
electronics

Article

Estimating the Memory Consumption of a Hardware IP
Defragmentation Block

Maciej Czekaj 1,* , Ernest Jamro 1 and Kazimierz Wiatr 1,2

����������
�������

Citation: Czekaj, M.; Jarmo, E.; Wiatr,

K. Estimating the Memory

Consumption of a Hardware IP

Defragmentation Block. Electronics

2021, 10, 2015. https://doi.org/

10.3390/electronics10162015

Academic Editor: Jaime Lloret

Received: 13 July 2021

Accepted: 17 August 2021

Published: 20 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science and
Technology, al. A. Mickiewicza 30, Pawilon D-17, 30-059 Kraków, Poland; jamro@agh.edu.pl (E.J.);
wiatr@agh.edu.pl (K.W.)

2 Academic Computer Centre CYFRONET of the University of Science and Technology, ul. Nawojki 11,
P.O. Box 386, 30-950 Kraków, Poland

* Correspondence: mczekaj@agh.edu.pl

Abstract: IP fragmentation is still prevalent on the Internet. Defragmented traffic is a prerequisite
for many network processing algorithms. This work focuses on the size and organization of a flow
table, which is an essential ingredient of the hardware IP defragmentation block. Previous research
suggests that fragmented IP traffic is highly local, and a relatively small flow table (on the order of
a thousand entries) can process most of the traffic. Samples of IP traffic were obtained from public
data sources and used for a statistical analysis, revealing the key factors in achieving design goals.
The findings were backed by an extensive design space exploration of the software defragmentation
model, which resulted in the efficiency estimates. To provide a robust score of the simulation model,
a new validation technique is employed that helps to overcome the limitations of the samples.

Keywords: IP fragmentation; network traffic analysis; network hardware design; statistical estimation

1. Introduction

According to surveys [1] (and backed by this research) IP Fragmentation constitutes
a tiny fraction of Internet traffic (below 1%). However, its impact on the key Internet
technologies cannot be measured by volume alone. The development of network archi-
tectures has been increasingly focusing on security and privacy on the one hand and
flexibility of configuration on another. It turns out that both needs are satisfied by a similar
technological solution, namely network tunnels. The security and privacy are currently
satisfied by end-to-end encryption protocols such as Transport Layer Security (TLS) [2] and
IPSec [3], while the other end of the spectrum is represented by unencrypted IP tunnels
used in Software-Defined Networking (SDN), such as MPLS/GRE [4] or VxLAN [5]. Each
of the mentioned protocols has its technological niche. For instance, TLS has become the
de facto standard for web browsing security and other application-layer traffic in data
centers [6], and IPSec is deployed, among others, as a security measure for User Equipment
in non-trusted 3GPP networks [7].

All the deployments described above must deal with a potential IP traffic fragmentation.
This is a prevalent challenge for both IPv4 and IPv6 networks, despite numerous attempts
to circumvent it [8]. In addition, the centralized nature of tunnels and sheer volume of
traffic in question is causing an increasing adoption of hardware-based TLS [9], IPSec [10],
and SDN [10,11] protocol stacks. Protocol acceleration IP blocks (in hardware parlance, an
IP block is a hardware functionality enclosed as an independent, re-usable module) are
implemented either in silicon or using Field Programmable Gate Array (FPGA) technology.
A silicon-based solution can be a part of a System On Chip (SOC) [12] or a Smart Network
Interface Card (NIC) Ethernet card form factor. FPGA-based IP blocks are implemented in
reconfigurable Smart NICs such as Intel PAC N3000 [9] or Xilinx Alveo [13].

Electronics 2021, 10, 2015. https://doi.org/10.3390/electronics10162015 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-5302-9830
https://orcid.org/0000-0003-4632-2470
https://orcid.org/0000-0001-5959-0277
https://doi.org/10.3390/electronics10162015
https://doi.org/10.3390/electronics10162015
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10162015
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10162015?type=check_update&version=2

Electronics 2021, 10, 2015 2 of 19

Given the task of designing a protocol acceleration block in FPGA or silicon technology,
an engineer faces the challenge of predicting the utilization of hardware resources required
for flawless operation in a particular deployment scenario. The resources in question mostly
consist of memory blocks that could be static or dynamic RAM. Memory consumption is
the main factor determining the cost of the design up to the point of rendering it completely
infeasible when predicted RAM consumption exceeds platform capacity. It is worth noting
that contemporary high-end FPGA silicon typically has an order of hundreds of megabits
of internal Synchronous Random Access Memory (SRAM) memory—a magnitude that is
not so impressive given the fact that those cards are designed for interfacing with 100 Gb/s
Ethernet links. One of the ways to escape the limitations of static RAM arrays is to use
external dynamic memory banks (DRAM). Some of the cards have separate external DRAM
dies (DDR4) or internal memory slices (HBM2) [13], but relying on a memory controller
has certain consequences. First and foremost, it mandates a completely different hardware
logic as opposed to the fast, synchronous SRAM. Secondly, it greatly increases the overall
hardware cost and energy consumption, especially for SOC platforms.

Taking all these factors into consideration, any attempt to design a hardware protocol
stack should be preceded by a careful estimation of memory consumption for a given
design. Such estimation should help to make a business decision (influencing cost) as well
as a design choice for the target platform.

1.1. Significance of the Research

The evolution of fiber networks leads to a rapid increase in network data throughput.
Leading examples of this trend are represented by an adoption of 100 Gb and 400 Gb Ethernet
standards. Meanwhile, the general-purpose CPU computing power lags behind. In effect,
the network processing tasks are being shifted from software to hardware. The hardware
takes the form of a Smart NIC, such as Intel X700 [11] or Mellanox Connectx6 [10], or becomes
a SOC with integrated network functions, such as Marvell Octeon family [12].

This high-end networking hardware is used predominantly in:

• 5G infrastructure, e.g., packet data gateways;
• Security appliances, such as firewall or Intrusion Detection System (IDS).

In both cases IP defragmentation plays a significant role in the performance of a
system. The effectiveness of IDS, for instance, depends on the ability to reconstruct the
original data stream from fragmented packets. That is, the core functionality relies on Deep
Packet Inspection (DPI). Some of the popular evasion techniques (means to bypass security
measures) rely on a specially crafted fragmented packet stream.

In spite of those challenges, there is a pressing need to equip the networking hardware
with the IP defragmentation function. As always, the industry strives to optimize the use
of resources such as SRAM, which is relatively expensive (w.r.t silicon area) and energy-
consuming.

This work attempts to address the resource optimization problem in a systematic
manner. That is, by doing design space search and interpreting the results using modern
statistical techniques.

In summary, the significance of this work stems from the significance of network
accelerator hardware, which becomes ubiquitous both in the cloud operators’ data centers
as well as in the telecom infrastructure. Moreover, this research originates from the industry
itself, as one of the authors has been working for the networking silicon company. In this
case it is not a purely theoretical endeavor but an effect of cooperation between academia
and industry.

1.2. Problem Statement

This article addresses the design space exploration problem to specify the memory
consumption of a typical (as hypothesized in this article) IP reassembly block, using con-
temporary data science methods. These methods consist of unveiling a relevant statistical

Electronics 2021, 10, 2015 3 of 19

image of the network data, constructing the simulation model equipped with tuning
parameters and performing Monte Carlo estimation of key model performance indicators.

The main hypothesis is that the traffic locality of IP fragments is very high, which
translates to the proximity of the packets from the same IP flow. Therefore, the memory
requirements of the IP reassembly module should not be measured by the total number of
IP connections but by the local traffic behavior. As similar prior experiments (Section 2.3)
demonstrate, a flow table of modest size in the order of 1000 entries or even less should be
able to process most of the traffic.

