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Abstract: In the digital transformation era, digitalization integrates deeply into production, bolstering
output efficiency and economic value. Through stochastic frontier analysis (SFA), this research posi-
tions digitalization as an input in the production function, dissecting its elasticity impact on capital,
labor, and output. The effect of digitalization on total factor productivity change (TFPC) is explained
by comparing TFPC with and without digitalization. Findings reveal that digitalization’s integration
into economic growth displays a U-shaped trajectory, with initial productivity setbacks transitioning
to long-term benefits as industries adapt. The periodic complementarity and substitution between
digitalization and labor, along with a weak substitution relationship with capital, illustrate that, as
a production factor, digitalization dynamically interacts with other factors, both complementing
and substituting them. This dynamic interplay highlights the intricate role that digitalization plays
within the production function. Furthermore, digitalization has played a crucial role in China’s TFP
growth, which also highlights the lack of other technological progress. Meanwhile, the pace of digital
transformation presents scalability challenges, evident in the fluctuating scale efficiency change
(SEC). Policymakers are advised to address these early stage challenges through supportive mea-
sures, ensuring smoother digital transitions. Concurrently, industries should embrace this non-linear
transformation, emphasizing adaptability to maximize digitalization’s long-term advantages.

Keywords: digitalization; production function; total factor productivity (TFP); stochastic frontier
analysis (SFA)

1. Introduction

In the era of digital transformation, data has transitioned from being a mere byproduct
of economic activities to a core asset with significant intrinsic value. Traditionally, the
economic value of data was often overlooked due to limited computational capabilities and
inadequate analytical techniques [1,2]. However, with the advent of advanced analytics
and substantial increases in computational power, the role of data in enhancing economic
analysis and decision-making processes has become increasingly recognized [3,4].

Digitalization has fundamentally reshaped industrial operations by integrating deep
analytics into economic activities, thus becoming standard in industries, leading to labor
savings and improved production efficiency [5,6]. Data analytics now underpins various
quantitative studies, facilitating complex modeling and effective problem-solving that opti-
mize outputs and refine resource allocation [7,8]. These advancements have substantiated
digitalization’s role in boosting economic throughput [9].

Despite the strategic emphasis on digitalization by several countries, including the
United States, Germany, and China, and its acknowledgment as a pivotal economic force,
digitalization has not been independently characterized as a production factor in economic
modeling [10]. Typically subsumed under broader categories such as technological progress
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or capital investments, digitalization’s direct impacts and interactions with traditional
factors like labor and capital have been somewhat obscured.

This study addresses this gap by focusing on 281 Chinese prefecture-level cities over
the period from 2011 to 2019, using a dataset that captures comprehensive economic activi-
ties influenced by digitalization. By explicitly incorporating digitalization as a standalone
factor within the Cobb–Douglas production function model, this research aims to elucidate
the nuanced impacts of digital technologies on economic productivity. By treating digital-
ization as an independent factor, this research not only provides a novel perspective on
its economic contributions but also offers valuable insights that could help policymakers
and business leaders optimize the use of digital technologies for economic growth and
productivity enhancement.

The primary contributions of this study are as follows: First, it systematically in-
corporates digitalization as an independent production factor within the Cobb–Douglas
production function, a novel approach that allows for an explicit examination of how
digitalization impacts economic output alongside traditional factors like capital and labor.
Second, the periodic complementarity and substitution between digitalization and labor,
along with a weak substitution relationship with capital, illustrate that, as a production
factor, digitalization dynamically interacts with other factors, both complementing and
substituting them. This dynamic interplay highlights the intricate role that digitalization
plays within the production function. This integration provides a clearer understanding
of digitalization’s unique contribution and elasticity’s impact on these traditional factors.
Third, by employing a comparative analysis of total factor productivity change (TFPC)
with and without the inclusion of digitalization, this study highlights the significant role
of digital inputs in enhancing productivity. The decomposition of TFPC reveals that dig-
italization contributes positively to technological efficiency changes and scale efficiency
changes, providing robust empirical evidence that supports the reevaluation of produc-
tivity metrics in the digital age. This detailed comparison not only quantifies the impact
of digitalization but also showcases its pivotal role in fostering economic growth and
productivity improvements.

The remainder of the paper proceeds as follows: Section 2 briefly reviews the relevant
literature. Section 3 describes the methodology. Section 4 provides the data and variables.
Results and discussions are presented in Sections 5 and 6. Section 7 concludes.

2. Literature Review
2.1. Digitalization as an Input in Production Systems

Amidst the rapid pace of technological advancements, data and digitalization have
emerged as cornerstones of modern society, with the digital economy gaining increasing
prominence. Often referred to as “the new oil,” data’s critical role in decision-making,
innovation, and strategic foresight across various sectors is undeniable [11]. Despite its
importance, the role of data transcends mere usage; it involves the transformation of
these data into tangible economic value through effective digitalization practices [12–14],
which formed the concept of the digital economy [15,16]. For instance, data analytics has
revolutionized finance through enhanced quantitative trading, while real-time data from
IoT devices has significantly improved predictive maintenance in manufacturing [17–19].

