
electronics

Article

Analyzing and Visualizing Deep Neural Networks for Speech
Recognition with Saliency-Adjusted Neuron Activation Profiles

Andreas Krug * , Maral Ebrahimzadeh, Jost Alemann , Jens Johannsmeier and Sebastian Stober

����������
�������

Citation: Krug, A.; Ebrahimzadeh,

M.; Alemann, J.; Johannsmeier, J.;

Stober. S Analyzing and Visualizing

Deep Neural Networks for Speech

Recognition with Saliency-Adjusted

Neuron Activation Profiles.

Electronics 2021, 10, 1350. https://

doi.org/10.3390/electronics10111350

Academic Editors: Alexander Lerch,

Peter Knees, Jingdong Chen, Chiman

Kwan and Flavio Canavero

Received: 8 March 2021

Accepted: 31 May 2021

Published: 5 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Artificial Intelligence Lab, Otto von Guericke University, 39106 Magdeburg, Germany;
maral.ebrahimzadeh@ovgu.de (M.E.); jost.alemann@st.ovgu.de (J.A.); jens.johannsmeier@ovgu.de (J.J.);
stober@ovgu.de (S.S.)
* Correspondence: andreas.krug@ovgu.de

Abstract: Deep Learning-based Automatic Speech Recognition (ASR) models are very successful,
but hard to interpret. To gain a better understanding of how Artificial Neural Networks (ANNs)
accomplish their tasks, several introspection methods have been proposed. However, established
introspection techniques are mostly designed for computer vision tasks and rely on the data being
visually interpretable, which limits their usefulness for understanding speech recognition models.
To overcome this limitation, we developed a novel neuroscience-inspired technique for visualizing
and understanding ANNs, called Saliency-Adjusted Neuron Activation Profiles (SNAPs). SNAPs
are a flexible framework to analyze and visualize Deep Neural Networks that does not depend on
visually interpretable data. In this work, we demonstrate how to utilize SNAPs for understanding
fully-convolutional ASR models. This includes visualizing acoustic concepts learned by the model
and the comparative analysis of their representations in the model layers.

Keywords: explainable AI; visualization; model introspection; speech recognition; convolutional
neural networks

1. Introduction

Artificial Neural Networks (ANNs) have become a very popular tool for solving
challenging tasks across various fields of application. Increasing their performance is often
achieved through increasing their depth, the number of neurons or by using more complex
architectures [1]. At the same time, larger computational models become black-boxes,
which are harder to interpret [2]. This complicates detecting erroneous behavior, thus can
be risky in critical applications. Several introspection techniques have been proposed to
obtain insight into ANNs [3,4]. However, most introspection methods are designed for
certain applications or architectures. In particular, many introspection techniques focus on
images because the features of images are easy to interpret visually. Features in the audio
domain are more difficult to interpret visually, making established introspection techniques
less suitable for understanding the model. In this work, we address the consequent need for
methods to also understand ANNs that process data which are not visually interpretable.

The complexity of ANNs is becoming closer to that of real brains. While complex
ANNs are a recent technical development, real brains have been studied in neuroscience
for over 50 years. This rich experience from the field of neuroscience can also help to
understand complex ANNs better. By adapting well-established methods that are used
for understanding real brain activity it is possible to analyze ANNs, as well [5]. In this
work, we particularly take inspiration from a popular technique in the field of neuro-
science, the Event-Related Potential (ERP). The ERP technique is used for analyzing brain
activity through Electroencephalography (EEG) [6]. ERPs aim to measure brain activity
for a particular fixed event (stimulus). As the event is consistent across all EEG measure-
ments, aligning the data at this stimulus and averaging the signals yields event-specific
information [7]. Averaging of a random signal over multiple measurements, in contrast, is

Electronics 2021, 10, 1350. https://doi.org/10.3390/electronics10111350 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-4729-1840
https://orcid.org/0000-0002-8644-239X
https://orcid.org/0000-0002-1717-4133
https://doi.org/10.3390/electronics10111350
https://doi.org/10.3390/electronics10111350
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10111350
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10111350?type=check_update&version=2

Electronics 2021, 10, 1350 2 of 30

returning the expected value of its random distribution. This way, in ERPs, variations in
brain activity that are unrelated to the stimulus are removed from the measurements. We
analyze ANNs similarly, but as their responses are deterministic, we use the averaging to
remove particular variations in the input data. For example, in a speech recognition model,
we characterize ANN responses to a particular phoneme by using averaging to remove the
variation that originates from different speakers and articulations.

In this work, we present Saliency-Adjusted Neuron Activation Profiles (SNAPs) as an
ERP-inspired analysis of ANNs. SNAPs build on our earlier research in which we already
introduced specific aspects of the methodology [8,9]. Here, we extend and generalize
these techniques to be useful for a wider range of analyses of ANNs. Furthermore, we
perform a validation of the individual steps in the SNAP computation procedure. SNAPs
themselves are characteristic responses of ANNs to particular groups of inputs. They
can be used for various ways of performing a comprehensive analysis of the network.
We showcase two exemplary ways to utilize SNAPs for examining network responses
using fully-convolutional Automatic Speech Recognition (ASR) models: 1. Interpreting
visualized SNAPs directly and 2. Analyzing representations in any layer of the network
using a clustering-based approach.

With SNAPs, we introduce a novel technique to analyze and visualize ANNs which,
in contrast to most established introspection techniques, does not require visually inter-
pretable input data. In particular, our method focuses on describing the behavior of the
model. How to use the results for improving the model will be discussed, but specific
experiments are outside the scope of this work.

2. Related Work
2.1. ASR Using Convolutional Neural Networks

Machine Learning (ML) comprises algorithms that are designed to use data to auto-
matically improve themselves. Therefore, ML algorithms can learn to perform tasks which
are too complex to be implemented with manual instructions. One common ML task is
supervised learning, where the model learns to predict labels from a given labeled data
set. Supervised learning tasks are, for example, classification, regression or transcription.
In unsupervised learning tasks, the ML model analyzes unlabeled data with the aim of
capturing the structure of the data [10]. For example, in clustering tasks, data are grouped
according to their similarities.

Deep Learning (DL) is a branch of machine learning that uses ANNs with multiple
layers. An ANN consists of many artificial neurons, each computing a weighted sum of
its connected inputs and applying a non-linear function to the result. These neurons are
organized in a series of hidden layers, where typically only neurons of successive layers are
connected but not neurons of the same layer. Each connection is weighted by a trainable
parameter. Because of the huge number of connections, resulting from having several
hidden layers, ANNs need massive amounts of data as input to learn suitable connection
weights for performing correct predictions for the inputs. DL allows us to automatically
learn feature representations by learning simple patterns in the early layers and combining
them to increasingly complex patterns in the deeper layers. The learning procedure of
an ANN is to minimize its prediction error by updating the connection weights between
neurons with optimization algorithms like Gradient Descent or Adam [11,12].

Convolutional Neural Networks (CNNs) are a type of DL architecture which can
detect patterns independent of their position in the input. This is achieved by convolving
the input with trainable filters. The receptive field of a filter describes the region in the
input used to compute a single output value of the convolution layer. The receptive field of
filters in deeper layers can be propagated back to the input. Correspondingly, the receptive
field of the output layer is the part of the input that is used for one prediction. Convolutions
are typically applied to consecutive regions in the input. For reducing the resolution of the
output, convolution can be applied with a stride of s, meaning that it is applied to every

Electronics 2021, 10, 1350 3 of 30

sth region. The output of applying one convolution filter to the complete input is called a
feature map [11].

Usually, for two-dimensional data like images, CNNs with two-dimensional filters
are used. For operating on one-dimensional data, CNNs with one-dimensional filters are
preferred over 2D CNNs because of the lower computational complexity [13]. As speech
is a one-dimensional signal, one of the applications of 1D CNN is in speech recognition.
A 1D CNN can operate directly on a signal or on a spectrogram, which is a representation
of frequencies of a signal during the time [13–15]. Each time step of a spectrogram corre-
sponds to an overlapping time interval in which the peak amplitude of a set of frequency
bins is derived. The resulting values are commonly referred to as the intensities of the
frequencies [16].

Using CNNs for speech recognition is not uncommon [17,18] but is often combined
with models from traditional ML or other DL models. For example, such hybrid models
involve Hidden Markov Models [19,20] or Recurrrent Neural Networks (RNNs) [21].
Besides ASR, CNNs are also used for other speech-related tasks, for example learning
spectrum feature representations [22] or speech emotion recognition [23].

2.2. Model Introspection

Model introspection is the process of analyzing or visualizing internal structures or
processes of computational models. This is of particular interest in DL models as these
work as black-boxes [2]. Research on elucidating DL model internals has gained traction
recently and several introspection techniques have been proposed. However, most research
is done in the field of computer vision due to the ease of visual inspection [3,4,24].

2.2.1. Feature Visualization

A simple way of inspecting internal structures of a DL model is to visualize its learned
weights. In fully-connected neural networks, each neuron in the first hidden layer is
connected to all values in the input. To inspect the pattern that a particular neuron in
this layer responds to, the weights of these connections can be visualized. To this end,
the weight values are plotted according to the position of the corresponding values in the
input [25]. For image data or spectrogram inputs, the weights are visualized as image, too.
In time-series data like speech recordings, weight visualization follows the one-dimensional
structure of the input. In deeper layers, neurons receive input signals from neurons in
the preceding hidden layer. Neurons within the same layer are not interconnected and
therefore have no informative ordering. Hence, in deeper layers, plotting the connection
weights cannot be interpreted by visual inspection.

In CNNs, weights are applied as convolution operations with usually very small filters.
For example, 3× 3 is a common size of filters in 2D CNNs. For such small filters, it is almost
impossible to understand their learned features only by visual inspection of the plotted
weights. Thus, instead of visualizing weights, feature maps of CNNs can be visualized.
A feature map comprises all neuron activations corresponding to the same convolutional
filter. Each position in the feature map only shows how strongly this convolutional filter
activates for the corresponding region of the input. Therefore, feature maps only reveal to
which part of the input a filter is responding but do not visualize the pattern which this
filter detects [2].

A common way for visualizing the features learned in deeper layers is to create an
input which maximally activates individual neurons or sets of neurons [2,26,27]. Such
input is obtained by an optimization procedure similar to the ANN training. In ANN
training, parameters of the network are updated to decrease the prediction error. For
feature visualization, input values are updated to increase the activation values of a target
set of neurons. In CNNs, complete feature maps are typically used as the target set of
neurons. For brevity, we refer to the obtained inputs as “optimized inputs”. Optimized
inputs can differ substantially from instances in the training data, making them difficult
to interpret. For human perception, optimized inputs of images often look unrealistic.

Electronics 2021, 10, 1350 4 of 30

Optimized inputs in the speech domain often do not sound like natural speech or do not
look like spectrograms of natural speech [8,28]. This problem can be tackled by applying
regularization techniques to the optimization. Regularization adds constraints which, in
addition to increasing activation of neurons of interest, encourage the optimized input to be
more similar to natural data. For example, a spectrogram of natural speech does not contain
a wide range of frequencies of high intensity over longer time spans. To discourage such
patterns in optimized inputs, a high number of large values needs to be avoided. This can
be achieved by penalizing the sum of absolute values in the input during the optimization.
In the field of ML, this technique is known as L1 regularization. Stronger regularization
techniques encourage optimized inputs to be more similar to data examples. Although
this leads to more natural visualizations, they might not represent the learned features
well. For example, additionally minimizing the distance to a data example encourages the
optimized input to be more natural but makes it impossible to detect whether a filter also
reacts to unrealistic patterns.

