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Abstract: Cost–volume–profit (CVP) analysis is a widely used decision tool across many business
disciplines. The current literature on stochastic applications of the CVP model is limited in that the
model is studied under the restrictive forms of the Gaussian and Lognormal distributions. In this
paper we introduce the Mellin Transform as a methodology to generalize stochastic modeling of
the CVP problem. We demonstrate the versatility of using the Mellin transform to model the CVP
problem, and present a generalization of the CVP model when the contribution margin and sales
volume are both defined by continuous random distributions.

Keywords: breakeven analysis; stochastic decision making; Mellin transform

1. Introduction

As a part of overall long-term business strategy, organizations are continually faced
with the task of deciding between competing alternatives. A wide range of decision
models exist to aid managers in evaluating and selecting the best alternative from a set of
competing alternatives [1–3]. The economic competitiveness of the global market coupled
with increased stakeholder concerns for environmental and social performance objectives
has intensified the importance placed on the role played by management decision making
in the formulation of a firm’s core business strategy [4,5].

The scope of applications over which decision making is required is vast, covering
multiple industry segments and numerous inter-firm and intra-firm value creating pro-
cesses. Common to all these decision-making environments is the need to efficiently
manage information and knowledge; it is essential that decision makers understand the
paradigms and systems that facilitate the collection, processing and analysis of information
and knowledge. This includes product–service (PPS) business models and their evaluation
in decision-making support using key performance indicators [6], as well as the emergence
of decision-making schema within Industry 4.0 to improve decision making in such areas as
operations scheduling [7], sustainability [8], value chain reliability [9], and manufacturing
and maintenance operations [10]. For a more in-depth investigation of this literature the
reader is directed to the review articles of Pirola et al. [11], Xu et al. [12], and Lu [13].

When the decision under study requires the evaluation of profitability as a function
of output, cost–volume–profit (CVP) analysis is an attractive decision tool to use, since it
enables managers to make decisions under business conditions where costs, revenue, and
volume are changing (see for example [14–16]). For situations involving a single product,
decision makers can use CVP to determine the sales volume needed to achieve a targeted
profit when sales price, variable cost, or fixed cost change. When making decisions on
establishing and/or revising a product line, CVP analysis can also be used to identify the
most profitable combination of products to include within the product line.

The CVP model has been studied for several decades, and applications of the model
still prevail in practice at companies such as the Nestle Company Limited [17] and across a
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wide spectrum of organizations such as small businesses [18] and universities [19]. Despite
the widespread application of the CVP, two gaps exist in the literature with respect to the
CVP model. First, the stochastic inputs of the model are restricted to either normal or
lognormal distributions, resulting in profitability being modeled as a normal or lognormal
random variable. In our opinion, normal and lognormal random variables are assumed only
for calculation simplicity. Second, when multiple stochastic inputs to the CVP model have
been used, limiting assumptions have been used to simplify how the resulting probability
distribution representing profitability is defined.

To bridge these gaps, we propose a more generalized modeling of the stochastic CVP
model that allows a wider range of candidate probability distributions for defining the
inputs of the model. The novel feature of our modeling methodology is the introduction
of the Mellin Transform technique as a means to generalize the stochastic modeling of
the CVP model. For a gateway into the methodology of Mellin Transforms the reader
is referred to Bertrand et al. [20] and Epstein [21]. Due to the unique properties of the
Mellin Transform, a much wider range of non-negative random variables can be used
in the formulation and analysis of stochastic CVP models. In addition, model structures
where more than one input parameter is defined stochastically can be captured, more
accurately representing the true underlying form of the model’s profitability distribution
when multiple stochastic parameters exist. The research herein bridges the aforementioned
gaps of the stochastic CVP model and contributes to supporting an expanded scope of
application for the model, as the model’s resulting profitability distribution (which would
no longer have to be restricted to being normally or lognormally distributed) and multiple
stochastic input parameters can be used. This extended scope of modeling flexibility
enhances the attractiveness and application of the model in decision-making environments
where uncertainty exists.

The remaining sections of this paper are organized as follows. In Section 2 we review
the literature on stochastic CVP models and identify limitations in the models. In Section 3
we introduce the stochastic CVP model which uses the Mellin Transform methodology to
overcome the limitations of the CVP models found in the literature, and conduct supporting
numerical analyses in order to illustrate the developed models. In Section 4 we present the
summary, conclusions and directions for future research.

2. Literature Review

In reality, uncertainty and risk exist and can therefore potentially affect each input
parameter of the CVP model. Hence, the deterministic CVP model defined in (1) is very
limited in its practical application. Jaedicke and Robichek [22] were the first to introduce
stochastic parameters into the CVP model, thus broadening the appeal and application of
the model and establishing the baseline for the literature on stochastic CVP models.

