.

Table 2. Experimental parameters. CCR, communication-to-computation ratio.

Parameter Value

Number of tasks for random, n {20, 40, 60, 80, 100, 200}
Matrix size for Gaussian, s {5, 8, 11, 14, 17, 20}
Number of variables for Laplacian, v {5, 7, 9, 11, 13, 15}
Number of processors, m {4, 8, 16, 32}
CCR {0.1, 0.5, 1, 2, 5, 10}

Electronics 2021, 10, 209 16 of 20

In order to verify the effectiveness of the proposed MA-DVFS algorithm, we com-
pared it with four related algorithms, including HEFT [3], LP-DVFS [22], local search,
and HECS [24]. Among these algorithms, HEFT is the most cited time-efficient scheduler
and considered as the baseline for comparisons; LP-DVFS is a single objective workflow
scheduler, which has been proven to achieve the upper bound of energy savings; local
search is the method given in Algorithm 4, which is able to realize bi-objective optimiza-
tion independently; HECS is the most similar work, which is also a hybrid evolutionary
algorithm. Table 3 lists the parameters used in the two evolutionary algorithms, which
follow the setup in HECS. All simulations were programmed in C and performed on a Dell
PowerEdge R730 server with an Intel Xeon E5-2620 @ 2.10 GHz CPU and 32GB RAM.

Table 3. Evolutionary parameters.

Parameter HECS MA-DVFS

Population size 20 20
Number of generations 200 200
Crossover rate 1 1
Mutation rate 0.35 0.35
Sampling rate - 0.1

For comparative purposes, the two optimization objectives, makespan and Etotal , are
normalized to their low bounds: the total completion time and energy consumption of the
tasks along the critical path (CP) without considerations of the communication costs, which
are commonly referred to as the schedule length ratio (SLR) and energy consumption ratio
(ECR) [22–25], defined as follows.

SLR =
makespan

∑vi∈VCP
minpj∈P{wi,j}

, (9)

ECR =
Etotal

∑vi∈VCP
minpj∈P{wi,j}×maxk∈Mj

{Pj,k}
, (10)

where VCP is the set of on-critical-path tasks of the workflow and Pj,k denotes the power
consumption of processor pj running at the kth frequency level.

5.2. Scheduling Performance

We compared the performance of the four algorithms with respect to different applica-
tion scenarios as listed in Table 2. For different workflow scales, we used eight processors
for each type as listed in Table 1, and the CCRs were randomly selected. For different
processor numbers, we used the maximum scales of three workflows, namely 200, 20, and
15 for random, Gaussian and Laplacian, respectively, and the CCRs were also randomly
selected. For different CCRs, we chose the maximum scale of each workflow, as well as
the maximum number of processors to simulate large-scale applications. For each pa-
rameter setting, we conducted 100 experiments; thus, we tested the performance on 2800
different scenarios.

We collected all the data from the above experiments and compared the energy-
efficient schedulers in terms of makespan and energy consumption based on the baseline
provided by HEFT. The overall comparison results are summarized in Table 4. It can be
observed that LP-DVFS had no improvement on makespan since it performs a single
objective optimization. Considering the energy consumption, LP-DVFS obtained the maxi-
mum energy savings under its problem constraints (only frequency levels are adjustable).
Local search achieved bi-objective optimization, as we expected, improving the average
makespan and energy savings by 0.3% and 14.5%, respectively. The most similar competitor
HECS gained an average reduction of 19.2% on energy consumption at the expense of a
–9.8% degradation of the makespan, which can be attributed to the lack of guided random

Electronics 2021, 10, 209 17 of 20

search. In terms of bi-objective optimization, MA-DVFS was more competitive with the
average improvements on makespan and energy saving by 4.9% and 24.3%, which are
superior to the improvements achieved by the local search algorithm. This improvement
was due to the exploration ability of MA-DVFS.

Table 4. Performance comparison of four scheduling algorithms. LP, linear-programming.