2.2.2. Saliency Maps

The strategy of another type of typical introspection techniques is to explain how a
prediction for a single input example was made. To this end, such methods quantify how
relevant each individual value in this input example is for the prediction [3,4,26,29–32]. To
visualize the obtained relevance values, they are commonly plotted as heat map overlaid
on top of the input. This heat map of relevance values is referred to as saliency map [29].
There is no definite method to compute relevance because the black-box nature of DL
models makes it impossible to exactly determine the correspondence between individual
input values and the output of the model. Therefore, various techniques for obtaining
relevance values for saliency maps have been proposed. A simple saliency map can be
obtained by computing the derivative of the output value with respect to each input
value. The resulting relevance describes how sensitive the output value is to changes
in each individual value of the input. Accordingly, this approach is called sensitivity
analysis [26]. Other saliency map techniques, for example, approximate to invert the
network (deconvnet [3]), use a decomposition approach (layer-wise relevance propagation
(LRP) [24]) or combine sensitivity analysis with feature map activation (Gradient-weighted
Class Activation Mapping (Grad-CAM) [4]). Saliency maps are easy to interpret if the
input data are interpretable by visual inspection themselves. Hence, they are suitable
for image data but less applicable to sensor data like speech or EEG recordings. Using
spectrograms, it is possible to use saliency map methods because spectrograms allow
experts with domain knowledge to visually interpret audio, as well [33–35]. As saliency
map methods work on single examples, it is hard to assess the model comprehensively.
Furthermore, methods for computing saliency maps need to be chosen carefully as some can
be misleading. Adebayo et al. [36] demonstrated this issue by investigating how saliency
maps change when setting layer weights to random values. They found that, for some
methods, the explanations barely changed even when completely randomizing network
weights. Similarly, Nie et al. [37] explained why backpropagation-based visualizations can
be weakly related to network predictions. Sixt et al. [38] identified similar behavior of more
recent methods for computing saliency maps and mathematically explained the reason for
this phenomenon.

2.2.3. Analyzing Data Set Representations

More comprehensive insight into ANNs can be provided by analyzing representations
of different classes using the complete data set. For example, Alain and Bengio [39] train
linear classifiers on intermediate representations to quantify their representative power
for the prediction. Such linear classifiers are the basis for the research of Kim et al. [40]
who derived vectors that represent user-defined concepts. Fiacco et al. [41] introduced
functional neuron pathways, which are co-activated sets of neurons identified through
Principal Component Analysis (PCA). Representational similarity can also be investigated

Electronics 2021, 10, 1350 5 of 30

through Canonical Correlation Analysis (CCA) [42] or by clustering of class-specific neuron
activations [43]. In speech, the latter type of analysis was conducted for Multi-Layer
Perceptrons (MLPs) for speech-to-phoneme prediction [43,44] and convolutional ASR [8,9].
Like saliency maps, methods that analyze representations of many examples from the data
set rely on the provided data examples for their explanations. Behavior for inputs which
are different from the training data distribution can be analyzed by using appropriate test
data. It is even possible to cover the behavior for inputs for which the network prediction
is ambiguous. To this end, a data set of inputs can be generated, such that minimal changes
in these inputs change the prediction of the network [45]. However, it requires infeasibly
huge amounts of additional data to cover all possible inputs. Therefore, even by analyzing
data set representations, it is impossible to completely describe the behavior of the model.

3. Method

Neuron activation values in an ANN can vary between different inputs, even if the
inputs are conceptually similar, for example two inputs of the same class. Therefore, the
neuron activations for a single input are not sufficient to characterize neuron activations
for a set of related inputs, for example a particular class. To describe commonalities in
the activations over a set of input examples, we introduce Saliency-Adjusted Neuron
Activation Profiles (SNAPs). Any subset of the data can be investigated, for example all
inputs of the same class or a manually chosen subset of inputs of interest. For brevity,
we refer to one such set of inputs as a group. When using multiple sets at the same time,
we refer to them as a grouping. In addition to describing neuron activations, SNAPs
incorporate information about whether and how much these neurons influence the output
of the network.

Our method combines, extends and generalizes two of our previously described
introspection methods for ASR: Normalized Averaging of Aligned Inputs (NAvAI) [8]
and Neuron Activation Profiles (NAPs) [9]. As the improvements utilize saliency maps in
multiple ways, we call our method Saliency-Adjusted NAPs (SNAPs). First, we will briefly
describe our previous methods and how SNAP analysis differs from them. Afterwards, we
explain our SNAP technique in detail.

3.1. Normalized Averaging of Aligned Inputs (NAvAI)

We proposed NAvAI [8] as an adaptation of the ERP technique to ANNs. This method
aims to reveal features in the input that are consistent across the group examples by
averaging over inputs of the same group. We particularly evaluated NAvAI using the
predicted letter as grouping. To properly apply an averaging approach, it is necessary
that the input examples are temporally aligned. The reason is the same as for aligning
different recordings at the same stimulus in ERP analysis: Without temporal alignment,
relevant information is located at different times and hence removed when computing
an average of the recordings. NAvAI follows the assumption that the predicted letter
occurs in the recording at the time at which the input influences the network prediction
the most. Correspondingly, NAvAI implements the alignment by centering the input
spectrograms at the time of highest importance for the prediction, measured using the
saliency map technique sensitivity analysis [26]. Specifically, the gradient of the logit of
the predicted output unit with respect to the input values is computed as saliency map.
NAvAI uses the information from sensitivity analysis only for the alignment step and only
focuses on the input. SNAPs extend NAvAI by generalizing the alignment to the hidden
layers of ANNs (see Section 3.3 for details). On top of that, we improve the alignment
procedure by incorporating activation intensity and by reducing noise effects in the saliency
maps. Furthermore, we incorporate information about prediction relevance from sensitivity
analysis in the resulting SNAPs.

Electronics 2021, 10, 1350 6 of 30

3.2. Neuron Activation Profiles (NAPs)

We introduced the concept of NAPs in Krug et al. [9]. NAPs apply the normalized
averaging procedure used in NAvAI to hidden layers of ANNs. However, in contrast to the
inputs in NAvAI, feature maps in hidden layers are not aligned. Instead of using alignment,
time-independence in NAPs is created by sorting the resulting averages per feature map on
the time axis. This way, NAPs describe whether and how strongly each convolutional filter
is activated for a particular group of inputs, but ignore the time of activation. While this
simple method of creating time-independence is sufficient to compare NAPs of different
groups, it neglects the temporal information that is necessary to accurately characterize
feature maps in a more general context. Therefore, before averaging, our extension to
SNAPs (see Section 3.3 for details) applies the alignment process from NAvAI to the feature
maps in the hidden layers, as well. Moreover, taking the importance for the prediction into
account is another advantage of SNAPs over NAPs.

3.3. Saliency-Adjusted Neuron Activation Profiles (SNAPs)

The computation of the saliency maps used in SNAPs requires a prediction target.
However, speech recognition is a transcription task, where the target output is a sequence
of characters. In particular, before decoding, the output of our acoustic model is a sequence
of bt/2c vectors of class logits for an input of t time steps. The output has half as many
time steps as the input because the initial convolutional layer is applied with a stride
of 2. To compute a saliency map, we only consider the output of the model at a single
time step, as if it was a classification. However, a single output time step only receives
information from a part of the input corresponding to its receptive field. Therefore, using a
complete input example is computationally wasteful. Instead, we split the whole input
spectrogram into frames of a length equal to the receptive field size. These spectrogram
frames of length tr f as inputs result in a sequence of tout = btr f /2c logit vectors. The model
output for one such spectrogram frame has exactly one time step which is computed using
the entire input. This time step is always in the center of the output sequence. Therefore,
we use the corresponding output logit vector at ttarget = btout/2c for computation of the
saliency maps.

In the first step of computing SNAPs, we center the activations of each layer and
the spectrogram frames at the time of highest importance for the prediction. We refer to
this step as “alignment” (Figure 1A). For the alignment, we consider activation values as
important for a prediction if they have a strong activation with a high absolute sensitivity
value. Therefore, we first derive neuron activations and sensitivity values in every layer for
each spectrogram frame. Activation values are straight-forward to obtain from the forward
pass through the network layers. To obtain sensitivity values, we compute the gradient of
the (pre-softmax) logit of the highest active output unit in the center with respect to the
activations of each layer.

m
el

-s
ca

le
d
 f

re
q
u
en

cy
 (

kH
z)

8

0

1

2
3
4
5
6

0.5

1.5

0 s 1 s 2 s1.5 s0.5 s

8

0

1

2
3
4
5
6

0.5

1.5

prediction

compute
saliency

center at time of
max. (|saliency|
max. (|saliency| activation)

input layer:
other layers:

0

50

100

150

200

250

n
eu

ro
n
n
 (

fe
at

u
re

 m
ap

)

0 +0.2−0.2
time (s)

0 +0.2−0.2
time (s)

0 +0.2−0.2
time (s)

- =

0 +0.2−0.2
time (s)

0 +0.2−0.2
time (s)

average of
aligned gradients

(same group)

* =

averaging and normalization apply saliency mask

Saliency-Adjusted
Neuron Activation

Profile (SNAP)

BA
same group complete

data set

average of aligned activations

Figure 1. (A) Alignment procedure and (B) Saliency-Adjusted Neuron Activation Profile (SNAP)
computation for a layer.

Electronics 2021, 10, 1350 7 of 30

Sensitivity analysis can result in single high gradient values at positions, where
gradients of directly neighboring values are significantly smaller. This results from the
independent treatment of input values during the gradient computation. To prevent that the
alignment undesirably picks up these potential artifacts, we decrease the values of isolated
high gradients. Because locating and decreasing them individually is computationally
expensive, we instead apply average pooling with a 2× 2 kernel and stride 1 to the complete
saliency map. This pooling operation averages adjacent values and hence decreases isolated
high gradient values. At the same time, the small kernel size is applying only small changes
to the values that are similar to their neighboring values. This average pooling is only used
in the alignment step.

Finally, we align the activations by centering them at the time point of maximum
(|saliency| � activation). The centering is implemented by cropping from one side and
zero-padding the opposite side. Equivalently, we center the saliency maps so that they
remain aligned to the activations.

Figure 1B visualizes the second part of obtaining a SNAP in a layer. First, we compute
a group-specific profile by averaging the aligned activations that are obtained in the first
step over a group of inputs. As some neurons show activations that are common to all
inputs, we normalize the averaging result of each group by subtracting the average over
the complete data set. Secondly, we similarly compute averaged aligned saliency maps for
each group. However, we normalize saliency maps differently than activations to prevent
that saliency values of zero lose their meaning. Instead of subtracting a global average, we
scale averaged saliency maps to a range of [0, 1]. Finally, we multiply the averaged and
scaled saliency map with the normalized averaged activations to obtain a SNAP. This final
step can be interpreted as masking information that is irrelevant for the prediction.

In addition, SNAP computation takes the particularities of the input and output
layers into account. Input layer SNAPs are computed using spectrogram frames instead of
activations. For SNAPs in the output layer, we use the logits instead of the softmax output.
Otherwise, it can happen that SNAPs are vectors in which only the neuron for the predicted
class is active (output value 1) and all others are not (output value 0). The distance between
any pair of these vectors is the same, hence provides no informative distance for comparing
the groups. This renders them useless for further analyses, for example the representational
similarity analysis with clustering (Section 4.3.3). We observed this issue in our previous
work [9] where we used softmax output values and obtained letter NAPs in the output
layer with almost identical pairwise distances.