Digitalization, distinguished from mere data utilization, involves integrating and
refining data as a core production factor, akin to labor and capital. This transformative
process not only optimizes operations within sectors but also drives innovation and value
creation [20,21]. Studies have consistently shown that digitalization’s impact on economic
development is profound, enhancing productivity and efficiency at multiple levels [22,23].
For example, the deployment of electronic health records (EHRs) significantly improves
patient care by predicting needs and enhancing diagnostic accuracy [24]. Unlike the broader
digital economy, which includes all digital activities, digitalization specifically refers to the
operational application of data, making it a more precise and impactful factor in production
processes. This crucial distinction underscores digitalization’s role not just in supporting,
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but actively driving economic activities, validating its position as a fundamental element in
the economic discourse [25].

It is widely acknowledged that digitalization is a form of technological progress [26].
Therefore, it is valuable to review studies that incorporate technology as an independent
production factor within production functions. For instance, Crespi and Zuniga (2012),
Edeh and Acedo (2021), Gaglio et al. (2022), etc. examined the determinants of technological
innovation and its impact on productivity based on Crepon–Duguet–Mairesse (1998), which
is often known as the CDM model [27–30]. The CDM model provides a comprehensive
analytical framework that spans the entire chain from technological R&D inputs to outputs
and then to efficiency. However, the CDM model essentially treats technological inputs
as tools or an “environment” that enhance the productivity of capital and labor. This
perspective is also accepted in the digital realm, where digitization is viewed as a driving
force behind the productivity enhancements of capital and labor, thereby identifying the
indirect effects of digitization on increasing productivity. For instance, based on the two-
stage process, Wang et al. (2023) first measured the total factor productivity by using
capital and labor, then took it as the explained variable and found the positive effect of
ICT on GTFP [31]. Similarly, Gërguri-Rashit et al. (2017), Chedrawi et al. (2019), Nakatani
(2021), and Le et al. (2022) also adopted similar two-stage methodologies to analyze the
relationship between digital technology and productivity [32–35].

The aforementioned studies primarily focus on the positive effects of digitization
on the productivity of capital and labor, revealing the indirect impact of digitization
on productivity. However, we emphasize that digitization itself is already forming an
independent industry, based on “data” and associated capital investments, which has a
direct effect on productivity. Therefore, it is necessary to segregate digitization from the
broader concept of technological progress and view it as a separate factor of production
to analyze its economic effects. This involves measuring digitization and explaining its
relationships with other factors of production.

2.2. The Measurement of Digitalization

The task of quantifying and deciphering the socioeconomic dividends of digitalization
has emerged as a pivotal topic in contemporary academic discourse. Given digitalization’s
multifarious nature, its measurement demands a comprehensive analytical framework.

In the early stages, efforts to gauge the extent of digitalization were anchored in sin-
gular metrics such as internet coverage or internet access per capita [36]. However, the
academic milieu swiftly highlighted the inadequacies of such metrics. The predominant
contention was that these metrics, being overly simplistic, could not capture the multi-
faceted essence and transformative potential of digitalization [37,38]. In response to these
limitations, international bodies have fashioned more intricate indices. For instance, the
European Union developed the Digital Economy and Society Index (DESI). It evaluates na-
tions based on criteria like the assimilation of digital technology and the degree of internet
adoption [39]. Concurrently, the World Economic Forum (WEF) introduced the Network
Readiness Index (NRI) to assess how primed a nation is to harness information technology
for socioeconomic gains. Such composite metrics have come to be revered by scholars for
their ability to provide a nuanced perspective on a country’s digitalization journey [40,41].

In response to the burgeoning digital landscape in China, the Digitalization Research
Center of Peking University has proactively introduced a tailored digital index. This
index, meticulously designed with China’s unique socio-economic fabric in mind, offers
insights that are both profound and pertinent to the nation’s rapidly evolving digital
milieu. While the DESI and NRI capture global trends and technological readiness, Peking
University’s index is astutely sensitive to China’s distinct digital trajectory [42]. Notably,
its strength lies in its precision and depth, addressing the unique contours of China’s
digital landscape. It fathoms the intricacies of China’s vast digital payment ecosystem,
the sprawling e-commerce platforms, and the symbiotic relationship between burgeoning
digital infrastructures and traditional sectors. For instance, Li et al. (2020) applied the digital
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index to the panel regression model, revealing the positive impact of the digitalization
process in China on residents’ consumption, which accords with the reality in China and
proves the effectiveness of the index [43]. Chen and Zhang (2021) exploited the causal
effect of digitalization on manufacturing servitization in China based on this index, which
showed that digitalization has a significant positive impact on the servitization of the
manufacturing industry; moreover, the impact on sub-sectors is heterogeneous [44]. Yan
et al. (2023) explored the dynamic spatial-temporal correlation effects of digitalization
and environmental regulation on manufacturing carbon emissions by applying the Peking
University digitalization index, which found that digitalization has effectively strengthened
the emission reduction effect of environmental regulation [45]. These examples show that
the digitalization index from Peking University effectively depicts the digitalization process
in China and also highlight its application value in quantitative analysis.