Application
LP-DVFS Local Search HECS MA-DVFS

Makespan Energy Makespan Energy Makespan Energy Makespan Energy

Random 0% 9.7% 0.4% 18.2% −11.4% 19.4% 2.2% 24.2%
Gaussian 0% 10.3% 0.3% 15.1% −8.7% 20.7% 4.5% 23.9%
Laplacian 0% 9.4% 0.3% 10.3% −9.3% 17.5% 7.9% 24.9%

Average 0% 9.8% 0.3% 14.5% −9.8% 19.2% 4.9% 24.3%

5.3. Pareto Dominance

In order to demonstrate the detailed comparison of the two evolutionary algorithms,
we compared their Pareto dominance of bi-objective optimization on two applications,
including Gaussian and Laplacian. For the scale of the workflow, the matrix size s was set
to 14 for Gaussian while the number of variables v was set to 10 for Laplacian, respectively.
In both applications, the number of processors m was set to 16, and CCR was set to one.
Figure 8 illustrates the Pareto fronts of HECS and MA-DVFS, while the diamond points
represent the initial population. It can be seen that HECS performed well in energy saving,
but failed in makespan improvement. In contrast, the Pareto front provided by MA-DVFS
was closer to the best region. Therefore, by reviewing the Pareto front, MA-DVFS was able
to offer a better solution.

5 6 7 8 9 10 11

ECR

1.6

1.7

1.8

1.9

2

2.1

S
L

R

Initial Population

HECS

MA-DVFS

(a) Gaussian (s = 14, m = 16, CCR = 1)

6 6.5 7 7.5 8 8.5 9

ECR

1.4

1.5

1.6

1.7

1.8

1.9

S
L
R

Initial Population

HECS

MA-DVFS

(b) Laplacian (v = 10, m = 16, CCR = 1)

Figure 8. Pareto fronts of two evolutionary algorithms. SLR, schedule length ratio; ECR, energy consumption ratio.

5.4. Runtime Efficiency

Among the four algorithms, HEFT and LP-DVFS are heuristics, which have polyno-
mial running time, and local search belongs to the single solution-based metaheuristic,
which is also relatively runtime efficient. Hence, the comparison was carried out between
the two population-based algorithms, namely HECS and MA-DVFS, which are more com-
parable. Figure 9 depicts the average time cost of the two algorithms to process each
generation in the above experiment. Requiring executing the ECS search for each indi-
vidual, the HECS algorithm spends much more time in each generation, with 18.9 s and

Electronics 2021, 10, 209 18 of 20

15.9 s for Gaussian and Laplacian, respectively. Comparatively, the MA-DVFS algorithm
consumes only 0.134 s and 0.071 s for the two applications, respectively. This significant
improvement can be attributed to the combination of the EFT-based heuristic and the
local search method with pruning. In addition, launching the local search process with a
relatively low sampling rate helps to accelerate the algorithm as well.

Gaussian Laplace

Different Applications

0.1

0.2

10

15

20

A
v
e
ra

g
e
 T

im
e
 C

o
s
t
(s

)

HECS

MA-DVFS

Figure 9. Average time cost for each generation.

5.5. Impact of the Local Search Possibility

As listed in Table 3, the sampling rate of local search in the above experiments was set
to only 0.1. In order to validate this parameter setting, we examined the impacts of different
sampling rates on the Gaussian and Laplacian applications used above. Figure 10 exhibits
the impacts of different sample rates from 0.1 to one, in steps of 0.1, on SLR, ECR, and
average runtime cost. It can be observed that the scheduling performance represented by
SLR and ECR has rare fluctuations when the sampling rate changes, whereas the runtime
cost increases sharply with the increasing sampling rate. Hence, a sampling rate as low as
0.1 is sufficient to guarantee the quality of the final result.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sampling Rate

0

1

2

3

4

5

6

7

8

9

10

S
L

R
/E

C
R

0

50

100

150

200

250

300

A
v
e

ra
g

e
 R

u
n

n
in

g
 T

im
e

 (
s
)

SLR

ECR

Average Running Time

(a) Gaussian

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sampling Rate

0

1

2

3

4

5

6

7

8

9

10

S
L

R
/E

C
R

0

50

100

150
A

v
e

ra
g

e
 R

u
n

n
in

g
 T

im
e

 (
s
)

SLR

ECR

Average Running Time

(b) Laplace

Figure 10. Impact of the sampling rate.