1.3. Contribution of the Article

The original contribution of the article includes:

• carrying out an extensive design space exploration that yields robust confidence
intervals for obtained performance metrics and confirms the original hypothesis about
the performance of an IP reassembly block

• developing an original Monte Carlo validation method for estimating the performance
of network protocol accelerators and, in particular, for an IP reassembly block.

As noted in Section 2.5, none of the previous works on flow processing focused
exclusively on IP fragments. Although this problem seems to be similar to tracking
connections, it has its unique characteristics and challenges. The similarities and differences
between connection (TCP, UDP) tracking and IP defragmentation are summarized in Table 1.
The TCP reassembly function was presented for reference despite belonging to different
problem domain. IP defragmentation has more similarities to the TCP reassembly than to
connection tracking since both require buffering and maintenance of the state. Tracking
the state of L4 connections is optional, and implementations based on the concept of a
cache (e.g., Yamaki [14], Tanaka [15] in Table 2) often do not keep the connection state. The
bandwidth criterion in Table 1 means the availability of the relevant traffic in network
samples. This presents a unique challenge for this work, as IP fragments are considered an
exception in the general Internet traffic. This situation, however, may be changed during
DDOS attack, when the bandwidth of defragmented IP traffic might be significant.

Table 1. Comparison between IP defragmentation and transport layer connection tracking.

Problem Length Bandwidth Connection State Buffering

Connection tracking short and long high optional no
IP defragmentation short low mandatory yes
TCP reassembly short high mandatory yes

Table 2. Summary of the related works.

Publication Protocol Test Data Ways Size

Yamaki [14] TCP, UDP samples 4, 8 1 K
Tanaka [15] TCP, UDP samples 2, 4 128–128 K
Congdon [16] TCP,UDP samples full 2–64
This work IPv4,IPv6 mixing samples 1, 2, 4, 8 16–512

In summary, IP defragmentation is challenging due to the low bandwidth ratio in the
publicly available traffic samples and due to the need to maintain a state. Furthermore,
there is no concept of long-lived connections in the realm of IP fragments, while TCP
flows may last for days. These differences present a sufficient rationale for a focus on IP
defragmentation alone in a novel manner.

1.4. Paper Organization

The paper is organized as follows. Section 2 describes state of the art. Next, a software
simulation model is derived in Section 3.1. An original methodology of computing a robust

Electronics 2021, 10, 2015 4 of 19

score and confidence interval is laid out in Section 3.2. Results of the simulations are
included in Section 4. Finally, Section 5 draws conclusions from the experimental data.

2. Related Work
2.1. Ip Defragmentation
2.1.1. References

IP fragmentation is defined in the RFC0791 (Postel [17], Internet Protocol). Later on,
the usage of the IP ID field was altered in RFC 6864 (Touch [18], Updated Specification of
the IPv4 ID Field). The IPv6 protocol, as described in RFC 8200 (Deering and Hinden [19],
Internet Protocol, Version 6 (IPv6) Specification) contains the Fragment Extension, which
plays the same role as Flags, Offset, and ID fields in the IPv4 header. Hardware IP
reassembly acceleration is a feature of several high-end networking SOC platforms, such as
QorIQ from NXP [20]. The problem is also addressed in a patent by Lin and Manral [21].
This function is similar in principle to TCP acceleration present in some network accelerator
cards, e.g., Mellanox Connectx6 [10].

The concept of stateful Layer 3–4 processing in hardware is also present in scientific
literature. Zhao [22] developed a TCP state tracking engine. Ruiz [23] created an open-
source TCP/IP stack for the FPGA platform.

2.1.2. Ip Defragmentation Algorithm

This section presents a brief overview of the IP defragmentation algorithm. The algorithm
is generalized to work for both IPv4 and IPv6. The difference is in the packet structure.

Figure 1 presents the difference between IPv4 and IPv6 fragments. The payload is
exemplified by the TCP packet (it may by any payload, however). In the case of IPv4,
the fragmentation status is embedded in the IPv4 header. In the case of IPv6, there is an
extra header (Fragment Header) that resides between the payload and the main IPv6 header.

In IPv4, all relevant fields (contained in the IPv4 header) are:

• id—a 16-bit field identifying the fragment series;
• total length—length of the entire IP datagram;
• offset—a 16-bit data offset from the beginning of the original (not fragmented) IP

packet;
• MF—“more fragments” flag indicating that this is not the last fragment;
• DF—“do not fragment” flag preventing fragmentation by gateways and routers;
• proto—type of the payload, e.g., TCP or UDP.

In the case of IPv6, some fields are moved to the fragment header (retaining similar
semantics to IPv4). Overall, the relevant fields are:

• id—a 32-bit field identifying the fragment series;
• payload length—length of the payload (including extension headers);
• offset—a 16-bit data offset from the beginning of the original (not fragmented) IP

packet;
• M—“more fragments” flag indicating that this is not the last fragment;
• next—type of the next header: e.g.,: TCP or UDP or an extension header.

IPv4 header

id total length offset MF DF proto=TCP
TCP header

(a)
IPv6 header

payload length next=Fragment

Fragment header

id offset MF next=TCP
TCP header

(b)

Figure 1. Structure of fragmented IPv4 (a) and IPv6 (b) packets.

Electronics 2021, 10, 2015 5 of 19

The IPv6 protocol prevents fragmentation by the intermediate nodes, so a packet may
be treated as having the DF = 1 flag. The source and destination address fields are left
out from the picture as they require no explanation in this context. The fragment series is
identified by the tuple:

1. (Source, Destination, ID, Proto)—for IPv4
2. (Source, Destination, ID)—for IPv6.

A fragment flow or a fragment series is thus uniquely identified by the tuple number 1 if
the Proto field is left “blank” for IPv6. Note that the bit width of the fields is different, so the
implementation may choose to zero-extend the fields in the case of IPv4 to retain generality.

Figure 2 depicts a transformation process from a “whole” IPv4 packet to a fragment
series. When a transmitting device detects that the IP datagram does not fit into the
Maximum Transmission Unit (MTU), then the packet payload is split into several parts
and each part gets its own IP header. If an original payload is 2000 bytes, then the size of
an IPv4 packet is at least 2020 bytes due to the packet header overhead (the 20-byte length
assumes no IP options in the header). Subsequently, two-part fragment series has 1520
and 520 bytes, respectively. In the case of IPv6, the overhead consists of the length of all
the extension headers between the IPv6 packet header and the data beyond the extension
header (there may be many extension headers). The last header in the series (containing
the final bytes of the payload) has the MF = 0 flag (or M = 0 for IPv6), thus indicating the
final size of the packet.

IPv4 packet

id=0 length=2020 offset=0 mf=0

(a)
IPv4 fragment #1

id=0xABCD length=1520 offset=0 mf=1

IPv4 fragment #2

id=0xABCD length=520 offset=1500 mf=0

(b)

Figure 2. A comparison of a defragmented IP packet (a) and corresponding fragment series (b).

Since IP delivery is not reliable, the packets may be reordered, dropped, or duplicated
and the receiving node must attempt to reconstruct the original payload in all those
cases. As a consequence, each fragment series must be buffered in the receiving device
until a complete reconstruction is made. This process, if left uncompleted, is eventually
interrupted by a timeout.

The process of IP reassembly is serviced by the flow table. A flow table is a lookup
structure that keeps a state and payload for each active fragment flow. The data kept in the
flow table should represent a sorted list of received fragments. When the list is complete,
the original IP packet is reconstructed, and the entry is removed from the table. Figure 3
contains such a list (the length field is a payload-only length without the header overhead).
The fragment series with id=0x100A has a known length, since the last part was received
with MF = 0. The total length is calculated as an offset of the last fragment (1800) plus its
length. Since two previous packets contain only 1200 bytes, there are still 600 bytes lacking.
The fragment series with id=0x1000B has an unknown length since there was no packet
with MF = 0.