Jaedicke and Robichek [22] were the first to integrate uncertainty into the CVP model
by defining profitability as a random variable under two different model formats. In
the first model, sales volume is represented as a normally distributed random variable,
while selling price, unit cost and fixed cost remain deterministic; in the second model,
all four model inputs are defined as independent normally distributed random variables.
In model one, expected profit T, which is a function of the combination of one normally
distributed random variable (sales Q) and three constants (selling price P, variable cost V
and fixed cost F), is normally distributed. In model two, the function defining expected
profit T, which is defined by a function involving the difference of two normal random
variables, (V − F), and the product of two normal random variables, Q × (P − V), is
assumed to be normally distributed. While the difference of two independent normally
distributed random variables is well known in the literature to be normally distributed,
the product of two independent normal random variables is not normally distributed and
has a relatively complicated distribution form Craig [23]. To simplify their model, Jaedicke
and Robichek [22] assume that the product of two independent normal random variables
is normal. Under the normality assumption, the probability of gaining different levels of
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profits, including the probability of reaching the break-even level for competing production
alternatives, can be easy calculated using the model. This study provides the foundation to
the stochastic CVP model and its managerial application for selecting alternatives under
conditions of uncertainty.

Ferrara et al. [24] point out the limitations in the model of Jaedicke and Robichek [22]
and provide evidence from the literature that challenges the assumption made in Jaedicke
and Robichek [22] that the product of two independent normal variables (Q and P − V) is
also a normal variable. They argue the assumption that the product of two independent
normally distributed random variables results in a normal distributed random variable
holds only under certain conditions relating to the magnitude of the coefficients of variation
of the random variables being multiplied. Using Monte Carlo simulation, they recommend
that if the sum of the coefficients of variation for unit sales Q times unit selling price P
minus variable cost V is less than or equal to 12 percent, the assumption that the product
of two independent random variables, Q × (P − V), is also normally distributed can be
accepted at a 0.05 significance level.

Hilliard and Leitch [25] argue that the use of independent normally distributed ran-
dom variables in a stochastic CVP model formulation in Jaedicke and Robichek [22] is too
rigorous; the independent assumption is lack of practical support, since quantity, price,
and variable cost are often correlated. Furthermore, under the normality assumption sales,
prices, and variable costs can take on negative values when the standard deviation is large,
which is problematic. Instead, they suggest that quantity and contribution margins are
bivariate log-normal random variables and that dependent relationships obtain. Since the
product of bivariate lognormal variables is known to be lognormal, Hilliard and Leitch [25]
overcome the limitation faced by Jaedicke and Robichek [22]. However, the differencing
of lognormal random variables continues to be a problem. To overcome this difficulty,
Hilliard and Leitch [25] assume that the contribution margin as a whole is a lognormal
variable and the fixed variable is a constant.

Lau and Lau [26] argue that the input variables in a stochastic CPV analysis could be
right skewed or left skewed, which is determined by some crucial factors. They posit that
a symmetry assumption is better than the right skewness assumption, in that symmetry
assumption includes the possibility of both right and left skewness. This work lessens the
contribution of Hilliard and Leitch [25] to some extent.

Jarrett [27] provides guidance for managers on how to use Bayesian Decision Theory
to estimate the parameters of the CVP. According to Jarrett [27], two options exist for
parameter estimation: (i) use current information to guide all estimation, or (ii) postpone
estimation until additional study on the parameters is completed. This paper also provides
practical suggestions for managers to consider when selecting a given estimation option.

Kim [28] presents two modified CVP models intended to help financial analysts avoid
the problem of the difference of ex post and ex ante costs and prices in sensitivity analysis;
some unexpected statistical and financial properties are displayed in this study.

Shih [29] points out the deficiency of the traditional CVP model in failing to distin-
guish sales, demand and production. When production is larger than demand, the profit
calculated from the tradition CVP model is overestimated, especially when the unsold
products are perishable goods or the demand for the unsold products lasts only for a
certain period of time. The tradition CVP model only includes the variable costs and
fixed cost to produce the goods, not the costs to dispose of the leftovers. The traditional
CVP model is limited in its applicability when the sales, demands, and productions are
different. Shih [29] modifies the tradition CVP model to consider random demand and
determined production. The modified model enables managers to make optimal decisions
under uncertainty.
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Yunker [30] extends the traditional CVP model by incorporating the downward-
sloping demand curve and the U-shaped average cost curve, which is more realistic than
Shih (1979). The extended model demonstrates that a firm confronting uncertainty will
produce a smaller quantity than an equivalent firm under certainty, given a risk-averse
manager, while if the manager is risk-neutral, equivalent firms under uncertainty and
certainty will produce the same amount.

Cantrell and Ramsay [31] study the statistical properties of the target quantity estima-
tor. The point estimate of target quantity is found to be biased, possessing no moments,
but consistent. The interval estimate of target quantity is provided by using the Maximum
likelihood method for short-term and long-term analysis. This procedure minimizes the
ambiguity in the stochastic CVP model.

Kim et al. [32] incorporate the utility function of the decision maker into the CVP
model. The authors argue that decisionmakers (managers) are trying their best to maximize
their utility when they make decision on the investment in risky assets. Two main results are
found. First, a change in fixed costs affects not only the manager’s decision on production,
but also the decision on risky assets. The highly risk-averse manager tends to invest more
(less) in risky assets and less (more) in risk-free assets with increasing fixed costs. Second,
for managers displaying constant absolute risk aversion, the optimal combination of risky
and risk-free assets is constant regardless of the changes in fixed costs. This study provides
some insightful information on the managers’ investment behaviors.

Gonzalez [33] extends the single product CVP model into multiproduct CVP analysis
that is designed to be implemented at the enterprise level. The modified model requires
the user to formulate a contribution rule that is consistent with the operating character-
istics of the business environment as well as with the user’s assessment of the degree to
which the different products must contribute to recovering costs so as to meet a targeted
profitability level.