4. Experimental Setup
4.1. Data

ASR is typically evaluated with benchmark data sets like the LibriSpeech corpus [46].
However, this data set does not contain phoneme annotation, which limits the analysis
to investigating the letter prediction. This is not optimal because letters in texts are often
ambiguous as to how they are pronounced. In our previous work [9], we addressed this
issue by obtaining a phoneme mapping through a letter-to-phoneme translation model.
This mapping transcribed words to phonemes, which allowed analyzing how the letter
prediction model responds to phonemes. Still, it was not possible to compare the predicted
letters with a ground truth occurrence of phonemes in the speech recording.

For an in-depth analysis of our method, we require a data set which already provides
annotation of the phonemes in the input data. Therefore, to be able to perform this kind
of analysis in this work, we are training our models on the TIMIT data set [47] because
it provides phoneme annotations. TIMIT is a small speech corpus in English language,
containing 6300 speech recordings. Each of the 630 speakers recorded 10 out of 2345 unique
sentences, but the distribution of how often each sentence was recorded is not uniform. In
particular, TIMIT includes two sentences which are recorded for each of the 630 speakers,
causing these sentences to be massively overrepresented. TIMIT refers to them as dialect
(SA) sentences. To avoid overfitting on these instances, we only keep 7 random SA sentence

Electronics 2021, 10, 1350 8 of 30

recordings for training, corresponding to the number of speakers for each recording of
the set of compact (CX) sentences. The models are trained using the provided data split,
but excluding the majority of the SA instances. For the SNAP analyses, we use available
examples from both the training and test data.

The letter transcriptions are readily available for training letter prediction models.
Because the training of our model does not require targets for each time step, we can use
texts as targets without mapping the letters to time steps. To obtain phoneme prediction
targets, we need to adapt the provided phoneme annotations in TIMIT. These annotations
provide a mapping of phonemes to time steps as a sequence of phonemes and their duration
until the spoken phoneme changes. To convert this annotation into a target which can be
used with the loss function of our model, we discard the information about the exact time
duration and only use the phoneme sequences as transcription targets. Due to the small
number of examples and speakers in TIMIT, the models trained on this data set do not
generalize well in terms of ASR performance. However, this is no limitation for this work
because we do not aim for high speech recognition capability but for demonstrating and
evaluating our model introspection technique.

All data are preprocessed to mel-scaled log power spectrograms using the librosa
library [48] using a FFT window size of 512 (32 ms) and hop size of 128 (8 ms) at 16 kHz and
projecting the FFT bins to 128 mel-frequency bins. We do not normalize the spectrograms
because our architecture comprises an initial batch normalization layer. For SNAP analyses,
we split the spectrograms into frames of 206 steps (2 s) corresponding to the receptive field
size of the model, that is, the time frame which the model uses for a single prediction. This
results in about 330,000 spectrogram frames.

4.2. Model

We are using a fully-convolutional architecture to demonstrate our method. This archi-
tecture is based on Wav2Letter (W2L) by Collobert et al. [49], which is a 1D-convolutional
architecture consisting of 11 layers, trained using the Connectionist Temporal Classifica-
tion (CTC) loss [50]. This model can transcribe variable-length inputs of speech recordings
to sequences of characters.

In this work, we train the model using the TIMIT data set [47] to transcribe speech as
spectrogram to sequences of letters or phonemes. Furthermore, we made a few changes to
the original architecture. As one adaptation, we changed the number of convolution filters
in each layer to the closest power of two to improve computation efficiency on graphics
cards [51]. Another difference to the original W2L model is that our architecture comprises
one layer more in the stack of layers 2–9. We added one layer because a total of 12 layers
allows for arranging information about all layers on a 2× 6 or 3× 4 grid. Although we do
not make use of this property in this work, it makes the architecture a more convenient
exemplary architecture for demonstrating visualization results. The parameters of the
convolutional layers of the W2L architecture according to our adaptations are shown in
Table 1. Before each convolutional layer, we use a batch normalization layer. In all layers
except the output layer, we use ReLU as activation function.

In this work, we focus on analyzing how an ANN-based acoustic model processes
speech. Accordingly, we do not use a subsequent language model because it would be
independent of the acoustic model.

Model Variations

For our experiments, we use five different variations of the W2L architecture. The used
parameters for the convolutional layers of all models are provided in Table 1. A summarized
overview of all models used in this work is shown in Table 2 at the end of this section.

The W2L architecture for letter prediction is our reference model. In our experiments,
we continue to refer to the trained model as W2L.

Electronics 2021, 10, 1350 9 of 30

Table 1. Overview of parameters of 1D-convolutional layers in the used models.

Model Name Layer #Convolution Kernel Size StrideFilters

1 256 48 2
W2L 2–9 256 7 1
W2L_TL_frozen 10 2048 32 1
W2L_TL_finetuned 11 2048 1 1

(output) 12 29 1 1

W2P

1 256 48 2
2–9 256 7 1
10 2048 32 1
11 2048 1 1

(output) 12 62 1 1

W2P_shallow
1 256 48 2

2–5 256 7 1
(output) 6 62 1 1

For alignment evaluation (Section 5.1), we use W2L-based models that predict phonemes.
One model is identical to the original architecture, but predicting phonemes. Accordingly,
this model uses 62 output units in the output layer. We refer to this model as Wav2Phoneme
(W2P). As we expect phoneme prediction to be an easier task than letter prediction, we
also expect a model with fewer layers to be capable of performing this task. Therefore, we
use a second phoneme prediction model that comprises only five convolutional layers and
a final phoneme prediction layer, which we refer to as W2P_shallow. The used parameters
of the convolutional layers are identical to the corresponding layers in the complete W2L
architecture. We train both phoneme prediction models using the transcriptions generated
from TIMIT phoneme annotations.

Table 2. Overview of models and which experiments they are used in. AE: Alignment Evaluation
(Section 5.1), PS: Plotting SNAPs (Section 5.2), RS: Representational Similarity (Section 5.3), LP:
comparing letter and phoneme representations (Section 5.4).

Model Name #Layers Output Type Initializing Weights Used in
Using Model Experiments

W2L 12 letters none PS, RS, LP
W2P 12 phonemes none AE
W2P_shallow 6 phonemes none AE
W2L_TL_frozen 12 letters W2P_shallow RS
W2L_TL_finetuned 12 letters W2L_TL_frozen RS

For evaluating experiments on representational similarity (Section 5.3), we train
models such that there is an expected layer in which phonemes are best represented. To
this end, we first train the W2P_shallow model to predict phonemes. From this model,
we remove the final phoneme prediction layer (layer 6). On top of the pre-trained layers,
we add layers to form the W2L model again, using letters as output. This approach of
training a model and using its parameters to initialize all or some layers of another model is
referred to as transfer learning. In the first step of transfer learning, we only train the added
layers by disabling parameter updates of the pre-trained layers. As disabling parameter
updates is commonly referred to as freezing, we call the resulting model W2L_TL_frozen.
In the W2L_TL_frozen model, we expect the base layers to encode phonemes, while
the top layers learn to map from the phoneme representation to letters. In the second
transfer learning step, we unfreeze the base layers and perform a fine-tuning over all layers
(W2L_TL_finetuned). Note that we do not fine-tune the batch normalization layers as this

Electronics 2021, 10, 1350 10 of 30

can lead to unlearning the pre-training information. We use the W2L_TL_finetuned model
to investigate to which extent the fine-tuning process changes the pre-trained phoneme
encoding in favor of better prediction of letters.

4.3. Evaluation

Proper alignment is a crucial requirement for the averaging approach. Therefore, we
first evaluate this step in more detail to ensure that our alignment approach is accurate.
Secondly, we present two strategies to use SNAPs for getting insight into the model. This
section describes how we perform these evaluations.

4.3.1. Evaluating the Alignment Step

From the TIMIT data set, we use the phoneme annotation of each time step for
evaluating the accuracy of the alignment. Alignment is supposed to center inputs (or
activations) such that, for a prediction, the center of the frame is set to the actual occurrence
of the predicted phoneme in the input. We test this by comparing the predicted phoneme
with the annotated phoneme at the alignment position. If the alignment is only wrong by
a few time steps, the averaging is slightly blurred but not entirely wrong. Therefore, we
additionally test whether the predicted phoneme is contained in a small time window of
+/− two steps (corresponding to +/− 16 ms) around the alignment point. We quantify the
quality of the alignment by its accuracy, that is, the fraction of input frames that are aligned
to the correct phoneme (or window around it). For measuring the error of the alignment
of one example, we compute the alignment offset as the distance of the alignment point
to the target time step. Quantifying the alignment quality and offset is only possible for
models that predict phonemes because there is no unique mapping from predicted letters to
annotated phonemes. Therefore, we perform a quantitative evaluation using the phoneme
prediction models W2P and W2P_shallow.

4.3.2. Plotting SNAPs

For data that are visually interpretable, input layer SNAPs are interpretable, as well.
Although understanding spectrograms requires some domain knowledge, we consider
them to be interpretable. However, due to the normalization, input layer SNAPs are not
spectrograms but describe how the intensities of the frequencies for the represented group
differ from the rest of the data. Plots of hidden layer SNAPs are interpretable in fewer
cases because it requires that the hidden layer activations can be interpreted themselves.
To a certain extent, this is possible for 2D-CNNs applied on visually interpretable data.
In such case, SNAPs that correspond to single feature maps can be plotted and inspected.
In the 1D-CNN that we use in this work, feature maps are only one-dimensional and, in
contrast to the frequency dimension in the input, do not have a meaningful ordering. In
a one-dimensional case, inspecting the SNAP values is possible by plotting them as line
plots, where each feature map corresponds to one line. Our used models have hundreds of
one-dimensional feature maps per layer, which leads to correspondingly many different
lines in the line plot. Therefore, this visualization is difficult to interpret for our specific
model. Hence, in this work, we demonstrate visual inspection of SNAPs only for the
input layer.

We use the W2L model to evaluate visualizations of input layer SNAPs. To this end,
we first compare input layer SNAPs of letters with NAvAI results to show the advantage
of using saliency map information. Secondly, we evaluate whether SNAPs of phonemes
reveal representative patterns by qualitatively comparing exemplary input layer SNAPs
with expected phoneme-typical patterns.

4.3.3. Representation Power of Layers for Different Groups

We applied hierarchical clustering with Euclidean distance and complete linkage [52]
to NAPs of letters and phonemes in our previous work [9], using a fixed threshold for the
emergence of clusters. Here, we investigate the clustering approach using different distance

Electronics 2021, 10, 1350 11 of 30

thresholds at percentiles 87% to 96% in steps of 3%. We empirically found these thresholds
to lead to different numbers of clusters for our model. Applying the clustering algorithm
to other models might need other thresholds if distance value range or distribution are
different due to model properties, for example the used activation function. For quantifying
the quality of the clustering result, we compute its Silhouette score [53]. The Silhouette
score is a measure of how similar instances in the same cluster are to each other compared
to their similarity to instances of the nearest other cluster. In the context of SNAPs, a high
clustering quality in terms of Silhouette score indicates that the set of observed groups is
separable into disjunct subsets, such that groups in the same set activate neurons similarly
and groups of different sets activate neurons differently. The resulting subsets are potential
high-level concepts that the network learned to encode in the respective layer. However,
high clustering quality does not guarantee that this concept is meaningful to human
interpretation. Therefore, evaluating whether the clusters are interpretable subsets of
groups still requires to manually inspect the clusters. In addition to investigating the
Silhouette scores at individual distance thresholds, we further investigate the average
Silhouette score over the four used thresholds in each layer.