The IP defragmentation process follows the “best-effort” approach. A failed attempt
to defragment an IP packet (e.g., due to lack of resources) is not considered fatal but should
be avoided. In the Internet network architecture, it is the responsibility of a higher layer
(TCP, DNS, etc.) to guarantee reliable delivery.

Electronics 2021, 10, 2015 6 of 19

fragment flow 1

fragment flow 2

...

fragment flow 3
id=0x100B

offset=0

length=1500

mf=1

id=0x100A

offset=0

length=600

mf=1

id=0x100A

offset=600

length=600

mf=1

id=0x100A

offset=1800

length=200

mf=0

Figure 3. IP Fragment table.

2.2. Network Traffic Statistics

Stateful traffic processing algorithms can vary in performance and resource consump-
tion based on a statistical distribution of connections (flows) in the traffic. Real-world flow
distribution in traffic has been characterized as highly skewed, long tail, and non-stationary
by Adamic and Huberman [24]. There are noticeable small-scale phenomenons, such as
burstiness as well as dependence on time of the day in the particular time zone. Both effects
are well described in Ribeiro [25] and Benson [26]. Aggregated, high-bandwidth links
were also extensively researched in Arfeen [27], where both small-scale and large-scale
correlations can be detected. Fragmented IP traffic is a well-understood but somewhat
marginal phenomenon in research due to the overall small share in Internet traffic band-
width. The extensive analysis in Shannon [1] claims that it contributes to less than 1% of
total traffic.

2.3. Flow State Memory and Caching

Stateful flow processing can be employed in various algorithms. One of the popular
techniques is flow caching. Caching unicast routing decisions were demonstrated to be
highly effective in Feldmeier [28]. It can speed up various networking algorithms such
as label switching described in Kim [29] or OpenFlow rule processing in Congdon [16].
The design of OpenVSwitch, an open-source SDN forwarding plane described in Pfaff [30],
is centered around the concept of caching. This technique is known to work well both in
software and hardware. An example of a cache-based hardware architecture can be found
in Okuno [31]. The advent of high-bandwidth fiber networks revived the interest in the
energy efficiency of TCAM memory, which led Tanaka [15] to propose a flow cache as
a means of reducing the TCAM hit rate. The general evaluation of flow cache memory
performance is presented in Czekaj and Jamro [32], and subsequently, in Yamaki [14]. A
recent example of using an FPGA-based Smart NIC for a flow-aware network processing
can be found in Li [33].

2.4. Creating Synthetic Traffic in Networking

The need for creating synthetic traffic workloads has been well recognized in the
industry. This is the basis of commercial network equipment testers such as IXIA [34] or
Spirent [35]. A synthetic workload may be built out of real-world traffic samples containing
single connections. Erlacher and Dressler [36] proposed using a mix of ordinary and attack
payloads using the TRex traffic generator [37]. Gadelrab [38] used a similar technique for
security research. Cerqueira [39] evaluated time series forecasting methods, showing that
blocked cross-validation provides the best estimate of predicted performance for stationary
time series and the second best one for a non-stationary case. This is especially relevant for
networking as real-world traffic is proven to be non-stationary, as discussed in Arfeen [27]
and Adamic and Huberman [24].

2.5. Summary of the Related Works

Table 2 presents a comparison of related works that focus on a flow table design.
Most of the presented publications (except Tanaka [15]) concern a flow table of size of

Electronics 2021, 10, 2015 7 of 19

1 K (one thousand entries) or less. The associativity is also similar (e.g., 2, 4, or 8) except
of Congdon [16], which used small, fully associative Content-Addressable Memory (CAM).
Two notable differences contribute to the novelty of this work. First is the testing method,
which uses network samples in a novel way (see Section 2.4). Second is the protocol
concerned, which is not a Layer 4 transport.

3. Materials and Methods
3.1. Software Simulation of the Ip Reassembly Module
3.1.1. Flow Table Design

The main subject of this work is to assess the required size (memory consumption)
of an IP reassembly flow table required to keep the fragmented payload. The primary
goal is a hardware design space exploration, the flow table is constructed in a hardware-
friendly manner. The results do not lose generality as the same scheme (or even more
sophisticated) can be efficiently implemented in software. The design attempts to maximize
performance while keeping the memory organization simple and deterministic. This is
especially important for high-speed fiber networks where the 100 Gb/s throughput (and
beyond) mandates a pipelined architecture [15]. The conceptual organization of the flow
table is presented in Figure 4. The main design factors are:

• Constant associativity A, which is a design parameter;
• Constant number of flow table entries A× B, where B is a number of buckets or “sets”

(also a design parameter);
• Least Recently Used (LRU) replacement policy based on a timestamp (e.g., a cycle or

a packet counter).

Key [1,1]

Key [2,1]

...

IPsrc IPdst ID Proto Hash

Key [B,1]

Key [1,A]

Key [2,A]

...

Key [B,A]

...

...

...

...

=

Flow [1,1]

Flow [B,1]

...

...

Flow [B,A]

Figure 4. Schematic of a flow table.

The flow table design resembles the CPU data cache organization, hence the term
“associativity” or “ways” is being preferred over the “bucket size” (used for hash tables).
The address of the memory entry is generated by the hashing procedure, which is not
present in data caches (which use a physical and virtual address as a key). The LRU policy
is working within a “set” or a bucket. For example, for a four-way memory, the replacement
policy can overwrite the oldest out of the four entries.

The main design challenge for such an algorithmic block is to choose a memory
organization that is capable of holding all concurrent fragment flows without sacrificing
too much silicon space. The rest of the article lays out the methodology and results of an
experiment that systematically explores the solution space.

Electronics 2021, 10, 2015 8 of 19

The IP reassembly algorithm has been implemented in software to perform a simu-
lation of the proposed hardware block. Every attempt at implementing such a block in
hardware should be preceded by algorithmic analysis.

An additional benefit of the simulation is that the results are applicable for software
implementation as well. It can be safely assumed that a software variant can be much
more sophisticated when it comes to control logic and thus outperform hardware on the
algorithmic level (e.g., using cuckoo hashing or dynamic allocation). Thus, any benefit of
this simulation can be applied to software with equal or even greater success.

Design space exploration parameters:

1. Finite flow table with a predefined size A× B in the range from 16 to 512 entries.
2. Fixed associativity A from 1 to 16
3. Infinite packet buffer space. Payload buffering limitations are not simulated.
4. Constant 40-byte flow key constructed from {IPsrc, IPdst, ID f rag, ProtoL4}.
5. LRU replacement policy based on a timestamp.
6. IP Fragments are properly defragmented even when they arrive out of order or

duplicated.
7. Infinite fragment list.
8. No data flow modeling.
9. No cycle-level modeling.

The size of the flow table A× B (point 1) was chosen to be relatively small, which is
typical for the network accelerators based on SRAM memory (e.g., Intel X700 [11]). Other
hardware-oriented publications (e.g., Yamaki [14]) also consider the size in the order of a
thousand entries.

Associativity of a table A defined in point 2 is an important parameter for the hardware
design, as the complexity of implementation rises significantly beyond the four entries.
Especially, the idealized LRU policy is often replaced by the pseudo-LRU, which is a design
trade-off [40]. Furthermore, as discussed in Section 4, the benefits of increased associativity
tend to diminish beyond 8.