Electronics 2021, 10, 209 19 of 20

6. Conclusions

In this article, a novel memetic algorithm for energy-efficient workflow scheduling on
DVFS-enabled heterogeneous computing systems, MA-DVFS, is proposed by means of in-
corporating NSGA-II with an EFT-based heuristic and a local search method. Although the
proposed local search method was already able to provide suboptimal schedules through
single solution-based exploitation, it can be enhanced by a genetic framework to explore
more task priority queues. Furthermore, it has been proven that a low sampling rate of
local search is sufficient to provide high-quality solutions. Experimental results demon-
strate the superior performance of the proposed scheme to other related algorithms in
terms of makespan and energy saving. Moreover, it has higher runtime efficiency than the
population-based competitor.

In future work, the performance of the proposed algorithm can be tested on large-scale
HCSs, as well as workflows extracted from other applications. Incorporating other local
search methods, such as tabu search [13] and variable neighborhood search [8], can also
be considered.

Author Contributions: The research for this article was undertaken by Y.Z., F.T., C.L., and Y.X.;
conceptualization and investigation, Y.Z. and C.L.; software and validation, Y.Z. and Y.X.; writing,
original draft preparation, Y.Z., F.T., C.L., and Y.X.; writing, review and editing, Y.Z. and F.T. All
authors read and agreed to the published version of the manuscript.

Funding: This research is funded by the Natural Science Foundation of Jiangsu Province of China
(Grant No. BK20190346) and the 2019 Industrial Internet Innovation and Development Project,
Ministry of Industry and Information Technology, China (Grant No. 6709010003).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mittal, S.; Vetter, J. A survey of CPU-GPU heterogeneous computing techniques. ACM Comput. Surv. 2015, 47, 1–35. [CrossRef]
2. Top500. Top 10 sites for November 2020. Available online: https://www.top500.org/lists/2020/11/ (accessed on 1 December 2020).
3. Topcuoglu, H.; Hariri, S.; Wu, M. Performance-effective and low-complexity task scheduling for heterogeneous computing.

IEEE Trans. Parallel Distrib. Syst. 2002, 13, 260–274. [CrossRef]
4. Arabnejad, H.; Barbosa, J. List scheduling algorithm for heterogeneous systems by an optimistic cost table. IEEE Trans. Parallel

Distrib. Syst. 2014, 25, 682–694. [CrossRef]
5. Zhou, N.; Qi, D.; Wang, X.; Zheng, Z. A list scheduling algorithm for heterogeneous systems based on a critical node cost table

and pessimistic cost table. Concurr. Comput. Pract. Exper. 2017, 29, e3944. [CrossRef]
6. Cirou, B.; Jeannot, E. Triplet: A clustering scheduling algorithm for heterogeneous systems. In Proceedings of the International

Conference on Parallel Processing Workshops (ICPPW), Valencia, Spain, 3–7 September 2001; pp. 231–236.
7. Sinnen, O.; To, A.; Kaur, M. Contention-aware scheduling with task duplication. J. Parallel Distrib. Comput. 2011, 71, 77–86.

[CrossRef]
8. Wen, Y.; Xu, H.; Yang, J. A heuristic-based hybrid genetic-variable neighborhood search algorithm for task scheduling in

heterogeneous multiprocessor system. Inf. Sci. 2011, 181, 565–581. [CrossRef]
9. Xu, Y.; Li, K.; Hu, J.; Li, K. A genetic algorithm for task scheduling on heterogeneous computing systems using multiple priority

queues. Inf. Sci. 2014, 270, 255–287. [CrossRef]
10. Keshanchi, B.; Navimipour, N. Priority-based task scheduling in the cloud systems using a memetic algorithm. J. Circuit Syst.

