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Abstract: Plant phenotypic image recognition (PPIR) is an important branch of smart agriculture.
In recent years, deep learning has achieved significant breakthroughs in image recognition. Con-
sequently, PPIR technology that is based on deep learning is becoming increasingly popular. First,
this paper introduces the development and application of PPIR technology, followed by its classi-
fication and analysis. Second, it presents the theory of four types of deep learning methods and
their applications in PPIR. These methods include the convolutional neural network, deep belief
network, recurrent neural network, and stacked autoencoder, and they are applied to identify plant
species, diagnose plant diseases, etc. Finally, the difficulties and challenges of deep learning in PPIR
are discussed.
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1. Introduction

Plants are indispensable resources that are present on the earth. They play an impor-
tant role in the development of the society and they have great significance in environmental
protection, medical pharmaceutical, agricultural development, and food-related applica-
tions [1]. However, any plant-related work, such as plant species and diseases identification
and evaluation of plant production, is becoming increasingly complex. An important start-
ing point for any plant-related work is the identification of plant phenotype that refers to
the physiological and biochemical characteristics of plants, including their color, shape,
texture, and so on, which are determined by both genes and the environment. Traditional
methods of plant phenotype identification include artificial identification, phytochemi-
cal classification, the anatomical method, morphological method, and genetic method,
which are difficult to implement, have low efficiency, and unstable accuracy [2]. With the
development and popularity of computer technology, image recognition technology is
becoming increasingly mature, and it has been successfully applied in many fields, such as
face recognition, object detection, medical imaging, etc. [3,4]. Plant phenotype identifica-
tion tht is based on image processing technology has become a popular topic of research,
leading to new breakthroughs and improved accuracy. In particular, deep learning has
been proposed in order to further promote the development of PPIR [5]. Table 1 shows
recent relevant reviews.
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Table 1. Recent relevant reviews.

References

Review Main Points

Muhammad et al. [6]

This paper aims to review and analyze the implementation and performance of various methodologies
(artificial neural network (ANN), probabilistic neural network (PNN), convolutional neural network
(CNN), K-nearest neighbor (KNN) and support vector machine (SVM)) on plant classification. At the
same time including feature extraction and preprocessing technology. Each technique has its advantages
and limitations in leaf pattern recognition. The quality of leaf images plays an important role,

and therefore, a reliable source of leaf database must be used to establish the machine learning algorithm
prior to leaf recognition and validation.

Weng et al. [7]

In this survey, authors elaborate the wor k from four different aspects: (1) plant morphology and
physiological information extraction, (2) plant identification and weed detection, (3) pest detection,
and (4) yield prediction. It focuses on the specific application of convolutional neural networks in this
field. Authors also analyze the pros and cons of these methods compared to traditional approaches.
The potential future trends of plant phenotyping research are discussed at the end of this survey.

Wang et al. [1]

The review introduces the research significance and history of plant recognition technologies. Then,
the main technologies and steps of plant recognition are reviewed. At the same time, more than 30 leaf
features (including 16 shape features, 11 texture features, four color features), and then SVM was used to
evaluate these features and their fusion features, and 8 commonly used classifiers are introduced in
detail. Finally, the review is ended with a conclusion of the insufficient of plant identification
technologies and a prediction of future development.

Barbedo [8]

This paper provides an analysis of each one of those challenges, emphasizing both the problems that they
may cause and how they may have potentially affected the techniques proposed in the past. Some
possible solutions capable of overcoming at least some of those challenges are proposed. Focusing on
plant diseases, automatic identification, visible symptoms, digital image processing, extrinsic factors
(image background, image capture conditions), intrinsic factors (symptom segmentation, symptom
variations, multiple simultaneous disorders, different disorders with similar symptoms), other
challenges and future prospects.

Cope et al. [9]

The authors review the main computational, morphometric and image processing methods that have
been used in recent years to analyze images of plants, introducing readers to relevant botanical concepts
along the way. They discuss the measurement of leaf outlines, flower shape, vein structures and leaf
textures, and describe a wide range of analytical methods in use. At last, they discuss a number of
systems that apply this research, including prototypes of hand-held digital field guides and various
robotic systems used in agriculture. They conclude with a discussion of ongoing work and outstanding
problems in the area.

Waldchen et al. [10]

This paper is the first systematic literature review with the aim of a thorough analysis and comparison of
primary studies on computer vision approaches for plant species identification. They identified

120 peer-reviewed studies, selected through a multi-stage process, published in the last 10 years
(2005-2015). After a careful analysis of these studies, they describe the applied methods categorized
according to the studied plant organ, and the studied features, i.e., shape, texture, color, margin, and vein
structure. Furthermore, they compare methods based on classification accuracy achieved on publicly
available datasets. Their results are relevant to researches in ecology as well as computer vision for their
ongoing research.

Thyagharajan et al. [11]

Authors review several image processing methods in the feature extraction of leaves, given that feature
extraction is a crucial technique in computer vision. As computers cannot comprehend images, they are
required to be converted into features by individually analyzing image shapes, colors, textures and
moments. Images that look the same may deviate in terms of geometric and photometric variations.

In their study, they also discuss certain machine learning classifiers for an analysis of different species
of leaves.