Two design parameters, namely packet buffer space and fragment memory size
(points 3 and 7) are considered “infinite”. This modeling practice is motivated by the need
to limit the number of design parameters and focus only on the essential ones. The size
of the buffer space strongly depends on the size of the flow table and can be estimated as
A× B× S̄ f low, where S̄ f low is an average size of a defragmented (original) IP packet. Thus,
the buffer space can be considered a dependent variable.

The fragment list size is an independent variable, but the proper value can be deter-
mined from the analysis of packet traces. This is done in Section 4.3.4. Since that value can
be determined empirically, there is little incentive to assume it a priori.

The lack of data flow and cycle-level modeling stems from the standard hardware
design practice. The key design parameters should be determined before the more detailed
cycle-accurate model is implemented.

In summary, the main point of the simulation is to characterize the behavior of the
flow table while ignoring or simplifying other aspects of the design.

3.1.2. Simulation System

The simulation system consists of several applications designed to work as a data
pipeline. The schematic of the architecture can be found in Figure 5. The test design is
generated and stored in a workflow definition (described in Section 3.2.2). Next, a test
is constructed on the fly using a mixer application. A simulator accepts an input stream
constructed by the mixer. The output of the simulation contains tables of network flows and
cache events, which are stored for offline processing by statistical software. The essential
parts of the process are described in Section 3.2.

Electronics 2021, 10, 2015 9 of 19

3.2. Performance Estimation Methodology
3.2.1. Rationale

The methodology described in this section is originally designed to increase the robust-
ness of simulation results and statistical estimates. Typical tests of network equipment are
conducted using either simulated traffic or real-life packet traces. As noted in Section 2.4,
there are hybrid approaches that use captured packet traces to construct specific tests.

The main drawback of the original data captured in the real network is that the
fragmented packets are rare. Using some form of sample generation helps to overcome the
limitation of insufficient bandwidth.

pcap files Mixer

Flow
statistics

Simulatorpcap stream

Statistical
software

Workflow

Workflow
generator

Figure 5. Schematic of a simulation system.

Synthetic data creation is popular among network security researchers (e.g., Gadelrab [38]).
The machine learning (ML) community has also been using synthetic test creation to a great
extent. This is a cornerstone of making ML systems more robust and prevent overfitting to
the data. Randomized test creation ensures that ML systems and statistical inference tools
capture the most important structure of the data while ignoring the accidental parts. Thus,
cross-validation, split-validation, and derivatives are mandatory tools for both training and
estimation [41,42].

The key observation is that a limited-size flow table with a replacement policy can
be treated as an inference system or as a predictor. The overall simulation is a “model”
that can be evaluated in the same manner as ML models. The only difference is the
fact that the default LRU policy is fixed, so there is no training involved. Thus, the cross-
validation technique can be used as a basis for constructing the validation test for a network
processing model.

3.2.2. Test Generation

Deficiencies of traffic samples may stem from several factors:

1. Abnormal network events captured in sampled traffic;
2. Time-dependent traffic characteristics (network traffic from a single time zone follows

daily and weekly patterns [26]);
3. Insufficient bandwidth in the original sampled traffic;
4. Operator-specific traffic profile.

The technique proposed below addresses all the issues above using a scheme similar
to K-fold Cross-validation from ML field. Since the original method is sub-optimal for
non-stationary time series [39], it has been adapted by mixing packet traces as opposed to
creating a sequential vector. Algorithm 1 is a main test generation algorithm. Algorithm 2
is an address anonymization algorithm invoked by the main algorithm. Algorithm 3 is a
traffic mixing algorithm invoked by the main part.

The prerequisites for an algorithm are as follows:

• S = {Ti}, |S| = K - a set of all packet traces, each trace spans equal time;

Electronics 2021, 10, 2015 10 of 19

• Ti = {pi, time(pi) >= 0, time(p0) = 0}—a packet trace, i.e., a sequence of packets pi
each with the associated timestamp time(pi), such that a first timestamp is 0 (the trace
records only the relative time);

• M—the desired total number of tests;
• N—the number of packet traces forming a single test, N < K;
• IP0

src, IP0
dst—predefined IPv4 address constants.

The final remark about the algorithm is that the use of sampling makes the task of
creating a test set somewhat independent (except N < K due to the sampling without
replacement) of the available number of traces as well as the individual trace size. Figure 6
depicts the process by showing that from K = |S| packet traces there are M tests at the
outcome, each consisting of N traces.

Test 2
...

Test 1

...

Test M

N

Trace K-1

Trace K

Trace 3

Trace 2
Trace 1

Figure 6. Trace mixing schema.

3.2.3. Estimators and Confidence Intervals

The output of the simulation consists of M discrete statistics in a form of a cumulative
distribution function (CDF). Each statistic from the test is an empirical CDF function Fk.
The function Fk(xi) = yi is a discrete cumulative “histogram” defined on L intervals such
that each pair (xi, yi) denotes yi observations of the random variable from the interval
[xi, xi+1). The combined CDF function F̂ is a collection of all empirical CDFs from M tests.

F̂ = {F1, . . . , FM} (1)

Fk(x) = {(x0, y0), (x1, y1), . . . , (xL, yL)}, k ∈ {1..M} (2)

∀i,j∈{1..L}i < j⇔ xi < xj (3)

L

∑
i=1

yi = 1 (4)

For each of the L intervals [xi, xi+1), there is a collection of observations {F1(xi), . . . , FM(xi)}
from M tests, which can be treated as a distribution of results. To produce a point estimate from
M CDF functions, the mean µ̂F(xi) and Confidence Interval (CI) estimates ĈI(xi) are computed
for each interval.

µ̂F(xi) =
1
M

M

∑
k=1

Fk(xi) (5)

T̂α
F (xi) = T̂α(F1(xi), . . . , FM(xi)) (6)

ĈI(xi) = (T̂5(xi), T̂95(xi)) (7)

The confidence interval estimate ĈI is calculated by estimating the 5th and 95th
percentile of a sample distribution: T5, T95. The quantile estimation method was chosen to
be deleted Jackknife with random subsampling [43]. Appendix A describes this method in
detail. It is a first-order accurate estimator (similar to bias-corrected bootstrap) [42] but less
computationally intensive than bootstrap for a small sample size (less than 1000).

Electronics 2021, 10, 2015 11 of 19

The exact choice of L and the exact number of intervals depends on the generated
statistic. For Figures 7, 8, and 9a it follows the logarithmic scale:

dom(Fk(x)) = [1, 2), [2, 4), . . . , [2i, 2i+1), [2L, ∞) (8)

where dom(Fk(x)) denotes the domain of the empirical CDF function Fk(x) from Equation (2).
For Figures 7 and 8 L = 20 while for Figure 9a L = 12.

Figure 7. Efficiency results as a function of number of entries in the flow table. Each sub-graph
represents a different ratio of the test composition R. Each data series represents the flow table
associativity A (number of ways). The X axis has logarithmic scale: X = log2 N f .

(a) (b)

Figure 8. Aggregate mean and confidence interval of cumulative distribution of packet fragment
distance. (a) Whole range; (b) fragment distance up to 10.

Electronics 2021, 10, 2015 12 of 19

(a) (b)

Figure 9. (a) Linear fit f (n) = an of Ŵ(n)—a number of fragment flows as a function of packet
window size. Shaded areas represent the two widest confidence regions of the slope. (b) The Gaussian
kernel density estimation of the distribution of the slope a for each series.

4. Results
4.1. Data Sources

For the simulation, two popular network traffic datasets were extensively used:

• WAND, Waikato Internet Traffic Storage archives from WAND research group [44,45].
The traffic used in the paper comes from New Zealand’s Internet Service Provider
(ISP) core router.

• MAWI, MAWI Working Group Traffic Archive [46,47]. This is the most recent traffic
coming from a Japanese ISP’s backbone link.