Lulaj and Iseni [34] show that the amount of product produced has a positive effect
on sales value in service companies and increases profit in the manufacturing business en-
vironment; there is also an important relationship between production and sales, and CVP
analysis contributes to growth profitability and break-even in the business environment.
Therefore, cost–volume–profit analysis should be utilized to make judgments because the
risk threshold is reduced by conducting CVP analysis.

In the context of multiproduct CVP analysis applications, Enyi [14] examines the
efficacy of the Weighted Contribution Margin (WCM) with the Reversed Contribution
Margin Ratio (RCMR). The WCM lacks analytical efficiency and generates suboptimal
product mix because it ignores the inverse relationship between a product’s contribution
margin ratio (CMR) and its break-even point (BEP). The RCMR, which considers CMR/BEP
tradeoff effects in its measurement, is recommended in the study.

Abdullahi et al. [18] examines the usage of CVP analysis as a decision-making tool in
small businesses. They find that small businesses use CVP incorrectly, and it is suggested
that small businesses be exposed to CVP analysis and other management accounting
techniques in order to increase efficiency.

A review of the literature on stochastic CVP models identifies two key limitations
of the model. First, the stochastic inputs of the model are restricted to either normal
or lognormal distributions. Second, in applications involving multiple stochastic inputs
to the CVP model, limiting assumptions restrict the model. In Section 3, we present a
generalized stochastic CVP model which uses Mellin transform methodology to overcome
the limitations of the models found in the literature.
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3. Model Development
3.1. CVP Model Definition and Assumptions

The basic CVP analysis involves the formulation of a total profit function for a single
product (see Equation (1)). Total profit is defined as total revenue minus total cost,

Z = Q × (P − V) − F (1)

where:
Z = Total Profit
Q = Sales (in units)
P = Selling price per unit
V = Variable cost per unit
F = Fixed cost.
The objective is to determine the level of sales where total revenue equals total cost.

At this equilibrium, commonly referred to as the break-even point, the break-even quantity
is defined as QBEP = F

P−V . When the sales volume is lower than QBEP a loss is incurred;
when the sales volume is greater than QBEP a profit is generated.

When comparing across two competing alternatives, profit functions for each alterna-
tive can be defined and the quantity level where the decisionmaker is indifferent between
the two alternatives can be determined. Given knowledge of this indifference point, the
decisionmaker can then determine for a projected sales level which alternative is most
profitable.

The traditional CVP model is based on the following set of assumptions:

# Costs are only affected by a change in the sales level;
# Costs (both variable and fixed) are linearly related to the sales level;
# Revenues are linearly related to the sale level;
# The inventory level is constant within a given time period;
# All model parameters are deterministic.

3.2. Mathematical Transform Methods

In this section we provide the foundation of the Mellin transform which is used
as the key methodology for our development of a generalized stochastic CVP model.
Mathematical transform methods are frequently used in operation research when solving
complex problems. Obtaining solutions by using transform methods is an indirect approach
and can often avoid the complexity of using a direct solution procedure. Three transform
methods that are commonly used to analyze continuous functions are the Fourier, Laplace,
and Mellin transforms. These transforms are particularly useful in defining and analyzing
the characteristic and moment generating functions of continuous random variables. All
continuous transforms are based on the Fourier transform. The Fourier, Laplace, and Mellin
transforms are interchangeable, with each having advantages in different applications.

The Fourier transform (see Equation (2)) is well-known for deriving the probability
densities of sums and differences of random variables. If f (t) is a function of t, then Ft(u)
is the Fourier transform of f (t). Ft(u) and f (t) form a unique transform pair, because Ft(u)
uniquely defines f (t) and f (t) uniquely defines Ft(u).

Ft(u) =
∫ ∞

−∞
f (t)e−iutdt (2)

The Laplace transform is a derivative of the Fourier transform. If f (t) is a function of
t, then L(s) is the Laplace transform of f (t) (see Equation (3)). L(s) and f (t) form a unique
transform pair. The Laplace transform finds its most widespread application in solving
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differential equations. Laplace transforms are widely used in operations management and
engineering due to well-developed transform pair tables.

L(s) =
∫ ∞

−∞
f (t)e−stdt (3)

If f (x) is a function of x, the Mellin transform of f (x) is defined by

FMx (s) =
∫ ∞

0
xs−1 f (x)dx (4)

The Mellin transform may also be defined for −∞ < x < ∞, but for application
purposes we focus only on the positive part. We note that f (x) and FMx (s) are unique
transform pairs. The Mellin transform is a convenient technique for analyzing the products
and quotients of continuous random variables.

Let x1 and x2 be positive-valued continuous random variables with probability density
functions (pdf) of g(x1) and h(x2), respectively. Let x = x1x2, and let f (x) be the probability
density function of x. Define FMx1

(s) and FMx2
(s) as the Mellin transforms of g(x1) and

h(x2), respectively. The Mellin transform FMx (s) of f (x) is given by Schmidt and Davis [35]:

FMx (s) = FMx1
(s)FMx2

(s) (5)

See Appendix A for the probability and cumulative probability density functions of
the products of two random variables for the cases of the uniform, gamma and normal
random variables.