Comp. 2016, 25, 1650119.
11. Ferrandi, F.; Lanzi, P.; Pilato, C.; Sciuto, D.; Tumeo, A. Ant colony heuristic for mapping and scheduling tasks and communications

on heterogeneous embedded systems. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2010, 29, 911–924. [CrossRef]
12. Kashan, A.; Kashan, M.; Karimiyan, S. A particle swarm optimizer for grouping problems. Inf. Sci. 2013, 252, 81–95. [CrossRef]
13. Shanmugapriya, R.; Padmavathi, S.; Shalinie, S. Contention awareness in task scheduling using tabu search. In Proceedings of

the IEEE International Advanced Computing Conference (IACC), Patiala, India, 6–7 March 2009; pp. 272–277.
14. NRDC. America’s Data Centers Consuming and Wasting Growing Amounts of Energy. Available online: https://www.nrdc.

org/resources/americas-data-centers-consuming-and-wastinggrowing-amounts-energy (accessed on 2 December 2020).
15. Trueman, C. Why Data Centres Are the New Frontier in the Fight against Climate Change. Available online: https://

www.computerworld.com/article/3431148/why-data-centres-are-the-new-frontier-in-the-fight-against-climate-change.html
(accessed on 2 December 2020).

16. Barroso, L.; Hölzle, U.; Rannganathan, P. The Datacenter as a Computer: Designing Warehouse-Scale Machines. Synth. Lect.
Comput. Archit. 2018, 13, 189. [CrossRef]

http://doi.org/10.1145/2788396
https://www.top500.org/lists/2020/11/
http://dx.doi.org/10.1109/71.993206
http://dx.doi.org/10.1109/TPDS.2013.57
http://dx.doi.org/10.1002/cpe.3944
http://dx.doi.org/10.1016/j.jpdc.2010.10.004
http://dx.doi.org/10.1016/j.ins.2010.10.001
http://dx.doi.org/10.1016/j.ins.2014.02.122
http://dx.doi.org/10.1109/TCAD.2010.2048354
http://dx.doi.org/10.1016/j.ins.2012.10.036
https://www.nrdc.org/resources/americas-data-centers-consuming-and-wastinggrowing- amounts-energy
https://www.nrdc.org/resources/americas-data-centers-consuming-and-wastinggrowing- amounts-energy
https://www.computerworld.com/article/3431148/why-data-centres-are-the-new-frontier-in-the-fight-against-climate-change.html
https://www.computerworld.com/article/3431148/why-data-centres-are-the-new-frontier-in-the-fight-against-climate-change.html
http://dx.doi.org/10.2200/S00193ED1V01Y200905CAC006

Electronics 2021, 10, 209 20 of 20

17. Kimura, H.; Sato, M.; Hotta, Y.; Boku, T.; Takahashi, D. Empirical study on reducing energy of parallel programs using slack
reclamation by DVFS in a power-scalable high performance cluster. In Proceedings of the IEEE International Conference on
Cluster Computing, Barcelona, Spain, 25–28 September 2006; pp. 1–10.

18. Su, S.; Huang, S.; Li, J. Enhanced energy-efficient scheduling for parallel tasks using partial optimal slacking. Comput. J. 2014,
58, 246–257. [CrossRef]

19. Zheng, W.; Huang, S. An adaptive deadline constrained energy-efficient scheduling heuristic for workflows in clouds. Concurr.
Comput. Pract. Exper. 2015, 27, 5590–5605. [CrossRef]

20. Rizvandi, N.; Taheri, J.; Zomaya, A.; Lee, Y. Linear combinations of DVFS-enabled processor frequencies to modify the energy-
aware scheduling algorithms. In Proceedings of the 10th IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing (CCGrid), Melbourne, VIC, Australia, 17–20 May 2010; pp. 388–397.