Both datasets were explored in numerous publications, including those in Section 2
(e.g., Benson [26]).

4.2. Simulation Parameters

The simulation was configured as follows:

• The total number of traces is K = 316 with each trace lasting 15 min

– 130 packet traces from MAWI;
– 93 traces from WAND with 30 min length were split into two halves, giving

186 traces, each lasting 15 min.

• The total number of individual tests was chosen as M =
⌈
K1.1⌉ = 562.

• Each individual test was a mix of N = dR ∗Metraces, where R is a test composition
ratio

R ∈ {0.1, 0.25, 0.5, 0.75, 0.9}
• For each test run, the simulation program tested the following flow table parameters

(see Figure 4):

– The number of flow table entries is A× B = N f ∈ {16, 32, 64, 128, 256, 512};
– The associativity (number of ways) A ∈ {1, 2, 4, 8, 16}.

The test composition ratio R deserves a longer explanation, as it controls the outcome
of the simulation. Since the number of tests M is constant throughout the experiment,
the ratio R determines the number N of packet traces being sampled (Algorithm 1) and
mixed (Algorithm 3). As the ratio R increases up to 1.0, the number of tests increase up
to M. The number of sampled and mixed tests have two consequences on the statistics
obtained from the simulation:

• The bandwidth of a synthetic packet trace (mixed by Algorithm 3) increases with the
ratio R. This is important in the case of IP fragmentation, as the original packet traces
contain less than 1% of the relevant traffic.

Electronics 2021, 10, 2015 13 of 19

• The statistical diversity (variance of the estimators) obtained from samples diminish
as the R grows. This is observed empirically in Section 4.3 and can be deduced from
the standard formula of a variance of a sample mean:

Var(X̄) =
σ2

n
(9)

As a result, the choice of the constant M should be a function of the desired traffic
bandwidth and variance of the results. Note that M is not dependent on the number of
original samples K. Therefore, the choice of M can be arbitrary. This is a major advantage
of such a sampling method over the traditional approach. It is somewhat analogous to the
application of the bootstrap, which improves the robustness of any statistical estimator
based on limited data on hand.

Algorithm 1 Test generation.

Require: S, M, N
1: for i := 1 to M do
2: S′ := S
3: Ssample := ∅
4: for j := 1 to N do
5: Tj := a packet trace sampled without return from S′

6: T′j := Anonymize(Tj, j) . Algorithm 2
7: Ssample := Ssample ∪ {T′j} . Add the trace to the sample
8: end for
9: Vi := Mix(Ssample) . Algorithm 3

10: end for
11: return {V1, . . . , VM} . a final validation set

Algorithm 2 Trace anonymization
function Anonymize(T, id)→ T′

Step 1 Let a set U be constructed of all IP flows (unique pairs of source and destination
IP addresses) U := { fi}, fi = (IPsrc, IPdst) from IP headers in the packet trace T

Step 2 For each flow fi ∈ U, create a new flow f ′i = (Unique(IP0
src, id, i), Unique(IP0

dst,
id, i)), where Unique(IP, id, i) = IP + (id << 24) + i. The unique IP address is
a bit concatenation of 2 parts: a unique trace number IP + (id << 24) and a
unique flow number i occupying lower 24 bits of the IPv4 address.

Step 3 Create a new trace T′ by replacing all the IP addresses of the flows fi with f ′i .

Algorithm 3 Trace mixing.
function Mix(S)→ Tmix

Step 1 Create e new trace Tmix by constructing a union of all traces Tmix :=
⋃

T ∈ S
Step 2 Sort all packets pi ∈ Tmix in ascending order according to a timestamp time(pi)

4.3. Simulation Results
4.3.1. Efficiency

Figure 7 shows the efficiency metric collected among all test runs. The X axis is a table
size (a number of entries), and the Y axis is the efficiency measured as a success rate.

E =
Nsuccess f ul

Ncomplete
(10)

Electronics 2021, 10, 2015 14 of 19

where Ncomplete is a total number of complete (defragmented) IP packets and Nsuccess f ul is a
number of IP packets successfully defragmented by the given configuration (e.g., 16 entries
one-way).

Efficiency data on Figure 7 demonstrates that higher bandwidth imposes more “stress”
to the model, which results in lowering the efficiency (e.g., lowest score being 0.8 for
R = 0.9 vs. 0.92 for R = 0.1) but at the same time reduces the spread of the results.

The main observation is that the efficiency results support the research hypothesis:
the IP defragmentation algorithm is highly efficient with relatively small table size. If the
one-way table is excluded from the consideration, the efficiency of 95% is reached with the
table size of 128.

The second conclusion is that there are diminishing returns from increasing the
associativity beyond 4. Technical challenges that haunt the highly associative memories
increase the relevance of minimizing this parameter.

4.3.2. Intra-Arrival

Figure 8 displays the sample mean and confidence interval (CI) of intra-arrival count.
This metric is a distance between two packet fragments from the same flow, so it is an
indicator of traffic locality. For instance, a CDF value 0.6 for distance 8 means that in
60% of cases, the next packet from the same flow was at most eight packets apart. This
chart demonstrates the effect of increasing the throughput of the packet traces used for
testing. For example, for a distance of 1, which means that the next packet is from the same
fragment flow, the possible range of values is between 0.35 for R = 0.9 and 0.6 for R = 0.1.

The main conclusion from Figure 8 is that traffic locality is strong for all tests. Even
accounting for confidence sets, there is at least a 50% chance that one of the next five
packets is from the same flow, which can be derived from the lower confidence interval for
series with R = 0.9.

The high traffic locality is the key to efficient flow processing and supports the results
from Figure 7. The data should be interpreted as follows: fragmented IP packets are sent
as a consecutive series of network frames and retain that property even in the aggregated
traffic. This allows for processing them with relatively low memory consumption.

The notable trend that can be observed in Figure 8 and subsequent charts is that
increasing the mix ratio R decreases the overall size of the confidence sets. This can be
explained by the fact that the original diversity contained in the packet traces (smaller than
synthetic) is recovered when the sampling ratio approaches 100%.

4.3.3. Flow Parallelism

In Figure 9, the number of flows in a packet window was approximated by a linear
function for each of the data series associated with ratio R. The original metric measures
how many unique flows can be found in a rolling window of a certain size.

W(n) = {N, w = {pi, . . . , pi+n}, UniqueFlows(w) = N} (11)

Ŵ(n) = T95(W(n)) (12)

where pi is a ith packet in a trace, w is a packet window of size n, and UniqueFlows(w) is a
flow counting function. This metric can be interpreted as a measure of “flow parallelism”,
i.e., how many flows are “active” in the same unit of time.

For a single test, a single window of size n produces a population of measurements,
i.e., W(n) is a sampled random variable. So, the final metric computesthe 95th percentile of
all measurements W(n) for n. For example, a window of 256 with a number of flows 100,
that is, Ŵ(256) = 100, means that in 95% cases in 256 consecutive packets there are no more
than 100 unique IP fragment flows. Since there are M tests, the estimate Ŵ(n) is itself a
population sample, i.e., there are M samples of Ŵ(n) for each data series in Figure 9.