If x = x1/x2, and f (x) is the probability density function of x, then the Mellin
transform FMx (s) of f (x) is given by Schmidt and Davis [35]:

FMx (s) = FMx1
(s)FMx2

(2− s) (6)

Similarly, if x = 1/x1, and f (x) is the probability density function of x, then the Mellin
transform FMx (s) of f (x) is given by Schmidt and Davis [35]:

FMx (s) = FMx1
(2− s) (7)

Schmidt and Davis [35] present the Mellin transform pairs for the most widely used
continuous random variables. Hence, the Mellin transforms of the products and quotients
of two continuous random variables can be easily obtained, given the Mellin transforms
of the two random variables. Since the Mellin transform and the original function are
uniquely paired, if we know the Mellin transform of the products or quotients of two
random variables, we will find the probability density function by inverting the Mellin
transform function. However, the product of two Mellin transforms is rarely any format
that we can find the inverse function of; hence it is a challenge to find the pdf of the products
or quotients of two random variables. Nevertheless, like other continuous transforms,
the Mellin transform can be used to compute the moments of random variables. From
Equation (7), we can get

FMx (s) = E(xs−1) (8)

This unique format of Mellin transform simplifies the process to find the nth moment
of a continuous random variable. Replacing s with n + 1 in Equation (8) gives E(xn), the
nth moment of random variable x, which is defined as

mn = FMx (n + 1). (9)

The first and second moments allow the definition of the mean and variance of a
random variable; the third and fourth moments can be used to determine the skewness
and excess kurtosis of the random variable. When it is difficult to find the exact pdf of a
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random variable, the key attributes of the random variable and its distributional form can
be estimated by studying the moments of the random variable.

3.3. Stochastic CVP Model

The stochastic CVP model has been studied for several decades. Applications of the
model still prevail in practice, and the attractiveness and usefulness of the model can be
advanced by further generalizing the model to bridge the following gaps. As identified
in the review of the literature on the stochastic CVP model, the stochastic inputs of the
model are restricted to either normal or lognormal distributions, resulting in profitability
being modeled as either a normal or lognormal random variable. In our opinion, normal
and lognormal random variables are assumed only for the sake of calculation simplicity. A
more generalized distribution of profit in a stochastic CVP model that is not restricted to
being normally or lognormally distributed can be obtained by using the Mellin Transform
technique. The greater flexibility of selecting a wider range of different random variable
types will enhance the application of the stochastic CVP model.

In this section, we apply Mellin Transform techniques in order to examine the stochas-
tic CVP model when model inputs and profitability are not restricted to the normal and
lognormal distributions. Two cases will be examined. In the first case, the model inputs
to the stochastic CVP model will involve the product of two uniform random variables;
in the second case, the model inputs will involve the product of two gamma random
variables. Figure 1 demonstrates the process used to derive the moments of the product of
two independent random variables.
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The stochastic CVP model takes the general form of

Z = Q× (P−V)− F. (10)

Defining the contribution per unit as C = P − V yields

Z = Q× C− F. (11)
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We note that in (11), Q and C are assumed to be independent random variables and
F is constant, thus defining the stochastic CVP model as the product of two independent
random variables. Restating the contribution margin as W = Q × C, the stochastic CVP
model is redefined as

Z = W − F. (12)

where
Z = Profit
Q = Unit sales
P = Price/Unit
V = Variable Cost/Unit
F = Fixed cost
C = P − V = Contribution/Unit
W = Q × C = Contribution Margin

3.3.1. Case 1

Assuming that Q and C follow uniform distribution,

Q ∼ Uni f orm (qmin, qmax)

C ∼ Uni f orm (cmin, cmax)

where qmin and cmin are the minimum values of random variables Q and C, and qmax and
cmax are the maximum values of random variables Q and C. Per Appendix A, the moment
generating function of Wuni = Q× C is

mn(Wuni) =

(
qmax

n+1 − qmin
n+1)(cmax

n+1 − cmin
n+1)

(n + 1)2(qmax − qmin)(cmax − cmin)
(13)

Using, (13) and setting n = 1, the first moment is

m1(Wuni) =

(
qmax

2 − qmin
2)(cmax

2 − cmin
2)

4(qmax − qmin)(cmax − cmin)
(14)

which simplifies to

m1(Wuni) =
1
4
(qmax + qmin)(cmax + cmin). (15)

Similarly, for n = 2, the second moment is

m2(Wuni) =

(
qmax

3 − qmin
3)(cmax

3 − cmin
3)

9(qmax − qmin)(cmax − cmin)
(16)

which simplifies to

m2(Wuni) =
1
9

(
qmax

2 + qmaxqmin + qmin
2
)(

cmax
2 + cmaxcmin + cmin

2
)

(17)

Setting n = 3 and n = 4, the third and fourth moments are, respectively,

m3(Wuni) =

(
qmax

4 − qmin
4)(cmax

4 − cmin
4)

25(qmax − qmin)(cmax − cmin)
(18)

and

m4(Wuni) =

(
qmax

5 − qmin
5)(cmax

5 − cmin
5)