21. Rizvandi, N.; Taheri, J.; Zomaya, A. Some observations on optimal frequency selection in DVFS-based energy consumption
minimization. J. Parallel Distrib. Comput. 2011, 71, 1154–1164. [CrossRef]

22. Zhang, Y.; Wang, Y.; Tang, X.; Yuan, X.; Xu, Y. Energy-efficient task scheduling on heterogeneous computing systems by linear
programming. Concurr. Comput. Pract. Exper. 2018, 30, e4731. [CrossRef]

23. Lee, Y.; Zomaya, A. Energy conscious scheduling for distributed computing systems under different operating conditions.
IEEE Trans. Parallel Distrib. Syst. 2011, 22, 1374–1381. [CrossRef]

24. Mezmaz, M.; Melab, N.; Kessaci, Y.; Lee, Y.; Talbi, E.; Zomaya, A.; Tuyttens, D. A parallel bi-objective hybrid metaheuristic for
energy-aware scheduling for cloud computing systems. J. Parallel Distrib. Comput. 2011, 71, 1497–1508. [CrossRef]

25. Zhou, P.; Zheng, W. An efficient bi-objective heuristic for scheduling workflows on heterogeneous DVS-enabled processors.
J. Appl. Math. 2014, 2014, 370917. [CrossRef]

26. Ullman, J. Np-complete scheduling problems. J. Comput. Syst. Sci. 1975, 10, 384–393. [CrossRef]
27. Gogna, A.; Tayal, A. Metaheuristics: Review and application. J. Exp. Theor. Artif. Intell. 2013, 25, 503–526. [CrossRef]
28. Neri, F.; Cotta, C. Memetic algorithms and memetic computing optimization: A literature review. Swarm Evol. Comput. 2012,

2, 1–14. [CrossRef]
29. Deb, K.; Pratap, A.; Agawal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm. IEEE Trans. Parallel Distrib. Syst.

2002, 6, 182–197.
30. Mahmood, A.; Khan, S.A.; Albalooshi, F.; Awwad, N. Energy-Aware Real-Time Task Scheduling in Multiprocessor Systems Using

a Hybrid Genetic Algorithm. Electronics 2017, 6, 40. [CrossRef]
31. Jin, P.; Hao, X.; Wang, X.; Yue, L. Energy-efficient task scheduling for CPU-intensive streaming jobs on Hadoop. IEEE Trans.

Parallel Distrib. Syst. 2019, 30, 1298–1311. [CrossRef]
32. Tang, X.; Shi, W.; Wu, F. Interconnection network energy-aware workflow scheduling algorithm on heterogeneous systems.

IEEE Trans. Industr. Inform. 2020, 16, 7637–7645. [CrossRef]
33. Mochocki, B. A unified approach to variable voltage scheduling for non-ideal DVS processors. IEEE Trans. Comput. Aided Des.

Integr. Circuits Syst. 2014, 13, 260–274.
34. Blickle, T.; Thiele, L. A Comparison of Selection Schemes Used in Evolutionary Algorithms. Evol. Comput. 1996, 4, 361–394.

[CrossRef]

http://dx.doi.org/10.1093/comjnl/bxu002
http://dx.doi.org/10.1002/cpe.3592
http://dx.doi.org/10.1016/j.jpdc.2011.01.004
http://dx.doi.org/10.1002/cpe.4731
http://dx.doi.org/10.1109/TPDS.2010.208
http://dx.doi.org/10.1016/j.jpdc.2011.04.007
http://dx.doi.org/10.1155/2014/370917
http://dx.doi.org/10.1016/S0022-0000(75)80008-0
http://dx.doi.org/10.1080/0952813X.2013.782347
http://dx.doi.org/10.1016/j.swevo.2011.11.003
http://dx.doi.org/10.3390/electronics6020040
http://dx.doi.org/10.1109/TPDS.2018.2881176
http://dx.doi.org/10.1109/TII.2019.2962531
http://dx.doi.org/10.1162/evco.1996.4.4.361

	Introduction
	Related Work
	Time-Efficient Workflow Scheduling
	Energy-Efficient Workflow Scheduling

	Models and Problem Formulation
	System Model
	Application Model
	Energy Model
	Problem Formulation

	The MA-DVFS Algorithm
	The Algorithm Flow
	Encoding Scheme and Search Space Analysis
	Population Initialization
	Fitness Evaluation and Pareto Archive
	Evolutionary Operations
	Crossover Operator
	Mutation Operator
	Selection Operator

	Local Search
	The Overall Algorithm

	Evaluation
	Experimental Setting
	Scheduling Performance
	Pareto Dominance
	Runtime Efficiency
	Impact of the Local Search Possibility

	Conclusions
	References