The point measurements (n, Ŵ(n)) are approximated by f (n) = an using the least
squares method (constant term, a.k.a. intercept, is fixed at 0). The slope coefficient a for

Electronics 2021, 10, 2015 15 of 19

each data set is slightly different, so Figure 9a displays the mean slope for each series of M
tests along with the two biggest [5%, 95%] confidence regions. Each data series represents
all tests created with the same ratio of tests R. The detailed results of the linear fit can be
found in Table 3. The minimal coefficient of determination r2 is defined as

r2 =
υ̂(f (n))
υ̂(Ŵ(n))

(13)

where (n, Ŵ(n)) are samples, f (n) ≈ Ŵ(n) is an approximating function and υ̂ is a
variance estimator. r2 is more than 0.97 for all cases (shown in Table 3), which suggests a
strong linear relationship (at least 97% of the variance is explained by the linear function
f (x) = ax). Figure 9b shows the Gaussian kernel density estimate of the distribution of the
slope parameter a. The variance becomes smaller with the growing number R. None of
the probability mass functions can pass a t-test for identity with any other. The p-value is
negligible for all pairs of distributions (less than 10−36).

Measuring the flow parallelism provides additional evidence for flow locality. Highly
local traffic should have lower Ŵ(n) for a given n than non-local traffic.

Figure 9b shows the relation between mix ratio R and the distribution of the slope of
Ŵ(n) in the samples. The differences between slope distributions are consistent with the
previous metrics, e.g., intra-arrival. That is, the variance becomes smaller with higher R.

Table 3. Linear fit results for Figure 9.

Ratio High Slope Low Slope Mean Slope Min. r2

0.10 0.46589 0.30953 0.40379 0.97732
0.25 0.46042 0.39083 0.42903 0.98409
0.50 0.46382 0.41744 0.44497 0.98323
0.75 0.46755 0.44189 0.45782 0.97932
0.90 0.46907 0.45781 0.46386 0.97625

4.3.4. Flow Length

Figure 10 represents a histogram of a sample mean of packet count in a single IP
fragment flow. The expected number of fragments is 2, while the most extreme cases reach
8 packets and more. This follows the findings from Shannon et al. [1]. The higher number
of packets in the fragment series most likely indicates an invalid flow (it can be a part of
a DDOS attack or a firewall evasion technique). Fragment flows with packet count 1 are
incomplete and cannot be reassembled.

Figure 10. Histogram of the sample mean and the confidence intervals of the fragment count. Each
data series represents a different ratio R.

Electronics 2021, 10, 2015 16 of 19

The distribution of the flow length can be used to resolve the question from Section 3.1.1
about the fragment list size. Since the expected fragment length seldom exceeds 8, the list
length of 8 should suffice for practical implementation.

5. Discussion
5.1. Simulation Results

The results from Section 4 indicate that the initial hypothesis of high-traffic locality
holds for a wide range of tests with real-world data. Furthermore, the amount of flow
memory needed to successfully reassemble most of the IP fragments does not have to be
large. The number of ways should be no less than 4 and no more than 16, while the flow
table size should be 128 or larger. That parameter range yields at least 95% effectiveness
across tests.

5.2. Methodology

The original methodological approach undertaken for this particular simulation ex-
periment deserves an independent assessment. The main conclusion from the large-scale
traffic mixing experiment is that it allows the range of tests or simulations to be “enriched”
in the case of an insufficient number of original test samples or when individual sample
diversity is unsatisfactory. The mixing ratio R plays a crucial role in controlling the variance
of the results. Choosing an R that is too high may result in a large number of traffic tests
that are highly similar to each other. If the main purpose of such an experiment is parameter
tuning, this may lead to “overfitting” (this hypothesis is beyond the scope of this work).

The randomized nature of the original sample selection for mixing should be con-
trolled by “seeding” the random number generator. This ensures that individual tests are
reproducible and do not need to be stored but can be generated on the fly. This gives an
additional benefit of making the storage space independent of the total number of tests
(but rather on the number of original samples). This is not a trivial problem as packet
traces from high-speed networks can easily consume terabytes of storage. The obvious cost
of a large number of tests is the amount of computing power that in this particular case
approached hundreds of CPU hours. The recommended way to tackle this problem is to
run many test cases in parallel on a computing cluster or a high-end multi-core platform.

5.3. Future Work

The sample generation technique presented in this paper can be adapted to a wide
range of simulation problems, such as design space search for algorithms, hardware model
verification, or fuzzing software systems (randomized test generators). Network-oriented
machine learning algorithms is a growing and popular field, which could directly benefit
from large-scale packet sample synthesis. However, it is still undetermined how this
particular method affects the supervised learning process or out-of-sample verification.

An obvious research direction when it comes to IP defragmentation is a replacement
policy employed be the flow table. Some research mentioned in Section 2 (e.g., Yamaki [14])
was exclusively focused on developing a technique that can beat the LRU either in per-
formance or resource efficiency. Since the problem of IP defragmentation is somewhat
different from connection tracking (as discussed in Section 1.3), it deserves an independent
assessment of cache replacement policies.

Author Contributions: Conceptualization, M.C., E.J., and K.W.; methodology, M.C. and E.J.; software,
M.C.; validation, M.C.; formal analysis, M.C. and E.J.; investigation, M.C.; resources, E.J., K.W.; data
curation, M.C.; writing—original draft preparation, M.C.; writing—review and editing, E.J. and K.W.;
visualization, M.C. and E.J.; supervision, K.W.; project administration, K.W.; funding acquisition,
K.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: All data sets used in this work are cited and publicly available (see
Section 4.1).

Electronics 2021, 10, 2015 17 of 19

Conflicts of Interest: The authors declare no conflict of interest.

Acronyms

CAM Content-Addressable Memory.

CDF Cumulative Distribution Function.

CI Confidence Interval.

CI Confidence Interval.

DPI Deep Packet Inspection.

FPGA Field Programmable Gate Array.

IDS Intrusion Detection System.

ISP Internet Service Provider.

LRU Least Recently Used.

MTU Maximum Transmission Unit.

NIC Network Interface Card.

SDN Software-Defined Networking.

SOC System On Chip.

SRAM Synchronous Random Access Memory.

TCAM Ternary Content-Addressable Memory.

TLS Transport Layer Security.

Glossary

MPLS/GRE A tunnel protocol based on Multi Protocol Label Switching (MPLS) and
Greneric Routing Encapsulation(GRE).

HBM2 High Bandwidth Memory, an on-chip dynamic RAM optimized for high band-
width. Puplar in Graphics Prosessing Units (GPUs) and high-end FPGAs.

DDOS Distributed Denial of Service attack, a massive request stream aimed at over-
whelming the network service originated from many (geographically distributed)
clients.

Appendix A. Estimation Method

Let {X1, . . . , Xn} denote the collection of independent and identically distributed
(i.i.d.) samples. Let Tn = Tn(X1, . . . , Xn) be a statistic of interest. The variance estimator
υJACK−d of a statistic Tn is based on computing a statistic Tr,s by generating subsets of all
samples s ⊂ {1, . . . , n} of size r = n− d (d is the number of deleted samples in a single
set). There are N = (n

d) possible subsets s, so full estimation may be computationally more
expensive than bootstrap, which typically uses a constant number of subsets from 1000
to 10,000 [41]. However, the collection of N statistics Tr,s can also be sampled, in which
case the method is called “random subsampling”. The method draws a random sample
{s1, . . . , sm} with replacement from S and estimates υ by υ̂

υ̂ =
r

dm

m

∑
t=1

(Tr,St − T̂) (A1)

where

T̂ =
1
m

m

∑
k=1

Tr,Sk (A2)

In order to retain consistency of the estimator, the numbers m and d should be chosen
so that n/d is bounded while m → ∞ [43,48]. The term T̂ is an estimate of a statistic
obtained by a sample mean and r

dm is a variance correction term. Since the Jackknife

Electronics 2021, 10, 2015 18 of 19

estimator approximates the normal distribution, the confidence interval can be computed
using the Student approximation of the normal. The confidence interval 1− α can be
obtained by

CIJack = [T̂ − ta/2 ∗ υ̂, T̂ − ta/2 ∗ υ̂] (A3)

where tα is the inverse Student CDF.