36(qmax − qmin)(cmax − cmin)
. (19)
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Using Equations (13)–(19), the mean, variance, skewness and excess kurtosis of
Wuni are:

mean of Wuni
Mean(Wuni) = m1(Wuni), (20)

variance of Wuni
Var(Wuni) = m2(Wuni)− [m1(Wuni)]

2 (21)

skewness, γ1, of Wuni

γ1(Wuni) =
m3(Wuni)

[m2(Wuni)]
3/2 (22)

excess kurtosis , γ2, of Wuni

γ2(Wuni) =
m4(Wuni)

[m2(Wuni)]
2 − 3 (23)

We assume that fixed cost, F, is a constant number f. Using the above distribution char-
acteristics of contribution margin, W, the distribution characteristics of total profit, Z, are:

mean of Zuni
Mean(Zuni) = Mean(Wuni) + f , (24)

variance of Zuni
Var(Zuni) = Var(Wuni) (25)

skewness, γ1, of Zuni
γ1(Zuni) = γ1(Wuni) (26)

excess kurtosis , γ2, of Zuni
γ2(Zuni) = γ2(Wuni) (27)

The cumulative distribution function (CDF) of the product of two uniform random
variables (Q and C) where a = qmin, b = qmax, c = cmin, and d = cmax and when ad < bc is

H(v) =



0 −∞ ≤ v ≤ ac(
1

b−a

) (
1

d−c

)
[v(lnv− lnac− 1) + ac] ac ≤ v ≤ ad(

1
b−a

) (
1

d−c

)
[lnd− lnc](v− ad) ad ≤ v ≤ bc(

1
b−a

) (
1

d−c

)
{[v(lnbd− lnv + 1)] + bc[lnbc− lnbd− 1]} bc ≤ v ≤ bd

1 v > bd

(28)

When ad = bc or when ad > bc, the process illustrated by Equations (13)–(28) can be
used to define the resultant CDF.

3.3.2. Case 2

Assume Q and C following Gamma distribution,

Q ∼ Gamma (qshape, qscale

)
C ∼ Gamma

(
cshape, cscale

)
where qshape and cshape are shape parameters of random variable Q and C, and qscale and
cscale are scale parameters of random variable Q and C. Per Appendix A, the moment
generating function of function of Wgam is

mn
(
Wgam

)
=

(
1

qscalecscale

)n Γ
(

qshape + n
)

Γ
(

qshape

) Γ
(

cshape + n
)

Γ
(

cshape

) (29)
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Using (24), the first moment is

m1
(
Wgam

)
=

(
1

qscalecscale

)1 Γ
(

qshape + 1
)

Γ
(

qshape

) Γ
(

cshape + 1
)

Γ
(

cshape

) (30)

which simplifies to

m1
(
Wgam

)
=

qshapecshape.

qscalecscale
(31)

Similarly, the second moment is

m2
(
Wgam

)
=

(
1

qscalecscale

)2 Γ
(

qshape + 2
)

Γ
(

qshape

) Γ
(

cshape + 2
)

Γ
(

cshape

) (32)

which simplifies to

m2
(
Wgam

)
=

(
1

qscalecscale

)2
qshape

(
qshape + 1

)
cshape

(
cshape + 1

)
. (33)

The third moment,

m3
(
Wgam

)
=

(
1

qscalecscale

)3 Γ
(

qshape + 3
)

Γ
(

qshape

) Γ
(

cshape + 3
)

Γ
(

cshape

) , (34)

simplifies to

m3
(
Wgam

)
=

(
1

qscalecscale

)3
qshape

(
qshape + 1

)(
qshape + 2

)
cshape

(
cshape + 1

)(
cshape + 2

)
. (35)

The fourth moment,

m4
(
Wgam

)
=

(
1

qscalecscale

)4 Γ
(

qshape + 4
)

Γ
(

qshape

) Γ
(

cshape + 4
)

Γ
(

cshape

) , (36)

simplifies to

m4
(
Wgam

)
=

(
1

qscalecscale

)4
qshape

(
qshape + 1

)(
qshape + 2

)(
qshape + 3

)
cshape

(
cshape + 1

)(
cshape + 2

)(
qshape + 3

)
. (37)

Using Equations (29)–(37), the mean, variance, skewness and excess kurtosis of
Wgam are:

Mean
(
Wgam

)
= m1

(
Wgam

)
, (38)

The variance of Wgam is

Var
(
Wgam

)
= m2

(
Wgam

)
−
[
m1
(
Wgam

)]2 (39)

The skewness, γ1, of Wgam is

γ1
(
Wgam

)
=

m3
(
Wgam

)
[m2
(
Wgam

)
]
3/2 (40)
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The excess kurtosis, γ2, of Wgam is

γ2(Wuni) =
m4(Wuni)

[m2(Wuni)]
2 − 3 (41)

We assume fixed cost, F, is a constant number f. With the above distribution char-
acteristics of contribution margin, W, we can get the distribution characteristics of total
profit, Z;

the mean of Zgam is

Mean
(
Zgam

)
= Mean

(
Wgam

)
+ f , (42)

variance of Zgam is
Var

(
Zgam

)
= Var

(
Wgam

)
(43)

skewness, γ1, of Zgam is
γ1
(
Zgam

)
= γ1

(
Wgam

)
(44)

excess kurtosis , γ2, of Zgam is

γ2
(
Zgam

)
= γ2

(
Wgam

)
(45)

No closed form solution for the CDF of the product of two gamma random vari-
ables exists.