This paper

In this paper, three categories of plant image recognition algorithms are summarized, and the methods of
plant image preprocessing and plant image feature extraction are summarized. Then, the advantages and
disadvantages of imaging technologies are explained. At last, the specific applications of four common
deep learning models in plant image recognition are described.
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2. PPIR Technology
2.1. State of the Art in PPIR Technology

The development of PPIR technology started several decades earlier internationally,
focusing on feature extraction and training of plants using traditional methods. In the
1980s and 1990s, Ingrouille et al. [12], from the University of London, extracted 27 main
characteristics of plant leaves and used principal components analysis (PCA) in order to
classify oak trees. Yonekawa et al. [13], from the University of Tokyo, fused several
prominent features of plant phenotypes, such as texture, color, and shape for image
recognition, and used the backpropagation (BP) neural network algorithm to train and
classify image data. In 2006, Cheng et al. [14] used fuzzy functions for shape matching
and identification of plant phenotypes. CLEF 2011-2015 (Cross Language Evaluation
Forum) in the BBS held pictures of plant classification of image recognition under acomplex
environment; the library has 1000 kinds of plant species. Villena et al. [15] utilized scale
invariance to extract plant phenotypic traits that can be identified. In 2013, Charles et al. [16]
established a database of 100 plants containing 16 samples for each plant, carried out feature
extraction, and proposed a high-accuracy recognition algorithm under the condition of
small training set size, based on the k-nearest neighbor (KNN) algorithm. When the shapes,
textures, and edges of the plant phenotypes were fused, an accuracy of 96% was achieved.

The research on PPIR started late domestically, but it is worth learning from. In 2007,
Wang et al. [17] used a moving center hypersphere classifier to classify eight geometric
features and seven image invariant moments that were extracted from ginkgo leaves
with an accuracy rate of 92%. In 2009, Wang et al. [18] extracted the feature vectors of
maize leaves while using morphology and contour extraction, and then classified them
while using the genetic algorithm for optimized selection of the features. Subsequently,
Fisher’s discrimination method was used in order to identify the diseased leaves with an
accuracy rate of more than 90%. In Reference [19], Zhai et al. used the relational matching
structure method to match the plant leaves images and different model structures after
feature extraction, and identified the types of plants based on the matching level. In 2015,
Wang et al. [20] proposed a plant leaves fusion-based recognition system to extract the
development characteristics of a variety of foliage plant phenotypic traits, such as shape,
color, texture, leaf margin, etc. Support vector machine (SVM) classification was used for
plant identification, and the experimental results showed that an accuracy of 91.41% was
achieved while using the SVM, which was better than that with a BP neural network or the
KNN algorithm. In spectroscopy, Cen et al. [21] used hyperspectral imaging technology
in combination with supervised classification algorithm for cucumber freezing damage
detection, selected and compared the best band in the experiment, and finally adopted
three algorithms of naive bayes, SVM, and KNN for classification; the results showed that
the accuracy was higher than 90%, showing the outstanding potential of hyperspectral
imaging technology in plant disease detection.

2.2. Traditional PPIR Techniques

The existing PPIR methods can be mainly divided into three categories [3], which are
described, as follows:

(1) the basic idea of relational structure matching method for PPIR is shown in
Figure 1 [22]. In this method, first, the input images are preprocessed in order to ex-
tract features, while using multi-scale curvature space to describe the geometric features,
as well as the fuzzy particle swarm algorithm and genetic algorithm. Second, the algorithm
matching rules and parameters are set. Finally, the extracted features are matched with
the features from the sample database and images are classified based on the matching
degree [23,24].
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Figure 1. Flow chart of relational structure matching method.

(2) PPIR that is based on mathematical statistics is the most widely used method.
Figure 2 shows its basic idea. First, a mathematical model is set up, followed by quantitative
analysis and classification of the image. The methods in this category are based on Bayesian
discriminant functions, KNN, kernel PCA, Fisher discriminant method, etc. [25-27].
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Figure 2. The flow chart of mathematical statistics methods.

(3) Traditional machine learning-based PPIR mainly consists of artificial neural net-
work, moving center hypersphere classifier, SVM, etc. [28]. Machine learning refers to a
set of computerized modeling methods whose patterns are learned from data in order to
automatically make decisions without explicit rules. The main idea of machine learning is
to make effective use of experience or sample scenarios to discover the underlying structure,
similarity, or difference in the data, so as to correctly interpret or classify new experience
or sample scenarios [29]. It is important for programers to deploy specific machine learn-
ing approaches to their specific problems to make informed choices. The application of
plant phenotype can be summarized into four aspects: (a) identification and detection,
(b) classification, (c) quantification and estimation, and (d) prediction. In addition, data
preprocessing steps, such as dimensionality reduction, clustering, and segmentation, can
also be the key to a successful decision [29]. The moving center hypersphere classifier con-
siders the sample points of plant phenotypic image data as a series of hyper spheres. A set
of sample points are considered to be part of a hyper sphere, whose radius is expanded
to include as many sample points as possible [26]. The SVM is a supervised learning
model that is applicable to linearly or nonlinearly separable and a small number of samples.
The method can be extended to high-dimensional pattern recognition by projecting the data
points into a higher dimensional space and computing a maximum-margin hyperplane
decision surface [26]. The SVM can be used to classify the plant phenotypic image data.
Figure 3 shows its basic idea.
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Figure 3. Flow chart of support vector machine (SVM).