References
1. Shannon, C.; Moore, D.; Claffy, K.C. Beyond folklore: Observations on fragmented traffic. IEEE/Acm Trans. Netw. 2002, 10, 709–720.

[CrossRef]
2. Rescorla, E. The Transport Layer Security (TLS) Protocol Version 1.3; 2018. Available online: https://datatracker.ietf.org/doc/html/

rfc8446 (accessed on 8 April 2021).
3. Kent, S.; Seo, K. Security Architecture for the Internet Protocol; RFC 4301; 2005. Available online: http://www.rfc-editor.org/rfc/

rfc4301.txt (accessed on 8 April 2021).
4. Worster, T.; Rekhter, Y.; Rosen, E. Encapsulating MPLS in IP or Generic Routing Encapsulation (GRE); RFC 4023; 2005. Available

online: https://www.rfc-editor.org/rfc/rfc4023.html (accessed on 8 April 2021).
5. Mahalingam, M.; Dutt, D.; Duda, K.; Agarwal, P.; Kreeger, L.; Sridhar, T.; Bursell, M.; Wright, C. Virtual eXtensible Local Area

Network (VXLAN): A Framework for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks; RFC 7348; 2014. Available online:
http://www.rfc-editor.org/rfc/rfc7348.txt (accessed on 8 April 2021).

6. Holz, R.; Hiller, J.; Amann, J.; Razaghpanah, A.; Jost, T.; Vallina-Rodriguez, N.; Hohlfeld, O. Tracking the deployment of TLS 1.3
on the Web: A story of experimentation and centralization. ACM Sigcomm Comput. Commun. Rev. 2020, 50, 3–15. [CrossRef]

7. Kunz, A.; Salkintzis, A. Non-3GPP Access Security in 5G. J. ICT Stand. 2020, 8, 41–56. [CrossRef]
8. Bonica, R.; Baker, F.; Huston, G.; Hinden, B.; Troan, O.; Gont, F. IP Fragmentation Considered Fragile; Technical Report, IETF Internet-

Draft (Draft-Ietf-Intarea-Frag-Fragile), Work in Progress . . . ; 2019. Available online: https://datatracker.ietf.org/doc/rfc8900/
(accessed on 8 April 2021).

9. Intel. Intel® FPGA Programmable Acceleration Card N3000 for Networking. 2016. Available online: https://www.intel.
com/content/dam/www/programmable/us/en/pdfs/literature/po/intel-fpga-programmable-acceleration-card-n3000-for-
networking.pdf (accessed on 8 April 2021).

10. NVidia. ConnectX-6 DxDual-Port 100GbE/Single-Port 200GbE SmartNIC. 2021. Available online: https://www.mellanox.com/
products/ethernet-adapters/connectx-6-dx (accessed on 8 April 2021).

11. Intel. Intel® XL710 40 GbE Ethernet Adapter. 2016. Available online: https://i.dell.com/sites/csdocuments/Shared-
Content_data-Sheets_Documents/en/us/Intel_Dell_X710_Product_Brief_XL710_40_GbE_Ethernet_Adapter.pdf (accessed on
8 April 2021).

12. Marvell. Marvell® Infrastructure Processors. 2021. Available online: https://www.marvell.com/products/infrastructure-
processors.html (accessed on 8 April 2021).

13. Xilinx. Xilinx Alveo Adaptable Accelerator Cards for Data Center Workloads. 2021. Available online: https://www.xilinx.com/
products/boards-and-kits/alveo.html (accessed on 8 April 2021).

14. Yamaki, H. Effective cache replacement policy for packet processing cache. Int. J. Commun. Syst. 2020, 33, e4526. [CrossRef]
15. Tanaka, K.; Yamaki, H.; Miwa, S.; Honda, H. Evaluating architecture-level optimization in packet processing caches. Comput.

Networks 2020, 181, 107550. [CrossRef]
16. Congdon, P.T.; Mohapatra, P.; Farrens, M.; Akella, V. Simultaneously reducing latency and power consumption in openflow

switches. IEEE/ACM Trans. Netw. (TON) 2014, 22, 1007–1020. [CrossRef]
17. Postel, J. Internet Protocol; STD 5; 1981.Available online: http://www.rfc-editor.org/rfc/rfc791.txt (accessed on 8 April 2021).
18. Touch, J. Updated Specification of the IPv4 ID Field; RFC 6864; 2013.Available online: http://www.rfc-editor.org/rfc/rfc6864.txt

(accessed on 8 April 2021).
19. Deering, S.; Hinden, R. Internet Protocol, Version 6 (IPv6) Specification; STD 86; 2017. Available online: https://www.omgwiki.org/

dido/doku.php?id=dido:public:ra:xapend:xapend.b_stds:tech:ietf:ipv6 (accessed on 8 April 2021).
20. NXP. Overview of Autonomous IPSec with QorIQT Series Processors. 2014. Available online: https://www.nxp.com/files-

static/training/doc/ftf/2014/FTF-NET-F0111.pdf (accessed on 8 April 2021).
21. Lin, V.; Manral, V. Methods and Systems for Fragmentation and Reassembly for IP Tunnels in Hardware Pipelines. U.S. Patent

App. 11/379,559, 23 April 2006.
22. Zhao, Y.; Yuan, R.; Wang, W.; Meng, D.; Zhang, S.; Li, J. A Hardware-Based TCP Stream State Tracking and Reassembly Solution

for 10G Backbone Traffic. In Proceedings of the 2012 IEEE Seventh International Conference on Networking, Architecture, and
Storage, Xiamen, China, 28–30 June 2012; pp. 154–163.

23. Ruiz, M.; Sidler, D.; Sutter, G.; Alonso, G.; López-Buedo, S. Limago: An FPGA-Based Open-Source 100 GbE TCP/IP Stack. In
Proceedings of the 2019 29th International Conference on Field Programmable Logic and Applications (FPL), Barcelona, Spain,
9–13 September 2019; pp. 286–292, doi:10.1109/FPL.2019.00053.

24. Adamic, L.; Huberman, B. Zipfs law and the internet. Glottometrics 2002, 3, 143–150.

http://doi.org/10.1109/TNET.2002.805028
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc8446
http://www.rfc-editor.org/rfc/rfc4301.txt
http://www.rfc-editor.org/rfc/rfc4301.txt
https://www.rfc-editor.org/rfc/rfc4023.html
http://www.rfc-editor.org/rfc/rfc7348.txt
http://dx.doi.org/10.1145/3411740.3411742
http://dx.doi.org/10.13052/jicts2245-800X.814
https://datatracker.ietf.org/doc/rfc8900/
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/po/intel-fpga-programmable-acceleration-card-n3000-for-networking.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/po/intel-fpga-programmable-acceleration-card-n3000-for-networking.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/po/intel-fpga-programmable-acceleration-card-n3000-for-networking.pdf
https://www.mellanox.com/products/ethernet-adapters/connectx-6-dx
https://www.mellanox.com/products/ethernet-adapters/connectx-6-dx
https://i.dell.com/sites/csdocuments/Shared-Content_data-Sheets_Documents/en/us/Intel_Dell_X710_Product_Brief_XL710_40_GbE_Ethernet_Adapter.pdf
https://i.dell.com/sites/csdocuments/Shared-Content_data-Sheets_Documents/en/us/Intel_Dell_X710_Product_Brief_XL710_40_GbE_Ethernet_Adapter.pdf
https://www.marvell.com/products/infrastructure-processors.html
https://www.marvell.com/products/infrastructure-processors.html
https://www.xilinx.com/products/boards-and-kits/alveo.html
https://www.xilinx.com/products/boards-and-kits/alveo.html
http://dx.doi.org/10.1002/dac.4526
http://dx.doi.org/10.1016/j.comnet.2020.107550
http://dx.doi.org/10.1109/TNET.2013.2270436
http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc6864.txt
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.b_stds:tech:ietf:ipv6
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.b_stds:tech:ietf:ipv6
https://www.nxp.com/files-static/training/doc/ftf/2014/FTF-NET-F0111.pdf
https://www.nxp.com/files-static/training/doc/ftf/2014/FTF-NET-F0111.pdf