3.4. Numerical Illustration

The following theoretical numerical example illustrates the application of the stochas-
tic CVP model for Cases 1 and 2. In each case, the mean and the variance of the unit sales
are 5000 units and 300 units, respectively. The mean and the variance of the contribution
per unit used in each case are USD 120 and USD 27, respectively. The specific parameters
used in each case are presented in Table 1.

Table 1. Parameter values used in the numerical illustrations.

Unit Sales (Q) Contribution per Unit (C)

Case 1: Minimum value
(qmin)

Maximum Value
(qmax)

Minimum value
(cmin)

Maximum Value
(cmin)

Uniform Distribution 4070 5030 111 129

Case 2: Shape parameter
(qshape)

Scale parameter
(qscale)

Shape parameter
(cshape) Scale parameter (cscale)

Gamma Distribution 62,500 12.5 532.8 4.4

The distribution characteristics of the product of Q and C are presented in Table 2. The
central and dispersion of the product of Q and C depends heavily on the distribution of Q
and C.

Table 2. Distribution Characteristics of the product of Q and C.

Mean Variance Skewness Excess Kurtosis

Case 1:
Uniform Distribution 546,000 1,666,961,100 0.65 −2.29

Case 2:
Gamma Distribution 11,721,600 2.60078 × 1011 1.00 −1.99
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As denoted in the literature, many researchers assume that the product of Q and
C is normally distributed. As demonstrated in the skewness and excess kurtosis values
found in Table 2, the assumption of using a normal distribution is weakly supported,
since a normal distribution would have a skewness of zero and an excess kurtosis of zero.
Using the parameter set upon which the results of Tables 1 and 2 are based, we employ
the CDF as defined in Equation (28) to generate comparative probability calculations in
Table 3, further illustrating the inaccuracy of using the normal. Examining the fourth
column, the percentage error associated with using the normal approximation ranges from
an underestimation of approximately 31% to an overestimation of approximately 5%.

Table 3. Comparison of true versus estimated probability values for V = Q × C.

Selected Values of V = Q × C True P(<V = Q × C)
per Equation (28)

Estimated P(<V = Q × C)
per Normal Percentage Error

470,000 0.0210 0.0146 −30.7
540,000 0.4567 0.4796 5.0
610,000 0.9312 0.9812 5.4

Based on the numerical illustration, the generalized CVP analysis overcomes the limi-
tations of normal or lognormal assumption and improves the accuracy of profit estimation.
When profitability is a primary goal of a firm, a more accurate profit estimation enables
managers to make better decisions in dynamic marketplaces where costs, revenue and
volume are changing.

4. Conclusions & Outlook

Cost–volume–profit (CVP analysis) is a decision tool that is used in many facets of
managerial decision making. Parameter inputs of the traditional deterministic CVP model
have been extended to incorporate uncertainty, and as a result stochastic CVP models have
been contributed to the literature. A review of this stochastic CVP literature indicates that
the stochastic inputs of the model are restricted to either normal or lognormal distributions.
The resultant profitability measure of the CVP is then restricted to being modeled as
a normal or lognormal random variable which, in application, is a limitation. In this
paper, Mellin transforms are utilized to develop a generalization of the stochastic CVP
model which allows an expanded portfolio of random variables to be used to describe the
stochastic inputs to the CVP model. Through the removal of the limiting assumptions of
stochastic CVP models found in the literature, the realism and modeling flexibility of using
stochastic CVP models has been enhanced, which may lead to the application of the model
across a wider scope of industry decision-making environments. Numerical illustrations
of the generalized stochastic CVP model have been presented to demonstrate the use of
the model.

The stochastic CVP model presented in this paper provides a foundation for an
ongoing research program for aiding decision making in stochastic problem settings, and
can be extended along several dimensions. First, the model could be advanced to the case of
multiple products. Second, the model could be applied in an industry- or product-specific
case study. Lastly, the model could be adapted to use fuzzy number theory as an alternative
mechanism in order to capture uncertainty in key input parameters.
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Appendix A

In this section we present the probability and cumulative probability density functions
for selected cases of the products of two random variables. In support of the numerical
examples of Section 3, we present the products of two uniform random variables (Case 1)
and the product of two gamma random variables (Case 2). For completeness of coverage,
we also present the product of two normal random variables which was used in the
assessing the error bounds of the numerical experiments.

PDFs PDF or CDF of Products of Two Random Variables Moment Generating Function

X ∼ Uni f orm(a, b)
Y ∼ Uni f orm(c, d)

Let V = XY, h(v) is the
PDF of V.