We evaluate this approach by contrasting the W2L model with the models that we
trained by applying transfer learning (compare Section 4.2). Through transfer learning, the
five bottom layers of the models W2L_TL_frozen and W2L_TL_finetuned are pre-trained
to predict phonemes. Therefore, we expect the best clustering of phonemes to emerge at
this depth of the networks and to be better than in the W2L model. This expectation is
independent of whether the clusters correspond to interpretable concepts like phonemic
categories. Furthermore, for the W2L model, we compare the clustering of SNAPs between
grouping by predicted letter and annotated phoneme.

5. Results
5.1. Alignment Evaluation

To evaluate the alignment step of the SNAP computation procedure, we use the
two models that predict phonemes: W2P and W2P_shallow (compare Section 4.2). We
expect our method to align at the time steps in the input spectrogram frame which are
the actual occurrences of the predicted phonemes. Therefore, for each prediction, we
additionally obtain the annotated phoneme at the center and the alignment position.
Moreover, we compute the time difference of the alignment position to the real occurrence
of the predicted phoneme according to the annotation. We then use this distance to quantify
the alignment error and refer to this measure as “alignment offset”. For instances that are
predicted as a phoneme which is not contained in the annotation of the input spectrogram
frame, we define the alignment offset to be −1. Because the alignment cannot be correct in
these cases, the maximum possible alignment quality for our data set and both phoneme
prediction models is to align 93.6% of the instances correctly.

5.1.1. Alignment Quality—Model Average

W2P_shallow: Initially, only 3.7% of the frames are annotated with the predicted
phoneme in the center. Through alignment, this can be observed for 59.3% of the frames.
Allowing an alignment offset of up to two time steps (16 ms), the predicted phoneme
is equal to the annotated one for 80.3% of the frames. For the W2P_shallow model, we
observed an average alignment offset of 26 ms.

W2P: Only 3.6% of the frames are matching prediction and annotation at the center
time step. Alignment increased this number to 38.8%. Considering also the annotated
phonemes in a time frame around the alignment point, 58.6% of the frames were correctly
aligned. Corresponding to the smaller alignment accuracy than the W2P_shallow model,
we also observe a higher average offset of 37 ms in the W2P model.

For the two phoneme prediction models, we conclude that our alignment method
works as expected in a large number of frames. Because the averaging takes all instances
into account, it is sufficient to align the majority of the frames correctly. Notably, the

Electronics 2021, 10, 1350 12 of 30

deeper model for phoneme prediction has a significantly worse alignment accuracy than
the shallower model. We suspect that this related to an overfitting of the deep model on
the training data. An overfitted model is not learning meaningful features but memorizes
information, which allows it to perform correct predictions without focusing on the actual
occurrence of the sound. Hence, for the W2P model, we argue that the alignment works
properly despite the lower accuracy. The provided alignment accuracy metric for the
phoneme models is computed as average over all phonemes, yet there are substantial
differences between them. Therefore, we further investigate the alignment accuracy and
offset for each individual phoneme.

5.1.2. Alignment Quality—Per Phoneme

Figure 2, in the center and right columns, shows the per-phoneme alignment offset
distributions for the two investigated models. The rows are sorted by the average alignment
offset of the corresponding phoneme in the W2P model.

0.0 0.2 0.4 0.6
relative count

1
0
8

16
24
32
40
48
56
64
72
80
88
96

of
fs

et
 (m

s)

offset per example
W2P
W2P_shallow

0 5 10
count

0

8

16

24

32

40

48

56

64

72

av
er

ag
e

of
fs

et
 (m

s)

offset average per phoneme

0 40 80 120 160
alignment offset (ms)

oyereluxiyeyuwaxrtawowihkhvpauhhaeehyuhrayahengenpaawaoqemlaxixgngddhjhchmnxzhfepiaxhbthvshndxstclbclzgcldclkclpcl

ph
on

em
e

W2P

0 40 80 120 160
alignment offset (ms)

W2P_shallow

Figure 2. Alignment offset overview in phoneme prediction models. Distribution of offsets for all
examples (top left) and of the average alignment offset per phoneme (bottom left). The center and
right plots show offset distributions per phoneme in models W2P and W2P_shallow. Counts in the
heat map plots are scaled to the range [0,1] for each phoneme, respectively. An offset value of −1
indicates that the predicted phoneme is not in the annotation of the example. The highest 5% of the
alignment offset values are excluded for plotting as their frequency was too low to be visible.

We generally observe larger offsets for W2P than for W2P_shallow corresponding to
the average alignment offset of the models.

For W2P, 25 out of 60 phonemes are aligned without offset in the majority of in-
stances. Six out of the seven phonemes of highest alignment offset are closure symbols
(pcl, kcl, dcl, gcl, bcl, tcl), describing the closure of plosives. For example, pcl repre-

Electronics 2021, 10, 1350 13 of 30

sents the closure of p. Because the W2P model has a higher capacity and a larger receptive
field than the W2P_shallow model, it might predict phonemes by finding correlations to
other phonemes. Especially for the closure symbols, we intuitively expect that the model
might facilitate that they always precede the corresponding plosive. However, by manually
inspecting the most frequent phonemes at the alignment point, we do not observe this
behavior. We also did not find any other intuitively interpretable correlation which the
model grasped.

In the smaller W2P_shallow model, 44 phonemes are correctly aligned in the majority
of instances. A smaller alignment offset is also observed for all closure symbols. More
specifically, all closure symbols except for gcl and tcl are aligned without error in most of
the instances.

These observations support further that the decreased alignment performance for the
W2P model is not attributed to our alignment technique but to the worse generalization
capabilities of the model. Moreover, this contributes to considering the W2P_shallow
model as being easier interpretable than the W2P model.

In addition to the alignment offset, we also investigate in more detail, which annotated
phonemes the predicted phonemes are aligned to. In this section, we provide detailed plots
only for W2P_shallow because it generalizes better than the W2P model. An overview of
the evaluation plots for both models using alphabetical ordering of phonemes is provided in
the Appendix A in Figures A1 and A2. For the W2P_shallow model, we show the complete
contingency table in Figure 3, for the predicted phoneme and the annotated phoneme after
alignment. To get a better impression of how consistently which phonemes are aligned to a
specific phoneme, we sort the table by the maximum value per row. We do not observe a
clear tendency of a specific type of phoneme being better aligned than others. Moreover,
the closure symbols are still aligned to various other phonemes, although the effect is not
as pronounced as in the W2P and vanishes when allowing a small alignment offset.

5.1.3. Applicability to Letter Prediction Models

As discussed before, performing the same quantitative analysis for a letter prediction
model is not possible. There is no unique mapping from letters to the phonemes, so we
cannot test for equality of prediction and annotation. Moreover, a predicted letter can be
correctly aligned to different phonemes, which leads to less specific alignment results than
in the phoneme prediction models. Still, we can use the phoneme annotation to investigate
which phonemes the predicted letters are aligned to. The contingency tables for W2L
are shown in the Appendix A in Figure A3. Qualitatively, the alignment improves how
well the annotated phoneme at the center position corresponds to the predicted letter. For
example, without alignment, spectrogram frames that are predicted as letter b are very
rarely annotated with the phonemes b or bcl at the center time step. After alignment, the
majority of the frames predicted as letter b is centered at these phonemes.

5.2. Per-Layer SNAPs

SNAPs in the input layerare an improvement of NAvAI [8]. Examples of SNAPs in
the input layer compared to exemplary NAvAI results for W2L are shown in Figure 4.

Input layer SNAPs are directly interpretable. They show how the intensity of frequen-
cies differs from the average over the complete data set, indicated with red and blue color
for higher and lower intensity, respectively. The gradient-based masking guarantees that
the SNAPs only show regions which are important for the prediction. This advantage over
NAvAI is demonstrated comparing the top and middle row in Figure 4. While NAvAI
shows a pattern over the whole receptive field size, the corresponding SNAP also identified
prediction-relevant parts of the pattern. In addition to providing more information about
what part of the input the model uses for prediction, SNAPs implicitly mask the padding
artifacts that occur in NAvAI as a result from the alignment procedure. An example for
these padding artifacts are the high values at −1 s in the NAvAI pattern of letter a.

Electronics 2021, 10, 1350 14 of 30

oy ey iy eh
t ae en ax
r ux ch el hv ay m uh pa
u s er aw hh p ih z q w ah ao r

em ix ax k
ow uw en

g jh y aa
l g n sh bc
l f th zh dh dx nx v

pc
l d dc
l

ep
i

kc
l

ng tc
l

ax
h b gc
l

alignment point annotation

oy
ey
iy

eh
t

ae
en

axr
ux
ch
el

hv
ay
m
uh

pau
s

er
aw
hh
p
ih
z
q
w

ah
ao

r
em

ix
ax
k

ow
uw

eng
jh
y

aa
l

g
n

sh
bcl

f
th
zh
dh
dx
nx
v

pcl
d

dcl
epi
kcl
ng
tcl

axh
b

gcl

ce
nt

er
 p

re
di

ct
io

n

Figure 3. Alignment evaluation overview W2P_shallow. For each predicted class on the y-axis the
relative frequency of the corresponding phoneme annotation on the x-axis after alignment is shown.
Color scale [0, 1] from white to black.

We observe phoneme-typical patterns in the input layer SNAPs (Figure 4 bottom).
Phonemes aa and ae share a high intensity formant at around 700 Hz. A second formant is
identified at around 1200 Hz and 1900 Hz for aa and ae, respectively. The input pattern for
t shows a change of high to low intensities of all frequencies at the alignment time. The
patterns for all three observed phonemes match the expectation well. A main difference is
that identified formants are spreading a wider range of frequencies, which is an expected
effect when averaging recordings of different speakers.

The NAvAI and SNAP results for letter a are more similar to the input layer SNAP for
phoneme ae than to the SNAP for phoneme aa. This indicates that letter a was pronounced
as ae more frequently than as aa and furthermore demonstrates how the SNAP of letter a
is dominated by the over-represented pronunciation ae. This dominating effect can happen
for groups with high variation between the instances. Therefore, it particularly affects
unbalanced groups in which a subset of instances is more homogeneous than the other
instances. Because of this, SNAPs are best suitable for groups with small intra-group
variance. Consequently, in this work, we compute SNAPs for individual phonemes,
instead of using higher-level grouping like vowels or fricatives. Input layer SNAPs in
model W2L are shown in the Appendix for all annotated phonemes in Figures A4 and A5
and for predicted letters in Figure A6.

Electronics 2021, 10, 1350 15 of 30

1 0.5 0 0.5 1
time (s)

0.0
0.5
1.0

2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

)

NAvAI letter 'a'

1 0.5 0 0.5 1
time (s)

NAvAI letter 't'

1 0.5 0 0.5 1
time (s)

0.0
0.5
1.0

2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

)

SNAP letter 'a'

1 0.5 0 0.5 1
time (s)

SNAP letter 't'

1 0.5 0 0.5 1
time (s)

0.0
0.5
1.0

2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

)

SNAP phoneme 'aa'

1 0.5 0 0.5 1
time (s)

SNAP phoneme 'ae'

1 0.5 0 0.5 1
time (s)

SNAP phoneme 't'

Figure 4. Comparison of NAvAI patterns with input layer SNAPs in model W2L for letters and phonemes. The plots
visualize the difference of intensity of frequencies between group-average and the average over the complete data set. White
indicates zero difference, red and blue color indicate higher and lower intensity, respectively. Lighter color also indicates
small importance for the prediction. Colors represent the same values only for subfigures in the same row.