Feature extraction involving the extraction of shape, texture, color, and other major
feature information is an important step in PPIR [22]. In shape based feature learning,
edge detection and shape context description methods are widely used in order to extract
the plant contours from the input images to achieve plant recognition [19]. Texture-based
feature learning includes internal information of plant phenotypes and, generally, it is
based on a local binary pattern (LBP) algorithm that calculates the correlation between
a pixel and its surrounding pixels in an object [24]. Color based feature learning is more
stable and reliable when compared with the aforementioned learning methods. It is
robust and not sensitive to the target size and orientation of the color characteristics. It
usually uses the percentage of pixels of different colors in red, green, and blue (RGB), or
hue, saturation, and brightness (HSV) images, and their histograms for feature extraction
and image recognition [25]. These feature learning methods focus on the attributes of
plant phenotypes and they mostly include shallow learning methods that need manual
feature extraction.

At present, a variety of imaging technologies are used in order to collect complex
traits that are related to growth, yield, and adaptability of biotic or abiotic stresses (such
as disease, insects, drought, and salinity). These imaging technologies include visible
light imaging (such as machine vision), imaging spectroscopy (such as multispectral
and hyperspectral remote sensing), thermal infrared imaging, fluorescence imaging, 3D
imaging and tomography (such as positron emission computer tomography), and image
and computer tomography). Many institutions and organizations in the world have carried
out phenotypic group analysis, such as the Australian plant phenomics facility. At the same
time, there are also some high-throughput phenotypic testing platforms that are deployed
in the field or indoors, such as LemnaTec. Although phenotype analysis of plants that is
based on optical imaging has many advantages, it also faces some difficulties. For example,
when machine vision methods are used to process visible light images in order to obtain
phenotypic information, such as plant species, fruit quantity, and pest categories, it is
difficult to resolve adjacent leaves problems, such as overlap and occlusion that are caused
by ears and fruits. Images that were collected in a laboratory environment often have a
pure background, uniform lighting, and a small number of plants or organs contained in
the image. Solving practical problems in the field is often caused by complex backgrounds,
differences in lighting, and occlusion. The interference of object shadows.

For PPIR, especially for a large database of plant phenotypic images, the performance
of shallow and single feature learning methods is not satisfactory due to the low recognition
accuracy and several interference factors [26].

In Table 2, the advantages and disadvantages of traditional methods that are used for
plant phenotypes image recognition are compared.
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Table 2. Comparison of traditional plant phenotype recognition techniques.

Methods and
Techniques

Introduction

Advantages

Disadvantages

K-NearestNeighbor
(KNN) [22]

KNN algorithm is a basic
classification and regression
method. In the field of plant
phenotype recognition and
classification, it mainly
undertakes the tasks of feature
information retrieval, clustering,
information filtering,

and species recognition.

1. Simple algorithm and mature
theory. 2. Robust with regard to
search space. 3. No training is
required, confidence level can
be obtained.

1. High memory and computational cost
at testing stage. 2. Sometimes sensitive to
noise or nonlinear input. 3. lazy learning.

Probabilistic Neural
Network (PNN) [16]

The PNN algorithm is a neural
network model based on
statistical principles. It is a
parallel algorithm developed
based on the Bayesian minimum
risk criterion. Unlike the
traditional multi-layer forward
network, the BP algorithm needs
to be used to calculate the
backward error propagation. It is
a completely forward calculation
process and is often used in the
task of plant phenotypic

image classification.

1. Strong adaptability to noisy
input and variable data. 2. Can
have multiple outputs.

1. Complex structure. 2. Susceptible
to overfitting.

Support Vector
Machines (SVM) [5]

The SVM algorithm is an excellent
data mining technology. Its goal is
to find the optimal hyperplane to
minimize the classifier error. It is
widely used in statistical
classification and regression
analysis. It usually assumes the
role of feature classifier in plant
phenotype image recognition.

1. Good generalization.

2. Sparsity of the solution and
capacity control obtained by
optimizing the margin. 3. Strong
fault tolerance ability, relatively
stable even with training

sample deviation.

1. Complex algorithm structure. 2. Slow
training speed.

Decision Trees (DT) [27]

The DT algorithm is a tree-like
decision diagram with additional
probability results. It is a
predictive model that intuitively
uses statistical probability
analysis to represent a mapping
between object attributes and
object values. In the field of plant
phenotype classification and
recognition, it often undertakes
analysis the task of collecting
statistics on plant

phenotypic characteristics.

1. Simple to use and easy to
understand. 2. Pruning strategy

eliminates a large number of weak

correlations and irrelevant
information to improve
efficiency. 3. Fast
prediction ability.

Sensitive to subtle changes in the
attribute value.

Artificial Neural
Network (ANN) [28]

ANN algorithm is a kind of
simulated biological neural
network, which is a kind of
pattern matching algorithm. It
usually used to solve classification
and regression problems. It also
used in plant phenotype

image recognition.

1. Strong robustness and fault
tolerance. 2. Complex nonlinear
relations can be modeled using
one or more hidden layers.

1. Slow convergence speed and high
complexity. 2. Possibility of
local overfitting.

Random Forest (RF) [30]

In machine learning, RF is a
classifier containing multiple
decision trees, and its output
category is determined by the
mode of the category output by
individual trees. It often
undertakes species classification
tasks in the field of

plant phenotypes.

1. The algorithm can handle very
high dimensional data without
feature selection. 2. Fast training
speed, and easy to parallelize
method. 3. The algorithm has
strong anti-interference ability
and strong anti-overfitting ability.