(Glen et al. [36])

If ad < bc,

h(v) =


(

1
b−a

) (
1

d−c

)
[lnv− lnac] ac ≤ v ≤ ad(

1
b−a

) (
1

d−c

)
[lnd− lnc] ad ≤ v ≤ bc(

1
b−a

) (
1

d−c

)
[lnbd− lnv] bc ≤ v ≤ bd

;

If ad = bc,

h(v) =


(

1
b−a

) (
1

d−c

)
[lnv− lnac] ac ≤ v ≤ ad(

1
b−a

) (
1

d−c

)
[lnbd− lnv] ad ≤ v ≤ bd

;

If ad > bc,

h(v) =


(

1
b−a

) (
1

d−c

)
[lnv− lnac] ac ≤ v ≤ bc(

1
b−a

) (
1

d−c

)
[lnb− lna] bc ≤ v ≤ ad(

1
b−a

) (
1

d−c

)
[lnbd− lnv] ad ≤ v ≤ bd

mn =
(bn+1−an+1)(dn+1−cn+1)

(n+1)2(b−a)(d−c)

X ∼ Gamma(a, b)
Y ∼ Gamma(c, d)

X and Y are independent.
Let V = XY, g(v) is the

PDF.

mn =
(

1
bd

)n Γ(a+n)
Γ(a)

Γ(c+n)
Γ(c)

=(
1
bd

)n
[a(a + 1) . . . (a + n− 1)][c(c + 1) . . . (c + n− 1)]

X ∼ Normal
(
µx , σ2

x
)

Y ∼ Normal
(

µy, σ2
y

)
X and Y are independent.
Let W = XY, F(W) is the

cumulative density
function of W.

(Craig [23])

F(W) = e
−( µ2

x
2σ2

x
+

µ2
y

2σ2
y
)

2πσx σy

[∫ ∞
0 Φ(w, x) dx

x −
∫ 0
−∞ Φ(w, x) dx

x

]
Φ(w, x) =

exp
[
−
(

σ2
y x4 − 2µxσ2

y x3 − 2µyσ2
x wx + σ2

x w2
)

/2σ2
x σ2

y x2
] mn =

exp{[(σ2
x µ2

y+σ2
y µ2

x)n2+2µx µyn]/2(1−σ2
x σ2

y n2)}
(1−σ2

x σ2
y n2)

1/2

References
1. Keith, A.J.; Ahner, D.K. A survey of decision making and optimization under uncertainty. Ann. Oper. Res. 2021, 300, 319–353.

[CrossRef]
2. Nkuda, M.O. Quantitative techniques as tools for aiding effective management decision. Gusau Int. J. Manag. Soc. Sci. 2020, 3, 23.
3. Wirtz, B.W.; Pistoia, A.; Ullrich, S.; Göttel, V. Business models: Origin, development and future research perspectives. Long Range

Plan. 2016, 49, 36–54. [CrossRef]
4. Wu, K.J.; Zhu, Y.; Tseng, M.L.; Lim, M.K.; Xue, B. Developing a hierarchical structure of the co-benefits of the triple bottom line

under uncertainty. J. Clean. Prod. 2018, 195, 908–918. [CrossRef]
5. Kedia, B.L.; Mukherji, A. Global managers: Developing a mindset for global competitiveness. J. World Bus. 1999, 34, 230–251.

[CrossRef]
6. Mourtzis, D.; Papatheodorou, A.M.; Fotia, S. Development of a key performance indicator assessment methodology and software

tool for product-service system evaluation and decision-making support. J. Comput. Inf. Sci. Eng. 2018, 18, 041005. [CrossRef]
7. Rossit, D.A.; Tohmé, F.; Frutos, M. Industry 4.0: Smart scheduling. Int. J. Prod. Res. 2019, 57, 3802–3813. [CrossRef]
8. Ludbrook, F.; Michalikova, K.F.; Musova, Z.; Suler, P. Business models for sustainable innovation in industry 4.0: Smart

manufacturing processes, digitalization of production systems, and data-driven decision making. J. Self-Gov. Manag. Econ. 2019,
7, 21–26.

9. Souza, M.L.H.; da Costa, C.A.; de Oliveira Ramos, G.; da Rosa Righi, R. A survey on decision-making based on system reliability
in the context of Industry 4.0. J. Manuf. Syst. 2020, 56, 133–156. [CrossRef]

http://doi.org/10.1007/s10479-019-03431-8
http://doi.org/10.1016/j.lrp.2015.04.001
http://doi.org/10.1016/j.jclepro.2018.05.264
http://doi.org/10.1016/S1090-9516(99)00017-6
http://doi.org/10.1115/1.4040340
http://doi.org/10.1080/00207543.2018.1504248
http://doi.org/10.1016/j.jmsy.2020.05.016


Systems 2021, 9, 81 14 of 14

10. Bousdekis, A.; Lepenioti, K.; Apostolou, D.; Mentzas, G. A review of data-driven decision-making methods for Industry 4.0
maintenance applications. Electronics 2021, 10, 828. [CrossRef]

11. Pirola, F.; Boucher, X.; Wiesner, S.; Pezzotta, G. Digital technologies in product-service systems: A literature review and a research
agenda. Comput. Ind. 2020, 123, 103301. [CrossRef]

12. Xu, L.D.; Xu, E.L.; Li, L. Industry 4.0: State of the art and future trends. Int. J. Prod. Res. 2018, 56, 2941–2962. [CrossRef]
13. Lu, Y. Industry 4.0: A survey on technologies, applications and open research issues. J. Ind. Inf. Integr. 2017, 6, 1–10. [CrossRef]
14. Enyi, E.P. Joint Products CVP Analysis–Time for Methodical Review. J. Econ. Bus. 2019, 2, 1288–1297. [CrossRef]
15. Braun, K.W.; Tietz, W.M. Managerial Accounting; Pearson Education: New York, NY, USA, 2013.
16. Adar, Z.; Barnea, A.; Lev, B. A comprehensive cost-volume-profit analysis under uncertainty. Account. Rev. 1977, 52, 137–149.
17. Navaneetha, B.N.; Punitha, K.P.; Joseph, R.M.; Rashmi, S.R.; Aishwariyaa, T.S. An analysis of cost volume profit of Nestlé Limited.