In deeper layers, feature map order is uninformative because there are no connections
between feature maps in the same hidden layer. Therefore, the corresponding SNAPs
cannot be interpreted by visual inspection. An example can be seen in Figure 1B (rightmost).

In all layers, we observe that SNAP values become smaller and drop to 0 the further
away they are from the alignment time. This indicates that the model does not use the
complete receptive field for the prediction of the majority of instances. Thus, it is possible
to compress the model, for example by choosing fewer layers or filters or by decreasing the
kernel sizes.

5.3. Evaluation of the Representational Similarity

We evaluate whether SNAP clustering can indicate representational quality. To this
end, we first investigate Silhouette score correspondence to a ground truth obtained
through transfer learning and, based on the findings, inspect the emerged clusters in

Electronics 2021, 10, 1350 16 of 30

specific layers. For this evaluation, we compare the three models W2L, W2L_TL_frozen
and W2L_TL_finetuned (compare Section 4.2).

5.3.1. Silhouette Scores

Figure 5 shows an overview of the Silhouette scores for clusterings in all layers of
the used models at different distance thresholds as well as averaged over all the used
distance thresholds. In general, higher Silhouette scores indicate better clustering quality.
By increasing the distance threshold, the number of clusters decreases.

in 2 4 6 8 10 12
layer

0.0

0.1

0.2

0.3

sil
ho

ue
tte

 sc
or

e

W2L
87
90

93
96

in 2 4 6 8 10 12
layer

W2L_TL_frozen
87
90

93
96

in 2 4 6 8 10 12
layer

W2L_TL_finetuned
87
90

93
96

in 2 4 6 8 10 12
layer

averaged
W2L
W2L_TL_frozen
W2L_TL_finetuned

Figure 5. Silhouette scores at different distance thresholds. Through transfer learning, models
W2L_TL_frozen and W2L_TL_finetuned are expected to have best phoneme encoding in layer 5.
Transition from pre-trained layers to added layers is indicated by a vertical dashed line.

Regarding the average Silhouette scores, the models do not differ substantially. We
observe the highest difference between any two models in the output layer, where the W2L
model had an average Silhouette score of 0.31 and the W2L_TL_frozen model only 0.21.
The second largest difference is in layer 5, where the Silhouette score is higher for the TL
models (frozen: 0.15, finetune: 0.16) than for the W2L model (0.09).

The non-averaged Silhouette score curves are more clearly distinguishable between
the transfer learning models and the W2L model. Using smaller distance thresholds (87th
and 90th percentile), the Silhouette scores are higher for the W2L model than for the transfer
learning models, but the difference between the clustering qualities of the models varies
between layers. However, for the W2L model, we do not observe a change in clustering
quality when increasing the distance threshold. This is contrary to the transfer learning
models, in which Silhouette scores increase strongly from layer 4 to 5 when using higher
distance thresholds (93th and 96th percentile). At the same layer, the W2L model decreases
in Silhouette score. We consider this a random co-occurrence because it is independent of
our choice of the depth of the transfer learning base model.

We expected that phonemes are best represented in the fifth layer of the transfer
learning models because it is the deepest layer of the ones that are pre-trained on phoneme
prediction. For the higher distance thresholds, the Silhouette scores correspond to this
encoding that is induced through pre-training. This demonstrates that clustering quality
can be used to investigate representation of groups. However, the result is sensitive to the
choice of parameters for the clustering algorithm. We therefore recommend not to rely on a
single parameter setting but to perform the clustering evaluation with different parameters
even though it multiplies the computation time.

5.3.2. Emerged Clusters

In addition to only observing the Silhouette score as a metric, we investigate the
emerged clusters in more detail. As described before, there is a high change in Silhouette
score in both the W2L_TL models and the W2L model from layer 4 to 5, which is the highest
for the clustering at the 96th percentile. Therefore, we investigate the clustering result at
the 96th percentile threshold in layers 4 and 5 in more detail. As the frozen and finetuned
model do not differ substantially, we only further compare W2L and W2L_TL_frozen.
A visualization of the SNAP clustermaps is shown in Figure 6 and an enlarged view of
the corresponding clustering assignments is shown in Figure 7. In the following, we will

Electronics 2021, 10, 1350 17 of 30

refer to clusters of at least three grouped phonemes as “main clusters” and focus on them
because they indicate groups of similar representation.

en
g

gdxnxngngc
l

emenixaxuwwuxiheyiyyshzhjhchszpc
l

kc
l

tc
l

bc
l

dc
l

vmhvhhfthdhdqep
i

ax
r

errawayaeehelowlahuhaaaooybpktax
h

pa
u

eng
g

dx
nx
ng
n

gcl
em
en
ix

ax
uw
w

ux
ih
ey
iy
y

sh
zh
jh
ch

s
z

pcl
kcl
tcl
bcl
dcl

v
m
hv
hh

f
th
dh
d
q

epi
axr
er
r

aw
ay
ae
eh
el

ow
l

ah
uh
aa
ao
oy
b
p
k
t

axh
pau

(a) W2L, layer 4, 96th percentile

en
g

shchjhzhuxdxnxehiheyiyyax
r

errfthzsax
h

enngnempa
u

hvhhqlowelahuhixaxdhvmuwaeayawaaaooyggc
l

bc
l

pc
l

kc
l

tc
l

dc
l

pktdbwep
i

eng
sh
ch
jh
zh
ux
dx
nx
eh
ih
ey
iy
y

axr
er
r
f

th
z
s

axh
en
ng
n

em
pau

hv
hh
q
l

ow
el

ah
uh
ix

ax
dh

v
m

uw
ae
ay
aw
aa
ao
oy
g

gcl
bcl
pcl
kcl
tcl
dcl

p
k
t
d
b
w

epi

(b) W2L_TL_frozen, layer 4, 96th percentile
ax

r
errnxdxehaeayawaaaooyleluhahowuwuxiheyiyyhvhhszjhzhshep

i
bc

l
dc

l
kc

l
tc

l
pc

l
thftchax

h
pa

u
wixaxqddhvmemenkpbgngngc

l
en

g

axr
er
r

nx
dx
eh
ae
ay
aw
aa
ao
oy

l
el

uh
ah
ow
uw
ux
ih
ey
iy
y

hv
hh

s
z

jh
zh
sh

epi
bcl
dcl
kcl
tcl
pcl
th

f
t

ch
axh
pau

w
ix

ax
q
d

dh
v

m
em
en

k
p
b
g

ng
n

gcl
eng

(c) W2L, layer 5, 96th percentile

en
g

ggc
l

hvhhqnxdxngnenempa
u

mvdhixaxahuhtc
l

dc
l

dtpkkc
l

pc
l

fthzsax
h

rax
r

eraeehiheyayawaaaoelowlbbc
l

chjhzhyiyuwuxwep
i

shoy
eng

g
gcl
hv
hh
q

nx
dx
ng
n

en
em
pau

m
v

dh
ix

ax
ah
uh
tcl
dcl

d
t
p
k

kcl
pcl

f
th
z
s

axh
r

axr
er
ae
eh
ih
ey
ay
aw
aa
ao
el

ow
l

b
bcl
ch
jh
zh
y
iy

uw
ux
w

epi
sh
oy

(d) W2L_TL_frozen, layer 5, 96th percentile

Figure 6. Clustermaps for W2L (a,c) and W2L_TL_frozen (b,d) in layer 4 (a,b) and 5 (c,d) at the
percentile with highest change of Silhouette score from layer 4 to layer 5. Heat map colors do not
represent same distance values in different plots. Colors of clusters in different subfigures do not
represent mapping of the clusters. See Figure 7 for an enlarged clustering view.

For W2L_TL_frozen, two distinguishable main clusters emerge in layer 4, while in
layer 5 there is only a single large cluster. Observing a single large cluster with high pair-
wise similarity values indicates good representation on the level of individual phonemes.
Because the model distributes phonemes evenly in the representation space, it is able to dis-
tinguish between each of the individual phonemes. This is our expected result because the
fifth layer of the W2L_TL_frozen model is the deepest layer that is pre-trained on phoneme
prediction trough the transfer learning approach. Decreasing the clustering distance thresh-
old in the transfer learning model forces the clustering to divide the homogeneous cluster,
leading to significantly smaller Silhouette scores.

Electronics 2021, 10, 1350 18 of 30

eng
g
dx
nx
ng
n
gcl
em
en
ix
ax
uw
w
ux
ih
ey
iy
y
sh
zh
jh
ch
s
z
pcl
kcl
tcl
bcl
dcl
v
m
hv
hh
f
th
dh
d
q
epi
axr
er
r

aw
ay
ae
eh
el
ow
l
ah
uh
aa
ao
oy
b
p
k
t

axh
pau

(a) W2L, layer 4,
96th percentile

eng
sh
ch
jh
zh
ux
dx
nx
eh
ih
ey
iy
y

axr
er
r
f
th
z
s

axh
en
ng
n
em
pau
hv
hh
q
l

ow
el
ah
uh
ix
ax
dh
v
m
uw
ae
ay
aw
aa
ao
oy
g
gcl
bcl
pcl
kcl
tcl
dcl
p
k
t
d
b
w
epi

(b) W2L_TL_frozen,
layer 4, 96th percentile

axr
er
r
nx
dx
eh
ae
ay
aw
aa
ao
oy
l
el
uh
ah
ow
uw
ux
ih
ey
iy
y
hv
hh
s
z
jh
zh
sh
epi
bcl
dcl
kcl
tcl
pcl
th
f
t
ch
axh
pau
w
ix
ax
q
d
dh
v
m
em
en
k
p
b
g
ng
n
gcl
eng

(c) W2L, layer 5,
96th percentile

eng
g
gcl
hv
hh
q
nx
dx
ng
n
en
em
pau
m
v
dh
ix
ax
ah
uh
tcl
dcl
d
t
p
k
kcl
pcl
f
th
z
s

axh
r

axr
er
ae
eh
ih
ey
ay
aw
aa
ao
el
ow
l
b
bcl
ch
jh
zh
y
iy
uw
ux
w
epi
sh
oy

(d) W2L_TL_frozen,
layer 5, 96th percentile

Figure 7. Clustering result for W2L (a,c) and W2L_TL_frozen (b,d) compared between layer 4 (a,b)
and 5 (c,d) at the percentile with highest change of Silhouette score from layer 4 to layer 5 Clustering
assignment is shown by coloring. Colors of clusters in different subfigures do not represent mapping
of the corresponding clusters. Pairwise distances are visualized in Figure 6.

The W2L model, in contrast, showed more distinct subclusters in both the 4th and 5th
layers. The number of clusters is the same in both layers but the sets of phonemes being
assigned to the same cluster is substantially different. 35.4% of phoneme pairs change from
being assigned to the same cluster to being in different clusters or vice versa. At the same
time, distances between SNAP in the W2L model are much higher and vary more than in
the transfer learning model. Phoneme clusters in the W2L model indicate that the model
encodes high-level concepts of similar sounds. For example, the red cluster in the 5th layer
(Figures 6c and 7c) contains most vowels.