1. When the algorithm solves regression
problems, it does not perform as well as it
does in classification. 2. The internal part
of the model is relatively complicated,
and it can only be tried between different
parameters and random seeds. 3. For
small data or low-dimensional, it may not
produce a good classification.
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3. Deep Learning Technology and Application in PPIR
3.1. The Development of Deep Learning

Deep learning is a special form of machine learning and its early theory appeared in
the 1950s. In 2006, a breakthrough in this field was achieved by a Canadian professor and
famous machine learning expert Geoffrey Hinton. In Reference [31], Hinton et al. pointed
out that a multi-layer neural network architecture has better feature learning and data min-
ing abilities. The authors further explained that the difficulty of network training in deep
learning can be overcome by a layer-by-layer parameter optimization. Microsoft, Baidu,
Google, and other high-tech groups have invested significant manpower and financial
resources in research that is related to deep learning, which has been widely applied in
the field of artificial intelligence and it produced significant benefits. The essence of deep
learning lies in multilayer learning models with multiple abstract functions and data rep-
resentations. It greatly improves the performance compared to existing techniques in the
fields of pattern recognition and object detection. In deep learning, the internal parameters
are optimized layer-by-layer and features in complex, high-dimensional data are mined
through the BP algorithm. The quality evaluation of image recognition technology is as
follows, (a) the model parameter optimization problem. Image recognition technology
that is based on deep neural network requires training a large number of parameters
in order to extract image features, which takes up a lot of running time and computer
storage memory. Researchers should improve the model structure and increase the time
complexity of the model while ensuring the accuracy of image recognition; (b) training data
optimization problem. Deep learning network models rely on a large number of training
sets for feature extraction, and the training data sets are unbalanced or even missing, which
will greatly limit the application of deep learning technology. How to solve the training
data problem should be considered in future research directions; (c) improvement of unsu-
pervised learning. For supervised learning algorithms, a lot of manual data annotation is
required for training data, which wastes energy. Subsequent research should strengthen
the construction of unsupervised learning algorithms in order to solve the problem of data
labeling [32-34]. In plant phenotypic image recognition, deep learning is different from
traditional shallow learning, because the former can select complex and high-dimensional
features without manual intervention. Figures 4 and 5 show the shallow network learning
model and deep learning model for PPIR, respectively.

Relational

| I Mathematical B |
| . aichmz statistics learning I
| classification__classification |

Figure 4. Flow chart of shallow network learning.
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In the following, four different deep learning-based image recognition frameworks
for plant phenotypes are described.

3.2. Convolutional Neural Network Theory and Application in PPIR

The convolutional neural network (CNN) has shown outstanding performance in
image and speech recognition [34]. Lecun et al. [35] combined the BP algorithm with CNN,
introduced the error gradient into the CNN for training, and proposed the LeNet-5 model.
In 2010, Zeiler et al. [36] proposed deconvolutional networks that function similarly to the
inverse process of CNN. The authors pointed out that, although the CNN has translation
and scale invariant characteristics, it does not have those characteristics for non-strongly
symmetric data. In 2019, Yu et al. [37] proposed a multi-feature weighting (MFR-DenseNet)
for image recognition, which could automatically adjust feature extraction channels and
judge the interdependence between features of each convolutional layer, thus improving
the reflection ability of the structure.

At present, the CNN is the most widely used deep learning model for plant pheno-
typic image recognition, and its performance is better than that of other deep learning
models [38,39]. Gong et al. [40] proposed a method for extracting plant phenotypic char-
acteristics by overcoming the defects of the traditional method. This method used the
grayscale images directly as input to the CNN for learning and training. Experiments on
the Swedish leaf data set showed that this method significantly improved the recognition
accuracy, with the accuracy reaching 99.56%. Grinblat et al. [41] applied the CNN to classify
white beans, red beans, and soybeans. The use of CNN avoided the use of handcrafted
leaf color and shape features that are difficult to obtain and showed that the classification
accuracy improved by increasing the depth of the CNN. An accuracy of up to 96.9% was
obtained, which was higher than that of other methods that were based on traditional
feature recognition. Dyrmann et al. [39] applied the CNN model with residual branch
module training for the identification of weed species. It was shown that an accuracy of
86.2% was achieved on data from six different data sets. This accuracy, although not out-
standing, showed that the model could be applied to a wide range of images under varying
background conditions and provided the basis for more sophisticated PPIR. Song et al. [42]
proposed a Mask R-CNN model to screen the plant images with complex backgrounds,
extract valuable feature information, and then use it in GoogleNet for learning and training.
The experimental results showed that this method effectively improved the accuracy rate
when compared with the classical CNN.

The CNN is a local access multilayer neural network that consists of multiple inde-
pendent neurons in each layer. The network consists of two parts: feature extraction and
feature mapping, including convolution, activation, pooling, and fully connected layers.
Figure 6 [43] show the structure of a CNN. In PPIR, thanks to the feature extraction ability of
the CNNSs, the neurons do not need to individually connect to all parts of the input images.
Instead, plant phenotypic feature information in the image is directly extracted through
weight sharing between each neuron, which effectively improves the operation speed and
accuracy [44]. In the process of training and recognizing different plant phenotype images,
the CNN does not focus on a single pixel, but extracts blocks from the whole input images
through convolution operations, which effectively integrates the feature information and
improves the understanding of image data.
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Figure 6. Convolutional neural network structure.