Manag. Adm. Sci. Rev. 2017, 6, 99–103.
18. Abdullahi, S.R.; Bello, S.; Mukhtar, I.S.; Musa, M.H. Cost-volume-profit analysis as a management tool for decision making in

small business enterprise within Bayero university, Kano. Iosr J. Bus. Manag. 2017, 19, 40–45. [CrossRef]
19. Le, O.T.T.; Tran, P.T.T.; Tran, T.V.; Nguyen, C.V. Application of cost-volume-profit analysis in decision-making by public

universities in Vietnam. J. Asian Financ. Econ. Bus. 2020, 7, 305–316. [CrossRef]
20. Bertrand, J.; Bertrand, P.; Ovarlez, J. The Mellin Transform. In The Transforms and Applications Handbook, 2nd ed.; Poularikas, A.D.,

Ed.; CRC Press: Boca Raton, FL, USA, 2000.
21. Espstein, B. Some applications of the Mellin transform in statistics. Ann. Math. Stat. 1948, 19, 370–379. [CrossRef]
22. Jaedicke, R.K.; Robichek, A.A. Cost-volume-profit analysis under conditions of uncertainty. Account. Rev. 1964, 39, 917–926.
23. Craig, C.C. On the frequency function of xy. Ann. Math. Stat. 1936, 7, 1–15. [CrossRef]
24. Ferrara, W.L.; Hayya, J.C.; Nachman, D.A. Normalcy of profit in the Jaedicke-Robichek Model. Account. Rev. 1972, 47, 299–307.
25. Hilliard, J.E.; Leitch, R.A. Cost-volume-profit analysis under uncertainty: A log normal approach. Account. Rev. 1975, 50, 69–80.
26. Lau AH, L.; Lau, H.S. CVP analysis under uncertainty—A log normal approach: A Comment. Account. Rev. 1976, 50, 163–167.
27. Jarrett, J.E. An approach to Cost-Volume-Profit analysis under uncertainty. Decis. Sci. 1973, 4, 405–420. [CrossRef]
28. Kim, C. A stochastic cost volume profit analysis. Decis. Sci. 1973, 4, 329–342. [CrossRef]
29. Shih, W. A general decision model for cost-volume-profit analysis under uncertainty. Account. Rev. 1979, 54, 687–706.
30. Yunker, J.A. Stochastic CVP analysis with economic demand and cost functions. Rev. Quant. Financ. Account. 2001, 17, 127–149.

[CrossRef]
31. Cantrell, R.S.; Ramsay, L.P. Some statistical issue in the estimation of a simple Cost-Volume-Profit model. Decis. Sci. 1984, 15,

507–521. [CrossRef]
32. Kim, S.; Abdolmohammadi, M.J.; Klein, L.A. CVP under uncertainty and the manager’s utility function. Rev. Quant. Financ.

Account. 1996, 6, 133–147. [CrossRef]
33. González, L. Multiproduct CVP analysis based on contribution rules. Int. J. Prod. Econ. 2001, 73, 273–284. [CrossRef]
34. Lulaj, E.; Iseni, E. Role of analysis CVP (Cost-Volume-Profit) as important indicator for planning and making decisions in the

business environment. Eur. J. Econ. Bus. Stud. 2018, 4, 99–114. [CrossRef]
35. Schmidt, J.W.; Davis, R.P. Foundations of Analysis in Operations Research; Academic Press, Inc.: Cambridge, MA, USA, 1981.
36. Glen, A.G.; Leemis, L.M.; Drew, J.H. Computing the distribution of the product of two continuous random variables. Comput.

Stat. Data Anal. 2004, 44, 451–464. [CrossRef]

http://doi.org/10.3390/electronics10070828
http://doi.org/10.1016/j.compind.2020.103301
http://doi.org/10.1080/00207543.2018.1444806
http://doi.org/10.1016/j.jii.2017.04.005
http://doi.org/10.31014/aior.1992.02.04.168
http://doi.org/10.9790/487X-1902014045
http://doi.org/10.13106/jafeb.2020.vol7.no6.305
http://doi.org/10.1214/aoms/1177730201
http://doi.org/10.1214/aoms/1177732541
http://doi.org/10.1111/j.1540-5915.1973.tb00565.x
http://doi.org/10.1111/j.1540-5915.1973.tb00559.x
http://doi.org/10.1023/A:1017921620718
http://doi.org/10.1111/j.1540-5915.1984.tb01239.x
http://doi.org/10.1007/BF00367499
http://doi.org/10.1016/S0925-5273(01)00116-5
http://doi.org/10.26417/ejes.v4i2.p104-120
http://doi.org/10.1016/S0167-9473(02)00234-7

	Introduction 
	Literature Review 
	Model Development 
	CVP Model Definition and Assumptions 
	Mathematical Transform Methods 
	Stochastic CVP Model 
	Case 1 
	Case 2 

	Numerical Illustration 

	Conclusions & Outlook 
	
	References