Electronics 2021, 10, 1350 19 of 30

5.4. Comparing Letter and Phoneme Representations in W2L

To demonstrate an application of SNAP clustering, we investigate whether the W2L
model implicitly encodes phonemes as intermediate representation for predicting letters.
First, we compute SNAPs for the W2L model using phonemes and letters as grouping,
respectively. Grouping by letter uses the predictions of the model and phoneme grouping
is based on the annotated phonemes at the center time step of the input spectrogram
frame. We then cluster both sets of SNAPs in each layer and compute the Silhouette scores
at different distance thresholds. In the input layer, we cluster the spectrogram frames.
Figure 8 shows the result for letters (left), phonemes (center) and the averages over distance
thresholds for both groupings (right).

in 2 4 6 8 10 12
layer

0.0
0.1
0.2
0.3
0.4

sil
ho

ue
tte

 sc
or

e

letters
87
90

93
96

in 2 4 6 8 10 12
layer

phonemes
87
90

93
96

in 2 4 6 8 10 12
layer

averaged
letters
phonemes

Figure 8. Silhouette scores at different distance thresholds, derived from SNAP clustering in the W2L
model comparing grouping by predicted letters and by phoneme annotation.

For letters, the clustering quality strongly depends on the chosen distance threshold,
while the threshold has only minor influence on the phoneme clustering quality. Par-
ticularly, clustering at 96th percentile of letter SNAPs differs from clustering at smaller
distance thresholds. Compared to the evaluation experiment in the previous Section 5.3,
the observed Silhouette score curves are not as conclusive. According to the Silhouette
scores, letters are clustered better than phonemes in all except the two final layers. This is
surprising as we expect a letter prediction model to specifically cluster letters well in the
output layer. Moreover, letter clustering has the highest Silhouette score in layer 5 (at 96th
percentile), while phoneme clustering has its minimum clustering quality in this layer.

Because layers 5 and 12 stand out in terms of clustering quality, we investigate
clustering in these layers in more detail. We particularly compare the SNAPs for letters
and phonemes in the W2L model, using the respective distance threshold with the highest
respective clustering quality. A detailed visualization of the pairwise distances between
the SNAPs as clustermaps is shown in Figure 9, while Figure 10 shows the corresponding
clustering assignments as enlarged view.

Although the Silhouette scores indicate better clustering for letters in layer 5, only
a single-letter cluster for j is distinguishable from all other letters. In addition, several
similarities are not reflecting interpretable concepts. For example, unexpectedly, letter r is
most similar to letters a, o and u. We similarly observed a single large cluster for the transfer
learning model in the evaluation experiment (Section 5.3, Figure 6d). The main difference is
that the distance values between letter SNAPs are much higher than the distances between
phoneme SNAPs. In this case, we suspect that the high clustering quality is an artifact
from distinguishing the SNAP of j as the rarest group (only 160 frames are predicted as j).
Emerging phoneme clusters in layer 5 are representing more meaningful groups, although
having lower Silhouette score. The pink cluster encompasses nasals (ng, n, eng). Green
contains multiple fricatives (s, z, zh, sh). Purple only consists of plosives (k, p, b, g). Red,
orange and yellow are mainly grouping different similar sets of vowels (and semivowels).

Electronics 2021, 10, 1350 20 of 30

jqpbwluoarkmvdgyienshtcfzx

j
q
p
b
w
l

u
o
a
r
k

m
v
d
g
y
i

e
n
s
h
t
c
f
z
x

(a) letters, layer 5, 96th percentile

ax
r

errnxdxehaeayawaaaooyleluhahowuwuxiheyiyyhvhhszjhzhshep
i

bc
l

dc
l

kc
l

tc
l

pc
l

thftchax
h

pa
u

wixaxqddhvmemenkpbgngngc
l

en
g

axr
er
r

nx
dx
eh
ae
ay
aw
aa
ao
oy

l
el

uh
ah
ow
uw
ux
ih
ey
iy
y

hv
hh

s
z

jh
zh
sh

epi
bcl
dcl
kcl
tcl
pcl
th

f
t

ch
axh
pau

w
ix

ax
q
d

dh
v

m
em
en

k
p
b
g

ng
n

gcl
eng

(b) phonemes, layer 5, 87th percentile

jtfpcvmbzxswqhykgdlnaiuoer

j
t
f
p
c
v

m
b
z
x
s
w
q
h
y
k
g
d
l

n
a
i

u
o
e
r

(c) letters, layer 12, 87th percentile

pa
u

eyaeaaaygc
l

jhchshszhzkc
l

uxpc
l

bc
l

owahawaoehihnxnngdxdc
l

tc
l

oyiymvluhuwelax
r

erremep
i

dhwen
g

enax
h

thfaxixqhvytdhhkpgb

pau
ey
ae
aa
ay
gcl
jh
ch
sh
s

zh
z

kcl
ux
pcl
bcl
ow
ah
aw
ao
eh
ih
nx
n

ng
dx
dcl
tcl
oy
iy
m
v
l

uh
uw
el

axr
er
r

em
epi
dh
w

eng
en

axh
th

f
ax
ix
q

hv
y
t
d

hh
k
p
g
b

(d) phonemes, layer 12, 96th percentile

Figure 9. Clustermaps of SNAPs of the W2L model in layers 5 and 12 using grouping by predicted
letter and annotated phoneme. Each subfigure shows the clustering at the respective percentile of
best quality according to Silhouette score. Equal heat map colors represent same distance values
in the same layer, but are not comparable between layers. Colors of clusters in different plots do
not represent mapping of the clusters. An enlarged view of the clustering without the heat map of
pairwise distances is shown in Figure 10.

In the output (12th) layer, we observe more meaningful clustering of letters, for
example, a cluster containing all vowel letters and a cluster of sibilant-typical letters (blue
and yellow cluster in Figure 9c, respectively). However, other letters that we expected to be
close (for example, p and b or t and d) are far apart from each other. We hypothesize that
this indicates how certain the model is when predicting particular letters. For example, p
and b might be easy for the model to distinguish, which leads to output layer activations
and corresponding SNAPs that are more distant from each other.

In the previous Section 5.3, we observed a similar pattern for the phoneme clustering
in the fifth layer of the W2L_TL_frozen model (Figure 6d). There, we suspected that the
W2L_TL_frozen model can easily distinguish between the phonemes in the fifth layer and
therefore distributes them more evenly in the representation space. For letter prediction
in the W2L model, however, it appears to be harder to distinguish between some of the
letters, which leads to the corresponding output layer SNAPs being more similar to each
other. We conclude that this difference of the clustering results between the models reflects

Electronics 2021, 10, 1350 21 of 30

that it is more difficult to distinguish between letters than phonemes, which is reasonable
considering the high variability of how letters are pronounced.

j
q
p
b
w
l
u
o
a
r
k
m
v
d
g
y
i
e
n
s
h
t
c
f
z
x

(a) letters, layer 5,
96th percentile

axr
er
r
nx
dx
eh
ae
ay
aw
aa
ao
oy
l
el
uh
ah
ow
uw
ux
ih
ey
iy
y
hv
hh
s
z
jh
zh
sh
epi
bcl
dcl
kcl
tcl
pcl
th
f
t
ch
axh
pau
w
ix
ax
q
d
dh
v
m
em
en
k
p
b
g
ng
n
gcl
eng

(b) phonemes, layer 5,
87th percentile

j
t
f
p
c
v
m
b
z
x
s
w
q
h
y
k
g
d
l
n
a
i
u
o
e
r

(c) letters, layer 12,
87th percentile

pau
ey
ae
aa
ay
gcl
jh
ch
sh
s
zh
z
kcl
ux
pcl
bcl
ow
ah
aw
ao
eh
ih
nx
n
ng
dx
dcl
tcl
oy
iy
m
v
l
uh
uw
el
axr
er
r

em
epi
dh
w

eng
en
axh
th
f
ax
ix
q
hv
y
t
d
hh
k
p
g
b

(d) phonemes,
layer 12,

96th percentile

Figure 10. Clustering result of SNAPs of the W2L model in layers 5 and 12 using grouping by
predicted letter and annotated phoneme. Each subfigure shows the clustering at the respective
percentile of best clustering quality according to Silhouette score. Clustering assignment is shown by
coloring. Colors of clusters in different subfigures do not represent mapping of the corresponding
clusters. Pairwise distances are visualized in Figure 9.

For phonemes in layer 12, emerging clusters are more distinct from each other, both
compared to the letter clustering as well as compared to phoneme clustering in layer 5.
Phoneme pau as pause marker is clearly distinguishable from the other phonemes. Apart
from that, we observe that the clustering of phoneme SNAPs in layer 12 is worse than in
the fifth layer. The emerged clusters do not represent any phonemic category both in terms

Electronics 2021, 10, 1350 22 of 30

of their size and the phoneme similarities. This observation supports our expectation that
phonemes are worse represented in deeper layers of the letter prediction model, in partic-
ular in the output layer. In addition, the phoneme SNAP clustering result demonstrates
that there cannot be a strong correspondence between phonemes and letters. If there was
such correspondence, a phoneme SNAP in the output layer would show high activations
for a particular letter output neuron, hence show clustering behavior that is similar to the
corresponding letter.

6. Conclusions

SNAPs are a promising tool to gain insight into ANNs. They combine strengths of
existing introspection techniques, extend them and allow for more comprehensive analyses.
With our method, introspection is not limited to the predicted classes but can be performed
for any grouping of inputs. Moreover, model introspection is flexibly possible for different
parts of the network, for example inputs, any layer or specific subsets of neurons.

In this work, we presented per-layer clustering of SNAPs for different groups and
investigated Silhouette score to measure how well groups are represented. We found
that observing the clustering quality alone cannot reveal layers which encode meaningful
and interpretable concepts of particular groups. However, it helps to make an informed
choice about which layers to inspect in more detail with additional introspection methods.
Considering the increasing depth of modern ANNs, this already is a valuable aid in model
analysis. A limitation of the clustering is that the visualization becomes cluttered if there
are too many groups, which can be circumvented by choosing higher-level groups or a
smaller subset of groups of interest.

Notably, computing SNAPs is generally possible for any type of data and is not
limited to CNNs. Only the interpretability of the specific analyses that use SNAPs depends
on the used data and model. Moreover, computing SNAPs is not restricted to models
that perform a particular task. Because SNAPs are describing and comparing neuron
activations, they can be obtained for any model. In particular, we demonstrated the
application to a transcription model in this work. Implicitly, we also showed that SNAPs
can be used to analyze DL-based classifiers because we analyzed the transcription task
as a series of classifications. Our technique can even be applied to unsupervised models
with minor adaptations. Averaging neuron activations is straight-forward in unsupervised
models, as well. However, as there are no target predictions in unsupervised models,
the alignment step needs to be adapted. For example, to compute SNAPs of layers of an
autoencoder model, a possible adaptation of the alignment is to compute it based on the
highest relevance for the encoding layer. Future work will utilize our method to analyze
the network during training. This can shed light on when and how the network learns to
detect features for particular groups.

Author Contributions: Conceptualization, A.K.; methodology, A.K. and J.A.; software, M.E., A.K.,
J.J. and J.A.; validation, A.K., M.E. and J.A.; formal analysis, A.K.; investigation, A.K. and J.A.;
resources, S.S.; data curation, J.A. and A.K.; writing—original draft preparation, A.K.; writing—
review and editing, S.S., J.J., J.A., M.E. and A.K.; visualization, A.K.; supervision, S.S.; project
administration, S.S. and A.K.; funding acquisition, S.S. and A.K. All authors have read and agreed to
the published version of the manuscript.