The mathematical model of convolutional neural network can be summarized as
follows [44] :
X" = Zjer, X" x NI + hf! 1)

1

In Equation (1), X" represents the ith feature map of layer m, T; is the image input
to the CNN, X]'-”_1 represents the jth output of layer m — 1, Nj; is the convolution kernel,
and k" is the offset of the ith output of layer m; the result of Equation (1) is then processed
by the activation function. The above operation extracts different features from the im-
age data and maintains scale invariance. The pooling layer, which can consist of either
maximum pooling or average pooling, down samples the data, decreasing the number of
training parameters, achieving dimension reduction, avoiding over fitting phenomenon,
and reducing the noise.

sz - fdawn(xl‘m_l) ()

In Equation (2), fjown represents the down sampling function. The CNN convolution
and pooling operations are repeated according to the pre-defined number of network
layers. After that, the processed feature vectors are stacked and classified while using
the fully connected layer. Usually, the softmax and SVM classifier functions are used
for classification.

The objective of CNN training is to minimize the value of loss function. Its mathemat-
ical expression is:

1=z

K .
LW,b) =YY" g(; = j)logp! 3)
st

i=1

In Equation (3), W is the weight, b is the bias, g is the indicator function, and j is the
training sample category. If §; # j, I = 0, or else §; = j, I = 1. The prediction probability of
category j of the training sample i is given by pf and N is the number of training samples.
The loss function and its expected values are used in order to calculate the difference
between the output of the CNN and the training data, i.e., the residual difference. The pa-
rameters of each layer of neurons in the CNN can be optimized and adjusted while using
the gradient descent method. In PPIR, image data preprocessing is carried out first, which
includes either RGB model or HSV model transformation, followed by image denoising
and filtering, segmentation, and the selection of test and training data. The preprocessed
data are then passed through different layers of the CNN. The optimization of different
parameters and adjustment of the number of layers can also improve the image recognition
accuracy [45-48].

3.3. Deep Belief Network Theory and Application in PPIR

Deep belief network (DBN) is a deep learning model, which was first proposed by
Hinton et al. in 2006 [31]. The DBN has shown remarkable performance in areas, such as
face recognition and detection, remote sensing image applications, etc. [49]. Jiang et al. [50]
combined the DBN and softmax in order to identify text data under a sparse high-
dimensional matrix. The authors used the DBN to extract text feature information, applied
so ftmax layer for classification, and used either the gradient descent method or the L-based
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BFGS (broyden-fletcher-goldfarb-shanno) algorithm in order to optimize the network pa-
rameters. The experimental results showed that, with a large amount of data, the proposed
method outperformed the SVM and KNN. Fatahi et al. [51] proposed an improved face
recognition system that is based on DBN, which increased the recognition rate by enhancing
the network structure and optimizing different network parameters. Li et al. [52] classified
remote sensing hyperspectral data that are based on DBN and LR (logistic regression), opti-
mized the DBN width during repeated training, and integrated spatial information into the
spectral information as the original input, which improved the classification performance
by about 15% when compared to the SVM model.

In the field of PPIR, the DBN-based NIR (near infrared spectrum) qualitative model
has been applied for plant classification and disease detection, effectively solving high-
dimensional and nonlinear problems, and achieving good results. Liu et al. [53] proposed
DBN-based leaf recognition that is based on image feature extraction of traditional plant
phenotypes and a simple classifier structure. The authors used the “dropout” method in the
network training to prevent overfitting, achieving an accuracy of up to 99%. Deng et al. [54]
extracted color, shape, texture, and other features of weeds during seedling stage in a rice
field, and studied them while using single and double hidden layers. After multi-feature
fusion, the features were used as input for training the DBN. An accuracy rate of 91.13%
was reached, which was better than that of the SVM and BP models. Yu et al. [55] proposed
an alternative to traditional methods of selecting haploid plants with breeding defects and
put forward a model that is based on the DBN to identify different varieties of corn haploid
that achieved an accuracy of more than 90%. The performance of the proposed model was
better than that of the SVM and BPR (Bayesian personalized ranking) models, and the
experimental results showed that the network structure of the DBN promoted multitasking
learning and information sharing between different varieties. Guo et al. [56] proposed a
rice grain blight identification model that is based on the DBN, in which Gaussian filters
were used in order to enhance and preprocess the images with diseases, and Sobel edge
detection operator was used to extract the disease characteristics. The experimental results
showed an accuracy rate of 94.05%, demonstrating the suitability of the proposed model
for plant phenotypic disease identification and detection.

The DBN is a special form of Bayesian probability model. In this model, the dis-
tribution of input information is generated by a joint probability distribution, and the
training data are generated based on the weights of neurons in the model [47]. The neu-
rons in the DBN are divided into two parts: (1) dominant neurons, which receive input
information; and, (2) invisible neurons, which extract the characteristic information from
the high-level data. The DBN is mainly made up of a number of Restricted Boltzmann
Machines (RBMs), whose dimensions are determined by the number of neurons in the
network layer. In this section, 4; is used to denote the recessive neuron and v; is used to
denote the dominant neuron. These neurons are not interconnected within the same layer
and they are independent of each other, while bidirectional connections exist between the
hidden layers [48]. During training of a DBN, the RBMs should be optimized in order to
obtain the joint probability distribution of optimal training samples, obtain the optimal
weights, and extract the feature information. The weight adjustment and optimization
training steps that are based on the contrastive divergence algorithm are as follows [57]:

Step 1: training samples are collected, and a group of training samples is denoted
as X.