Electronics 2021, 10, 2015 19 of 19

25. Ribeiro, V.J.; Zhang, Z.L.; Moon, S.; Diot, C. Small-time scaling behavior of Internet backbone traffic. Comput. Netw. 2005,
48, 315–334. [CrossRef]

26. Benson, T.; Akella, A.; Maltz, D.A. Network Traffic Characteristics of Data Centers in the Wild. In Proceedings of the IMC
’10: 10th ACM SIGCOMM Conference on Internet Measurement, Melbourne, Australia, 1–30 November 2010; Association for
Computing Machinery: New York, NY, USA, 2010; pp. 267–280. [CrossRef]

27. Arfeen, M.A.; Pawlikowski, K.; Willig, A.; Mcnickle, D. Internet traffic modelling: From superposition to scaling. IET Netw. 2014,
3, 30–40. [CrossRef]

28. Feldmeier, D.C. Improving Gateway Performance with a Routing-Table Cache. In Proceedings of the IEEE INFOCOM’88,
Seventh Annual Joint Conference of the IEEE Computer and Communcations Societies, Networks: Evolution or Revolution?
New Orleans, LA, USA, 27–31 March 1988; pp. 298–307.

29. Kim, N.; Jean, S.; Kim, J.; Yoon, H. Cache replacement schemes for data-driven label switching networks. In Proceedings of the
2001 IEEE Workshop on High Performance Switching and Routing (IEEE Cat. No.01TH8552), Dallas, TX, USA, 29–31 May 2001;
pp. 223–227. [CrossRef]

30. Pfaff, B.; Pettit, J.; Koponen, T.; Jackson, E.; Zhou, A.; Rajahalme, J.; Gross, J.; Wang, A.; Stringer, J.; Shelar, P.; et al. The Design
and Implementation of Open vSwitch. In Proceedings of the 12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 15), Oakland, CA, USA, 4–6 May 2015; USENIX Association: Oakland, CA, USA, 2015; pp. 117–130.

31. Okuno, M.; Nishimura, S.; Ishida, S.I.; Nishi, H. Cache-based network processor architecture: Evaluation with real network
traffic. IEICE Trans. Electron. 2006, 89, 1620–1628. [CrossRef]

32. Czekaj, M.; Jamro, E. Flow caching effectiveness in packet forwarding applications. Comput. Sci. 2019, 20. [CrossRef]
33. Li, J.; Sun, Z.; Yan, J.; Yang, X.; Jiang, Y.; Quan, W. DrawerPipe: A Reconfigurable Pipeline for Network Processing on FPGA-Based

SmartNIC. Electronics 2020, 9, 59. [CrossRef]
34. Technologies, K. Network Visibility and Network Test Products. 2021. Available online: https://www.keysight.com/zz/en/

cmp/2020/network-visibility-network-test.html(accessed on 8 April 2021).
35. Spirent. High-Speed Ethernet Testing Solutions. 2021. Available online:https://www.spirent.com/solutions/high-speed-

ethernet-testing (accessed on 8 April 2021).
36. Erlacher, F.; Dressler, F. Testing ids using genesids: Realistic mixed traffic generation for ids evaluation. In Proceedings of the

ACM SIGCOMM 2018 Conference on Posters and Demos, Budapest, Hungary, 20–25 August 2018; pp. 153–155.
37. Cisco. TRex Realistic Traffic Generator. Available online:https://trex-tgn.cisco.com/ (accessed on 8 April 2021).
38. Gadelrab, M.; Abou El Kalam, A.; Deswarte, Y. Manipulation of network traffic traces for security evaluation. In Proceedings of

the 2009 International Conference on Advanced Information Networking and Applications Workshops, Bradford, UK, 26–29 May
2009; pp. 1124–1129.

39. Cerqueira, V.; Torgo, L.; Mozetič, I. Evaluating time series forecasting models: An empirical study on performance estimation
methods. Mach. Learn. 2020, 109, 1997–2028.

40. Sudarshan, T.; Mir, R.A.; Vijayalakshmi, S. Highly efficient LRU implementations for high associativity cache memory. In
Proceedings of the 12 International Conference on Advances in Computing and Communications, ADCOM-2004, Ahmedabad,
India, 15–18 December 2004; pp. 24–35.

41. Efron, B.; Hastie, T. Computer Age Statistical Inference; Cambridge University Press: Cambridge, UK, 2016; Volume 5.
42. Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; CRC Press: Boca Raton, FL, USA, 1994.
43. Young, G. 15. The Jackknife and Bootstrap. J. R. Stat. Soc. Ser. A (Stat. Soc.) 1996, 159, 631–632.
44. WITS: Waikato INTERNET Traffic Storage. 2013. Available online: https://wand.net.nz/wits/ (accessed on 8 April 2021).
45. Cleary, J.; Graham, I.; McGregor, T.; Pearson, M.; Ziedins, L.; Curtis, J.; Donnelly, S.; Martens, J.; Martin, S. High precision traffic

measurement. IEEE Commun. Mag. 2002, 40, 167–173.
46. WIDE Project. 2020. Available online: http://mawi.wide.ad.jp/mawi/ (accessed on 8 April 2021).
47. Sony, C.; Cho, K. Traffic data repository at the WIDE project. In Proceedings of the USENIX 2000 Annual Technical Conference:

FREENIX Track, San Diego, CA, USA, 18–23 June 2000; pp. 263–270.
48. Politis, D.N.; Romano, J.P. Large sample confidence regions based on subsamples under minimal assumptions. Ann. Stat. 1994,

22, 2031–2050.

http://dx.doi.org/10.1016/j.comnet.2004.11.012
http://dx.doi.org/10.1145/1879141.1879175
http://dx.doi.org/10.1049/iet-net.2013.0148
http://dx.doi.org/10.1109/HPSR.2001.923636
http://dx.doi.org/10.1093/ietele/e89-c.11.1620
http://dx.doi.org/10.7494/csci.2019.20.2.3185
http://dx.doi.org/10.3390/electronics9010059
https://www.keysight.com/zz/en/cmp/2020/network-visibility-network-test.html
https://www.keysight.com/zz/en/cmp/2020/network-visibility-network-test.html
https://www.spirent.com/solutions/high-speed-ethernet-testing
https://www.spirent.com/solutions/high-speed-ethernet-testing
https://trex-tgn.cisco.com/
https://wand.net.nz/wits/
http://mawi.wide.ad.jp/mawi/

	Introduction
	Significance of the Research
	Problem Statement
	Contribution of the Article
	Paper Organization

	Related Work
	Ip Defragmentation
	References
	Ip Defragmentation Algorithm

	Network Traffic Statistics
	Flow State Memory and Caching
	Creating Synthetic Traffic in Networking
	Summary of the Related Works

	Materials and Methods
	Software Simulation of the Ip Reassembly Module
	Flow Table Design
	Simulation System

	Performance Estimation Methodology
	Rationale
	Test Generation
	Estimators and Confidence Intervals

	Results
	Data Sources
	Simulation Parameters
	Simulation Results
	Efficiency
	Intra-Arrival
	Flow Parallelism
	Flow Length

	Discussion
	Simulation Results
	Methodology
	Future Work

	Estimation Method
	References