Funding: This research has been funded by the Federal Ministry of Education and Research of
Germany (BMBF) as part of the project “CogXAI—Cognitive neuroscience inspired techniques for
eXplainable AI”.

Data Availability Statement: Data used in this study can be accessed online: TIMIT (https://www.
kaggle.com/mfekadu/darpa-timit-acousticphonetic-continuous-speech, accessed on 5 June 2021).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

https://www.kaggle.com/mfekadu/darpa-timit-acousticphonetic-continuous-speech
https://www.kaggle.com/mfekadu/darpa-timit-acousticphonetic-continuous-speech

Electronics 2021, 10, 1350 23 of 30

Appendix A

aa ae ah ao aw ax ax
h

ax
r ay b bc
l

ch d dc
l

dh dx eh el em en en
g

ep
i er ey
f g gc
l

hh hv ih ix iy jh k kc
l l m n ng nx ow oy p

pa
u pc
l q r s sh t tc
l th uh uw ux v w y z zh

alignment point annotation

aa
ae
ah
ao
aw
ax

axh
axr
ay
b

bcl
ch
d

dcl
dh
dx
eh
el

em
en

eng
epi
er
ey

f
g

gcl
hh
hv
ih
ix
iy
jh
k

kcl
l

m
n

ng
nx
ow
oy
p

pau
pcl

q
r
s

sh
t

tcl
th
uh
uw
ux
v
w
y
z

zh

ce
nt

er
 p

re
di

ct
io

n

(a) after alignment

aa ae ah ao aw ax ax
h

ax
r ay b bc
l

ch d dc
l

dh dx eh el em en en
g

ep
i er ey
f g gc
l

hh hv ih ix iy jh k kc
l l m n ng nx ow oy p

pa
u pc
l q r s sh t tc
l th uh uw ux v w y z zh

center annotation

aa
ae
ah
ao
aw
ax

axh
axr
ay
b

bcl
ch
d

dcl
dh
dx
eh
el

em
en

eng
epi
er
ey

f
g

gcl
hh
hv
ih
ix
iy
jh
k

kcl
l

m
n

ng
nx
ow
oy
p

pau
pcl

q
r
s

sh
t

tcl
th
uh
uw
ux
v
w
y
z

zh

ce
nt

er
 p

re
di

ct
io

n

(b) before alignment

aa ae ah ao aw ax ax
h

ax
r ay b bc
l

ch d dc
l

dh dx eh el em en en
g

ep
i er ey
f g gc
l

hh hv ih ix iy jh k kc
l l m n ng nx ow oy p

pa
u pc
l q r s sh t tc
l th uh uw ux v w y z zh

alignment point annotation frame

aa
ae
ah
ao
aw
ax

axh
axr
ay
b

bcl
ch
d

dcl
dh
dx
eh
el

em
en

eng
epi
er
ey

f
g

gcl
hh
hv
ih
ix
iy
jh
k

kcl
l

m
n

ng
nx
ow
oy
p

pau
pcl

q
r
s

sh
t

tcl
th
uh
uw
ux
v
w
y
z

zh

ce
nt

er
 p

re
di

ct
io

n

(c) within alignment frame

Figure A1. Alignment evaluation overview for model W2P. For each predicted phoneme on the
y-axis the relative frequency of the corresponding phoneme annotation on the x-axis. Color scale
[0, 1] from white to black.

Electronics 2021, 10, 1350 24 of 30

aa ae ah ao aw ax ax
h

ax
r ay b bc
l

ch d dc
l

dh dx eh el em en en
g

ep
i er ey
f g gc
l

hh hv ih ix iy jh k kc
l l m n ng nx ow oy p

pa
u pc
l q r s sh t tc
l th uh uw ux v w y z zh

alignment point annotation

aa
ae
ah
ao
aw
ax

axh
axr
ay
b

bcl
ch
d

dcl
dh
dx
eh
el

em
en

eng
epi
er
ey

f
g

gcl
hh
hv
ih
ix
iy
jh
k

kcl
l

m
n

ng
nx
ow
oy
p

pau
pcl

q
r
s

sh
t

tcl
th
uh
uw
ux
v
w
y
z

zh

ce
nt

er
 p

re
di

ct
io

n

(a) after alignment

aa ae ah ao aw ax ax
h

ax
r ay b bc
l

ch d dc
l

dh dx eh el em en en
g

ep
i er ey
f g gc
l

hh hv ih ix iy jh k kc
l l m n ng nx ow oy p

pa
u pc
l q r s sh t tc
l th uh uw ux v w y z zh

center annotation

aa
ae
ah
ao
aw
ax

axh
axr
ay
b

bcl
ch
d

dcl
dh
dx
eh
el

em
en

eng
epi
er
ey

f
g

gcl
hh
hv
ih
ix
iy
jh
k

kcl
l

m
n

ng
nx
ow
oy
p

pau
pcl

q
r
s

sh
t

tcl
th
uh
uw
ux
v
w
y
z

zh

ce
nt

er
 p

re
di

ct
io

n

(b) before alignment

aa ae ah ao aw ax ax
h

ax
r ay b bc
l

ch d dc
l

dh dx eh el em en en
g

ep
i er ey
f g gc
l

hh hv ih ix iy jh k kc
l l m n ng nx ow oy p

pa
u pc
l q r s sh t tc
l th uh uw ux v w y z zh

alignment point annotation frame

aa
ae
ah
ao
aw
ax

axh
axr
ay
b

bcl
ch
d

dcl
dh
dx
eh
el

em
en

eng
epi
er
ey

f
g

gcl
hh
hv
ih
ix
iy
jh
k

kcl
l

m
n

ng
nx
ow
oy
p

pau
pcl

q
r
s

sh
t

tcl
th
uh
uw
ux
v
w
y
z

zh

ce
nt

er
 p

re
di

ct
io

n

(c) within alignment frame

Figure A2. Alignment evaluation overview for model W2P_shallow. For each predicted phoneme on
the y-axis the relative frequency of the corresponding phoneme annotation on the x-axis. Color scale
[0, 1] from white to black.

Electronics 2021, 10, 1350 25 of 30

aa ae ah ao aw ax ax
h

ax
r ay b bc
l

ch d dc
l

dh dx eh el em en en
g

ep
i er ey
f g gc
l

hh hv ih ix iy jh k kc
l l m n ng nx ow oy p

pa
u pc
l q r s sh t tc
l th uh uw ux v w y z zh

center annotation

a
b
c
d
e
f
g
h
i
j
k
l

m
n
o
p
q
r
s
t
u
v
w
x
y
z

ce
nt

er
 p

re
di

ct
io

n

(a) before alignment

aa ae ah ao aw ax ax
h

ax
r ay b bc
l

ch d dc
l

dh dx eh el em en en
g

ep
i er ey
f g gc
l

hh hv ih ix iy jh k kc
l l m n ng nx ow oy p

pa
u pc
l q r s sh t tc
l th uh uw ux v w y z zh

alignment point annotation

a
b
c
d
e
f
g
h
i
j
k
l

m
n
o
p
q
r
s
t
u
v
w
x
y
z

ce
nt

er
 p

re
di

ct
io

n

(b) after alignment

aa ae ah ao aw ax ax
h

ax
r ay b bc
l

ch d dc
l

dh dx eh el em en en
g

ep
i er ey
f g gc
l

hh hv ih ix iy jh k kc
l l m n ng nx ow oy p

pa
u pc
l q r s sh t tc
l th uh uw ux v w y z zh

alignment point annotation frame

a
b
c
d
e
f
g
h
i
j
k
l

m
n
o
p
q
r
s
t
u
v
w
x
y
z

ce
nt

er
 p

re
di

ct
io

n

(c) within alignment frame

Figure A3. Alignment evaluation overview for model W2L. For each predicted letter on the y-axis
the relative frequency of the corresponding phoneme annotation on the x-axis. Color scale [0, 1] from
white to black.

Electronics 2021, 10, 1350 26 of 30

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) aa ae ah

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) ao aw ax

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) axh axr ay

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) b bcl ch

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) d dcl dh

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) dx eh el

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) em en eng

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) epi er ey

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) f g gcl

1 0.5 0 0.5 1
time (s)

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) hh

1 0.5 0 0.5 1
time (s)

hv

1 0.5 0 0.5 1
time (s)

ih

Figure A4. Input layer SNAPs in model W2L for phonemes aa–ih.

Electronics 2021, 10, 1350 27 of 30

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) ix iy jh

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) k kcl l

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) m n ng

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) nx ow oy

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) p pau pcl

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) q r s

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) sh t tcl

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) th uh uw

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) ux v w

1 0.5 0 0.5 1
time (s)

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) y

1 0.5 0 0.5 1
time (s)

z

1 0.5 0 0.5 1
time (s)

zh

Figure A5. Input layer SNAPs in model W2L for phonemes ix–zh.

Electronics 2021, 10, 1350 28 of 30

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) a b c

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) d e f

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) g h i

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) j k l

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) m n o

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) p q r

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) s t u

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) v w

1 0.5 0 0.5 1
time (s)

x

1 0.5 0 0.5 1
time (s)

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) y

1 0.5 0 0.5 1
time (s)

z

Figure A6. Input layer SNAPs in model W2L for all letters.

References
1. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA,
7–12 June 2015; pp. 1–9.

2. Yosinski, J.; Clune, J.; Nguyen, A.; Fuchs, T.; Lipson, H. Understanding Neural Networks Through Deep Visualization. arXiv
2015, arXiv:1506.06579.

3. Zeiler, M.D.; Fergus, R. Visualizing and Understanding Convolutional Networks. In Proceedings of the European Conference on
Computer Vision (ECCV), Zurich, Switzerland, 6–12 September 2014; pp. 818–833.

4. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations From Deep Networks
via Gradient-Based Localization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy,
22–29 October 2017; pp. 618–626.

Electronics 2021, 10, 1350 29 of 30

5. Krug, A.; Stober, S. Adaptation of the Event-Related Potential Technique for Analyzing Artificial Neural Networks. In Proceedings
of the Cognitive Computational Neuroscience (CCN), New York, NY, USA, 6–8 September 2017.

6. Makeig, S.; Onton, J. ERP features and EEG dynamics: An ICA perspective. In Oxford Handbook of Event-Related Potential
Components; Oxford University Press: Oxford, UK, 2011; pp. 51–87.

7. Luck, S.J. An Introduction to the Event-Related Potential Technique. Monogr. Soc. Res. Child Dev. 2005, 78, 388.
8. Krug, A.; Stober, S. Introspection for Convolutional Automatic Speech Recognition. In Proceedings of the EMNLP Work-

shop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, Brussels, Belgium, 31 October–4 November 2018;
pp. 187–199.

9. Krug, A.; Knaebel, R.; Stober, S. Neuron Activation Profiles for Interpreting Convolutional Speech Recognition Models. In
Proceedings of the NeurIPS Workshop IRASL: Interpretability and Robustness for Audio, Speech, and Language, Montréal, QC,
Canada, 2–8 December 2018.

10. Gollapudi, S. Practical Machine Learning; Packt Publishing Ltd.: Birmingham, UK, 2016.
11. Goodfellow, I.; Bengio, Y.; Courville, A.; Bengio, Y. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; Volume 1.
12. Dargan, S.; Kumar, M.; Ayyagari, M.R.; Kumar, G. A survey of deep learning and its applications: A new paradigm to machine

learning. Arch. Comput. Methods Eng. 2019, 27, 1071–1092. [CrossRef]
13. Kiranyaz, S.; Avci, O.; Abdeljaber, O.; Ince, T.; Gabbouj, M.; Inman, D.J. 1D convolutional neural networks and applications:

A survey. Mech. Syst. Signal Process. 2021, 151, 107398. [CrossRef]
14. Kiranyaz, S.; Ince, T.; Abdeljaber, O.; Avci, O.; Gabbouj, M. 1-D Convolutional Neural Networks for Signal Processing Applications.