Step 2: input the training sample X into the dominant neuron, and then calculate the
probability of activation of a recessive neuron, as follows:

P =1[0) = a(Wjo®) )

Step 3: reconstruct the explicit layer and generate the output of the hidden layer based
on the probability distribution that is calculated in Equation (5), as shown below:

B0 ~ p(r(©)[5(0) 5)
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Step 4: calculate the activation probability of dominant neurons, as shown below.
Subsequently, generate output of the visible layer, as shown in Equation (6):

p(vi(O) =1]n0) = a(WTh)),0() ~ PV |©) (6)

Step 5: finally, based on the neuron correlation difference between recessive and
dominant neurons, adjust the weight based on the following expression:

PV =1]o) = a(Wp)), W« W+ A(p(h©) = 1]0(0))o0T — P(h() = 1]oM)o(VT) @)

In the above Equations (4)—(7), h and v represent the recessive and dominant neurons,
respectively, assuming that m and n represent the number of dominant and recessive
neurons, respectively, the superscript represents the position of the corresponding layer,
v(0), h](-o) represent the outputs from the first visible and hidden layers, respectively, and W
is the weight that correponds to the connection between the layers. At the end of training,
the classification of the input can be obtained by using the output of the last hidden layer.
Figure 7 shows the overall structure of the DBN:

= Classifier

Label sample X = RBM
-~

|

|

| -
(B
— RBM

Figure 7. Schematic diagram of Deep belief network (DBN).

In Figure 7, two hidden layers and a classification layer are shown. The hidden
and visible neurons are represented by h and v, respectively, and o is the output of the
model. First, the training is carried out in order to obtain the weights and biases in the
first hidden layer, whose output is then used as input to the second hidden layer. After the
end of training of the second hidden layer, its output is passed as input to the first layer.
This process is continued iteratively, and the weights and biases in each hidden layer are
updated until a desired training criterion is met.

The above stage is followed by a fine-tuning stage to perform classification, where
supervised learning methods are adopted for diversified learning and parameter adjust-
ment. The BP algorithm is one of the supervised learning methods that can feedback the
sample labels to each layer, strengthen the inter-layer learning ability, and further optimize
the training parameters [58,59]. Figure 8 is the flow chart of PPIR that is based on the DBN.
The first step consists of image data preprocessing, where the features are extracted and
fused while using different algorithms. These features can include color, shape, texture, and
other features that result in multi-dimensional feature vectors. In this stage, normalization
is also carried out in order to ensure the consistency of data scale. The second step is
the preparation of classifier training. In this step, the data are divided into two groups:
test group and training group. In the third step, training is carried out according to the
aforementioned process, and, finally, the weights and biases of DBN that were obtained at
the end of training are used to obtain and test the classification results.



Electronics 2021, 10, 81

12 of 19

_________;,_’_/_'_’_’—_/;'Z__\Xi}__}h‘_ __________

A — |
Imagc threshold Image morphological | !

| Imagc Imagc |
L graying denoising segmentation processing |
e e e 1
1
: Color Shape Texture |
| features features feature :
e e T i A s ey U
I R, G and  ["Circular™| ! '
ol | | I | Gray co-
il B 1! degree i - .
) I rslend | | |oceurrence | |
Is) g ! ! B | | matrix LA
| PHSS and | | ! ratio [] o
! v ] LA
i 1l Bump 1 el ()
I 4! degrees 1! : o
| ! i | Bbmary s | |
| : Degrec of | | 1 mode : :
! | solidity® | | TT__-TT L
i e ) 1
(=== |
i o ) e ( o |
| ! Judgment .
Label —> % ® % ) % ® | = g ) »  Output
| o o | criteria
[ ® @ ® |
L . W W l

Figure 8. Flow chart of general operation of DBN in PPIR.
3.4. Recurrent Neural Network (RNN) Theory and Application in PPIR

Recurrent neural network (RNN) is another deep learning model that is mainly used
for processing sequence data. In this model, the network has a memory function to store the
data information from the previous time steps, i.e., there are both feedback and feedforward
connections. The output from the previous time step is used as input to the next time step;
therefore, it is also called a cyclic neural network. The neurons in the hidden layer of RNN
are connected with one another, and the input of a neuron is composed of the data from
the input layer and output of the neuron from the previous time step. The RNN can be
mathematically expressed, as follows [32]:

Zél = Z{leihxf + ZlL*wl*lﬂ;*_l (8)
a; = fi(z)) ©)
Vi = S wid (10)

In Equations (8)—(10), xf and a;: 1 represent the ith and the Ith neurons in the input and
hidden layers at time ¢, respectively. The value of the [th neuron prior to the time instant
tis given by Z!, v} represents the kth neuron in the output layer at time £, w;;, represents
the weight connecting the input and hidden layers, w;«; represents the weight between the
hidden layers, wj; represents the weight between the hidden and output layers, and f;()
represents the nonlinear activation function. The RNN has good dynamic characteristics
and it can be generally divided into Jordan-type and Elman-type networks, where the
former type belongs to the category of forward neural network with a local memory unit
and local feedback connection. Figure 9 shows a typical RNN structure:



Electronics 2021, 10, 81

13 of 19

Time
dependent

Time
dependent
states

Input layer

Figure 9. Typical Recurrent neural network (RNN) structure.

Initial applications of the RNN mainly included speech and handwriting recognition.
However, in practice, the training of RNN is inefficient and it can take a considerable
amount of time. Consequently, several researchers worked on improving the RNN struc-
ture [60]. In 2017, Mou et al. [61] put forward a new RNN model, which used a new
activation function and parameter calibration. This model can effectively analyze hyper-
spectral pixels as sequence data and it could also adaptively produce a bounded output,
and it had improved structural sparsity.

The RNN model has been recently applied to plant phenotypic images and it has
considerable application prospects in the detection of complex disease plant phenotypes.
In 2018, Lee et al. [58] combined the CNN and RNN for plant classification in order to
deal with the problem of changes in the phenotypic appearance of plants. This model
relied on capturing the dependencies between image pixels through the RNN model, and it
could recognize the structural information in multiple plant images. The authors used the
GRU (gated recurrent unit) in the RNN model, because GRU reduces the parameters by
controlling the gate mechanism in order to alleviate the problem of gradient explosion or
disappearance. The use of RNN enabled the learning of relationship between different
features over a long time and reduced the number of parameters. Ndikumana et al. [59]
aimed at the difficulties that were encountered in the development and improvement of
agricultural coverage maps, and proposed an agricultural remote sensing image recognition
method that is based on the RNN. The authors made use of the phase information present
in the SAR (synthetic aperture radar) data. While using Sentinel-1 data, the authors
classified different areas according to the plant phenotype, retaining the time based image
structural information. The results showed that the RNN could extract the changes in
plant phenotypic characteristics occurring over time and outperform traditional machine
learning methods, such as KNN, SVM, RF (random forest), etc. The general steps in the
work involved image preprocessing, normalization, and collection of images of different
plants in order to establish an image library of plant specimens. The collected data set were
used to train the RNN, while using its context memory learning ability and the image library
in order to obtain the optimal training parameters, finally obtaining a complete classifier.

3.5. Stacked Autoencoder (SAE) Theory and Application in PPIR

The stacked autoencoder is a special deep learning model that has been widely
used in data classification, image recognition, spectral processing, and anomaly detection.
It consists of multiple automatic encoders that are stacked in series. By reducing the
dimensions of the input data layer-by-layer, the higher-order features of the data are
extracted and then input to the classification layer for classification [62,63]. The specific
process of the SAE method is described, as follows: (1) given the initial input, the first-layer
autoencoder is trained in an unsupervised manner in order to reduce the reconstruction
error to the set value. (2) Take the output of the hidden layer of the first autoencoder as
the input of the second autoencoder, and use the same method to train the autoencoder.
(3) Repeat the second step until all of the auto encoders are initialized. (4) Use the output
of the hidden layer of the last stacked autoencoder as the input of the classifier, and then
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use a supervised method to train the parameters of the classifier. In practical applications,
a supervised learning network model requires a large number of labeled data samples to
optimize network parameters, which is computationally intensive and not conducive to
network training and learning. The earliest concept of the traditional auto-encoder was
proposed by Rumelhart et al. [64], and its theoretical structure was analyzed, in detail, by
Bourlard et al. [65].

In the field of PPIR, Liu et al. [66], in view of the complexity and uncertainty of
traditional plant phenotypic characteristics extraction methods, put forward the mixed
deep learning method. The authors combined the SAE and CNN models in order to classify
plant leaves. Thanks to the automatic feature extraction ability, the experimental results
showed that the combined models achieved significantly better results when compared
to individual SAE, CNN, and SVM models. Cheng et al. [67] proposed a model for the
image segmentation of flowers. The authors converted the RGB images to greyscale
images, and used the SAE for the segmentation of osmanthus flowers under complex
backgrounds. The proposed model used a three-layer structure for training of features
extraction, followed by a final Softmax layer for classification. The experimental results
showed that this method could effectively reduce the image background noise in order
to obtain effective plant phenotypic image classification and recognition. Wang et al. [68]
showed that the classification accuracy of traditional machine learning methods for plant
phenotype identification was low. The authors proposed a k— sparse denoising encoder
network classification for the recognition of plant leaves, effectively solving the over fitting
problem. The authors showed the classification results with 44 types of plant leaves,
reaching an accuracy of more than 95% for each type.

Figure 10 shows a diagram of Stacked autoencoder. The input X is first mapped to Y
by a mapping function f, and Y is then converted back to X via a reconstruction function
g. The goal during training is to reconstruct X, such that it is close to the input X. This
is carried out by modifying a set of weights and encoding the input data. This process is
carried out over multiple iterations, resulting in the minimization of the following loss
function [69,70]:

ERr ey

Figure 10. Schematic diagram of Stacked Autoencoder (SAE) structure.

H(W) = 81X — UD(WX) |3 + AR(W) 1)

In Equation (11), X is the input data, W and U are the encoding and decoding weights,
respectively, ® is the nonlinear activation function, R(W) is defined according to the re-
quirements, and A represents its weight. The SAE adopts deep feedforward neural network
architecture, and the adjacent layer learning strategy is implemented by constructing
the network in the form of a stack. In the image classification and recognition problem,
the SAE is usually composed of two modules: feature learning and classifier. The general
mathematical expression of a feature learning model is shown, as follows [69,70]:

X = Sl(wngl—l +b)eR"Xy=x (12)

In the above expression, the feature learning stage has L hidden layers, where the
number of nodes in each hidden layer is n;(I = 1,2,3,...,1), and the activation function
is 6;(). If the classifier model is based on the So ftmax function with k number of classes,
and 0y represents the learning parameters, then the model can be represented as [69,70]:

e(X.0k)

ey Y = y(1),y(2), ., y(k)]" (13)

y(k) =
Z;.‘:le
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Figure 11 shows a flow chart of PPIR based on the SAE. First, the automatic encoders
are stacked in order to build the neural network of deep learning, namely the coding area.
Second , the input images are preprocessed that involves segmentation of greyscale images.
Third, the preprocessed data are used to train stacked encoders based on a deep learning
neural network. The features that are generated by the encoders are then used in order to
generate classification results [69,70].