In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17
May 2019; pp. 8360–8364.

15. Kriman, S.; Beliaev, S.; Ginsburg, B.; Huang, J.; Kuchaiev, O.; Lavrukhin, V.; Leary, R.; Li, J.; Zhang, Y. Quartznet: Deep Automatic
Speech Recognition with 1D Time-Channel Separable Convolutions. In Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 6124–6128.

16. Smith, J.O., III. Spectral Audio Signal Processing; W3K Publishing: Stanford, CA, USA, 2011.
17. Khan, M.A.; Kim, J. Toward Developing Efficient Conv-AE-Based Intrusion Detection System Using Heterogeneous Dataset.

Electronics 2020, 9, 1771. [CrossRef]
18. Chen, G.; Na, X.; Wang, Y.; Yan, Z.; Zhang, J.; Ma, S.; Wang, Y. Data Augmentation For Children’s Speech Recognition—The

“Ethiopian” System For The SLT 2021 Children Speech Recognition Challenge. arXiv 2020, arXiv:2011.04547.
19. Abdel-Hamid, O.; Mohamed, A.R.; Jiang, H.; Deng, L.; Penn, G.; Yu, D. Convolutional neural networks for speech recognition.

IEEE/ACM Trans. Audio Speech Lang. Process. 2014, 22, 1533–1545. [CrossRef]
20. Senior, A.; Heigold, G.; Ranzato, M.; Yang, K. An empirical study of learning rates in deep neural networks for speech recognition.

In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, BC,
Canada, 26–31 May 2013; pp. 6724–6728.

21. Trigeorgis, G.; Ringeval, F.; Brueckner, R.; Marchi, E.; Nicolaou, M.A.; Schuller, B.; Zafeiriou, S. Adieu features? End-to-end
speech emotion recognition using a deep convolutional recurrent network. In Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016; pp. 5200–5204.

22. Cummins, N.; Amiriparian, S.; Hagerer, G.; Batliner, A.; Steidl, S.; Schuller, B.W. An Image-based Deep Spectrum Feature
Representation for the Recognition of Emotional Speech. ACM Int. Conf. Multimed. 2017, 478–484. [CrossRef]

23. Badshah, A.M.; Ahmad, J.; Rahim, N.; Baik, S.W. Speech Emotion Recognition from Spectrograms with Deep Convolutional
Neural Network. In Proceedings of the IEEE International Conference on Platform Technology and Service (PlatCon), Busan,
Korea, 13–15 February 2017; pp. 1–5.

24. Bach, S.; Binder, A.; Montavon, G.; Klauschen, F.; Müller, K.R.; Samek, W. On pixel-wise explanations for non-linear classifier
decisions by layer-wise relevance propagation. PLoS ONE 2015, 10, e0130140. [CrossRef]

25. Osindero, S.; Hinton, G.E. Modeling image patches with a directed hierarchy of Markov random fields. In Proceedings of the
Advances in Neural Information Processing Systems (NIPS), Vancouver, BC, Canada, 8–11 December 2008; pp. 1121–1128.

26. Erhan, D.; Bengio, Y.; Courville, A.; Vincent, P. Visualizing higher-layer features of a deep network. Univ. Montr. 2009, 1341, 1.
27. Mordvintsev, A.; Olah, C.; Tyka, M. Inceptionism: Going deeper into neural networks. Google Res. Blog. Retrieved June 2015, 20, 5.
28. Krug, A.; Stober, S. Visualizing Deep Neural Networks for Speech Recognition with Learned Topographic Filter Maps. arXiv

2019, arXiv:1912.04067.
29. Simonyan, K.; Vedaldi, A.; Zisserman, A. Deep inside convolutional networks: Visualising image classification models and

saliency maps. arXiv 2013, arXiv:1312.6034.
30. Springenberg, J.T.; Dosovitskiy, A.; Brox, T.; Riedmiller, M. Striving for simplicity: The all convolutional net. arXiv 2014,

arXiv:1412.6806.
31. Kindermans, P.J.; Schütt, K.T.; Alber, M.; Müller, K.R.; Erhan, D.; Kim, B.; Dähne, S. Learning how to explain neural networks:

PatternNet and PatternAttribution. In Proceedings of the International Conference on Learning Representations (ICLR),
Vancouver, BC, Canada, 30 April–3 May 2018.

32. Schulz, K.; Sixt, L.; Tombari, F.; Landgraf, T. Restricting the Flow: Information Bottlenecks for Attribution. In Proceedings of the
International Conference on Learning Representations (ICLR), New Orleans, LA, USA, 6–9 May 2019.

http://doi.org/10.1007/s11831-019-09344-w
http://dx.doi.org/10.1016/j.ymssp.2020.107398
http://dx.doi.org/10.3390/electronics9111771
http://dx.doi.org/10.1109/TASLP.2014.2339736
http://dx.doi.org/10.1145/3123266.3123371
http://dx.doi.org/10.1371/journal.pone.0130140

Electronics 2021, 10, 1350 30 of 30

33. Becker, S.; Ackermann, M.; Lapuschkin, S.; Müller, K.R.; Samek, W. Interpreting and explaining deep neural networks for
classification of audio signals. arXiv 2018, arXiv:1807.03418.

34. Thuillier, E.; Gamper, H.; Tashev, I.J. Spatial audio feature discovery with convolutional neural networks. In Proceedings of the
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018;
pp. 6797–6801.

35. Perotin, L.; Serizel, R.; Vincent, E.; Guérin, A. CRNN-based multiple DoA estimation using acoustic intensity features for
Ambisonics recordings. IEEE J. Sel. Top. Signal Process. 2019, 13, 22–33. [CrossRef]

36. Adebayo, J.; Gilmer, J.; Muelly, M.; Goodfellow, I.; Hardt, M.; Kim, B. Sanity checks for saliency maps. In Proceedings of the 32nd
Conference on Neural Information Processing Systems (NeurIPS), Montréal, QC, Canada, 2–8 December 2018; pp. 9525–9536.

37. Nie, W.; Zhang, Y.; Patel, A. A theoretical explanation for perplexing behaviors of backpropagation-based visualizations. In
Proceedings of the International Conference on Machine Learning (ICML), Stockholm, Sweden, 10–15 July 2018; pp. 3809–3818.

38. Sixt, L.; Granz, M.; Landgraf, T. When Explanations Lie: Why Many Modified BP Attributions Fail. International Conference on
Machine Learning (ICML). In Proceedings of the International Conference on Machine Learning (ICML), Vienna, Austria, 12–18
July 2020; pp. 9046–9057.

39. Alain, G.; Bengio, Y. Understanding intermediate layers using linear classifier probes. In Proceedings of the International
Conference on Learning Representations (ICLR), Workshop Track Proceedings, Toulon, France, 24–26 April 2017.

40. Kim, B.; Wattenberg, M.; Gilmer, J.; Cai, C.; Wexler, J.; Viegas, F.; Sayres, R. Interpretability Beyond Feature Attribution:
Quantitative Testing with Concept Activation Vectors (TCAV). In Proceedings of the International Conference on Machine
Learning (ICML), Stockholm, Sweden, 10–15 July 2018; pp. 2668–2677.

41. Fiacco, J.; Choudhary, S.; Rose, C. Deep neural model inspection and comparison via functional neuron pathways. In
Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL), Florence, Italy, 28 July–2 August
2019; pp. 5754–5764.

42. Morcos, A.S.; Raghu, M.; Bengio, S. Insights on representational similarity in neural networks with canonical correlation. arXiv
2018, arXiv:1806.05759.

43. Nagamine, T.; Seltzer, M.L.; Mesgarani, N. Exploring how deep neural networks form phonemic categories. In Proceedings of
the Sixteenth Annual Conference of the International Speech Communication Association (Interspeech), Dresden, Germany, 6–10
September 2015.

44. Nagamine, T.; Mesgarani, N. Understanding the representation and computation of multilayer perceptrons: A case study in
speech recognition. In Proceedings of the International Conference on Machine Learning (ICML), Sydney, Australia, 6–11 August
2017; pp. 2564–2573.

45. Goodfellow, I.; Shlens, J.; Szegedy, C. Explaining and Harnessing Adversarial Examples. In Proceedings of the International
Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015.

46. Panayotov, V.; Chen, G.; Povey, D.; Khudanpur, S. Librispeech: An ASR corpus based on public domain audio books. In
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, QLD,
Australia, 19–24 April 2015; pp. 5206–5210.

47. Garofolo, J.S.; Lamel, L.F.; Fisher, W.M.; Fiscus, J.G.; Pallett, D.S. DARPA TIMIT acoustic-phonetic continous speech corpus
CD-ROM. NIST speech disc 1-1.1. NASA STI/Recon Tech. Rep. 1993, 93, 27403.

48. McFee, B.; Raffel, C.; Liang, D.; Ellis, D.P.; McVicar, M.; Battenberg, E.; Nieto, O. librosa: Audio and Music Signal Analysis in
Python. In Proceedings of the 14th Python in Science Conference, Austin, TX, USA, 6–12 July 2015; Volume 8, pp. 18–25.

49. Collobert, R.; Puhrsch, C.; Synnaeve, G. Wav2Letter: An End-to-End ConvNet-based Speech Recognition System. arXiv 2016,
arXiv:1609.03193.

50. Rao, K.; Peng, F.; Sak, H.; Beaufays, F. Grapheme-to-phoneme conversion using Long Short-Term Memory recurrent neural net-
works. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane,
QLD, Australia, 19–24 April 2015; pp. 4225–4229.

51. Hughes, C.J. Single-Instruction Multiple-Data Execution. Synth. Lect. Comput. Archit. 2015, 10, 1–121. [CrossRef]
52. Murtagh, F.; Contreras, P. Algorithms for hierarchical clustering: An overview. Wiley Interdiscip. Rev. Data Min. Knowl. Discov.

2012, 2, 86–97. [CrossRef]
53. Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987,

20, 53–65. [CrossRef]

http://dx.doi.org/10.1109/JSTSP.2019.2900164
http://dx.doi.org/10.2200/S00647ED1V01Y201505CAC032
http://dx.doi.org/10.1002/widm.53
http://dx.doi.org/10.1016/0377-0427(87)90125-7

	Introduction
	Related Work
	ASR Using Convolutional Neural Networks
	Model Introspection
	Feature Visualization
	Saliency Maps
	Analyzing Data Set Representations

	Method
	Normalized Averaging of Aligned Inputs (NAvAI)
	Neuron Activation Profiles (NAPs)
	Saliency-Adjusted Neuron Activation Profiles (SNAPs)

	Experimental Setup
	Data
	Model
	Evaluation
	Evaluating the Alignment Step
	Plotting SNAPs
	Representation Power of Layers for Different Groups

	Results
	Alignment Evaluation
	Alignment Quality—Model Average
	Alignment Quality—Per Phoneme
	Applicability to Letter Prediction Models

	Per-Layer SNAPs
	Evaluation of the Representational Similarity
	Silhouette Scores
	Emerged Clusters

	Comparing Letter and Phoneme Representations in W2L

	Conclusions
	
	References