Preprocessing
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Figure 11. Stacked autoencoder identification flow chart.

Table 3 provides a summary of the aforementioned deep learning methods. Among
them, the common experimental software for the four models include Pycharm, Matlab,
OpenCV, etc. The original data forms include RGB vision,stereo vision, multispectral
and hyperspectral, thermal imager, fluorescence, tomography, plant feature information
matrix, etc.

Table 3. Deep learning network summary.

Model Main task References Advantages Disadvantages
1. The training parameters are 1. Vanishing gradient problem can
reduced, and the model has occur, poor identification of spatial
Plant image classification, ~ Gong et al., Grinblat et al., better generalization ability. featm’r el?s 2. The accuracy of Ifant
CNN plant feature Dyrmann et al., 2. Pooling reduces the spatial reco nit.ior.1 decreases irzlthep
extraction, etc. Song et al. [39-42] dimensions of the network resgnce of high deeree of
and requires less translation P Jugh deg
. . . image rotation.
invariance of the input data.
ﬁ;ter‘;:;gt;?teigzng]am 1. The accuracy is not high in
DBN disegase det%c ton ! Il)ant Liuetal, Dengetal, Yuetal, Ability to reflect the similarity  classification problems. 2. Requires
feature informa ti/oﬁ Guo et al. [53-56] of the same type data itself. complex learning, input data
. should have translation invariance.
fusion, etc.
. o There are many parameters to be
RNN lg/ﬁullt;-nr?gfa;rfseco%;ﬁlon Sueetal.,, Sequential plant feature trained, which can lead to
P ans, p Ndikumana et al. [58,59] information can be modeled. vanishing or exploding
disease detection, etc. gradient problem
1. Although training does not
require labeled data,
The encoded data are robust to  the performance is limited
noise, the training time is compared to supervised learning
Plant image classification, Liu et al.. Chene et al short, can learn the methods. 2. Greedy training mode
SAE plant image i & v distribution subspace withina  is adopted, which can only achieve

segmentation, etc.

Wang et al. [66-68]

class, unsupervised extraction
of features can save manpower
and material resources.

a local optimum. 3. Vanishing
gradient problem can occur, there
are many hyper parameters in the
model, which require a long
training time.

4. Common Problems and Future Outlook of Deep Learning in PPIR

(1) There are several factors to consider in applications of deep learning, such as
the number of layers, architecture, learning algorithm used in the neural network to
optimize weights, and biases, etc. [71]. In addition, in the process of PPIR, deep learning
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relies heavily on big data, while the big data of plant phenotypic rely heavily on expert
knowledge, the optimization model needs to be adjusted by trial and error according to
different kinds of plants. In the future, the development and testing of different models to
maximize the extraction of the feature information and achieve optimal model precision is
an important research direction. Furthermore, emerging deep learning models, such as
generative adversarial network (GAN) and capsule network (CapsNet), can have broad
application prospects for PPIR [72]. Researchers prefer supervised models in deep learning,
mainly because the characteristics of many plant phenotypes are difficult to understand
and obtain, and the learning of unsupervised models tends to lead to disorder.

(2) In deep learning networks, another important factor is the training speed. Gener-
ally speaking, a higher number of training iterations improves the accuracy at the expense
of a longer training time, which will affect the simulation results. Therefore, the relation-
ships between the network scale, accuracy requirements, and training speed should be
comprehensively adjusted during the whole application process. In addition, the experi-
ments show that the selection of an appropriate classifier for different plant phenotypic
characteristics information can improve the classification performance of deep learning
networks [73,74].

(3) Changes in input data during the plant phenotypic image acquisition, such as
image size, pixel, translation, scaling, occlusion, and other uncertainties, affect the output
results [75,76]. Plant phenotype recognition from complex background images directly
affects the classification results. In other words, the PPIR lacks unified standards and, con-
sequently, it is difficult to achieve a quantitative comparison between deep learning models
that are applied to different types of plant species [7]. In addition, as the collection of
image data is influenced by regional restrictions, plant varieties, and the types of diseases,
individual researchers construct the data sets based on their individual rules. Therefore,
building a general plant phenotypic database that can be used as a benchmark is essential.

(4) Several researchers work on extracting new plant features. However, there are
several open questions in this context: (a) are the plant features easy to extract? (b) Are
they significantly affected by noise? (c) Can they be used to accurately distinguish different
kinds of plants? In fact, the application of plant phenotypes is mainly aimed at genetic
omics, which is the changes in crop characteristics that correspond to the genetic changes.
In recent years, it has been applied to crop shape control, breeding, species identification,
irrigation control, and disease early warning. Generally speaking, with the changing
time and environment, the color or shape of the same plant may also change; therefore,
the selection of appropriate features for use in PPIR is an important issue that is to be
considered in future studies [77,78].

5. Conclusions

First, this paper introduces, compares, and analyzes traditional methods of plant
phenotypic image recognition. Second, it explains the theory of four types of deep learn-
ing network models and their applications in PPIR. Finally, it discusses their existing
applications and future development directions. When compared to the traditional PPIR al-
gorithms, the deep learning models perform better, as they can explore detailed and higher
number of image characteristics and have a high recognition accuracy. The convolutional
neural networks are one of the most widely used deep learning models in PPIR with the
most effective performance. PPIR technology has broad application prospects and research
value in the future era of smart agriculture and big data development. Deep learning
network theory, architecture for identification of 3D plant models, and the establishment of
online plant recognition systems are a future direction of development in the field of plant
phenotypic image recognition.
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