In essence, while global indices like DESI and NRI offer a panoramic view of digital
readiness, the digital index from the Digitalization Research Center of Peking University
provides a telescopic perspective, capturing the nuances and vibrancy of China’s digital
metamorphosis. To sum up, as digitalization permeates deeper into the global fabric, our
assessment methodologies must evolve in tandem. It’s imperative to adopt a holistic lens
to truly fathom its profound socioeconomic implications.

2.3. The Socioeconomic Dividends of Digitalization

The transformative power of digitalization on the socioeconomic landscape is a topic
of paramount importance in contemporary economic literature. One of the foremost arenas
witnessing the influence of digitalization is economic growth [46]. The proliferation of digi-
tal technologies has catalyzed innovations, paved avenues for new business models [47],
and expanded market reach to transcend geographical boundaries [48]. Industries have
metamorphosed, with sectors such as fintech, e-commerce, and digital health redefining
traditional business paradigms [17–19]. Furthermore, labor markets have been reshaped by
digitalization [49]. While there’s a tangible concern about technology-induced job displace-
ments, there’s also an acknowledgment of job creation in new digital domains, necessitating
a workforce equipped with digital literacy [50]. Trade, another critical dimension, has also
been revolutionized [51]. Digital platforms have democratized access to global markets, en-
abling even micro-entrepreneurs to engage in cross-border trade, thus fostering inclusivity
in the global economy [52].

Besides that, the crux of the discourse gravitates towards the impact of digitalization
on total factor productivity (TFP). TFP, a measure that captures the residual growth in total
output of a production process that cannot be attributed to the accumulation of utilized
traditional inputs, stands as a testament to the efficiency gains from digitalization [53,54].
Recent studies have underscored how digital technologies, by optimizing resource alloca-
tions, streamlining processes, and fostering innovations, have bolstered TFP [48,55]. The
seamless integration of artificial intelligence, IoT, and big data analytics, among others, has
been instrumental in this TFP augmentation, offering insights and efficiencies previously
deemed unattainable [18,19].

Notably, a significant portion of the prevailing literature on digitalization and TFP
adopts a somewhat siloed perspective, examining the causal relationship between the
two while often sidelining digitalization’s intrinsic role as a production factor. This over-
sight tends to obscure the direct influence of digitalization on TFP. Recognizing and in-
tegrating digitalization as a fundamental constituent within the TFP framework, rather
than an external influencer, is crucial for a more holistic understanding of contemporary
economic productivity.

Therefore, this paper uses 281 cities in China as the basic unit, introduces digitalization
as an input factor into the production function, combines labor and capital factors, and
explores the elasticity of substitution between digitalization and other factors. Then, a
new total factor productivity that takes digitalization into account and its decomposition
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is adopted. Lastly, the new TFP is compared with the previous TFP, and the difference
between them is explained.

3. Methodology
3.1. Stochastic Frontier Analysis (SFA) with Transcendental Logarithmic Production
Function Model

The stochastic frontier analysis (SFA) model proposed by Aigner et al. (1977) is
a parameter method that analyzes the production activities of an economic entity by
constructing a specific production function [56]. The SFA method takes into account the
influence of random factors and is applicable to the panel data used in this study. Its basic
form is as follows:

yit = f (xit, β) · evit−uit (1)

Subscript I (i = 1, 2, 3, . . .) represents 281 different prefecture-level cities, t represents
the time year, xit represents the indicator input quantity of the i-th city in the t-th year, β is
the parameter to be estimated, vit represents the inefficiency random error term of the i-th
city in the t-th year, and uit represents the inefficiency technological loss error term, with
vit ≥ 0. vit and uit are mutually independent.

Where f(•) represents the frontier production function, and the Cobb–Douglas produc-
tion function is one of its forms. In this study, we employ the stochastic frontier analysis
(SFA) model, specifically the Transcendental Logarithmic Production Function Model,
which is easy to estimate and has strong inclusiveness. The model uses a logarithmic form
of a linear equation for estimation, which facilitates the investigation of the input elasticity
of different factors and the elasticity of substitution between factors. This approach allows
for a better understanding of the interdependence among inputs in the production function.

The current study is based on the Cobb–Douglas production function and incorporates
the introduction of digital factors using this model. In order to investigate the effects of
digital, capital, and labor on economic growth, as well as the potential positive interactions
between these three factors in promoting output and whether they are influenced by time,
the model includes respective squared terms, interaction terms between them, and a time
trend term (t). The specific functional expression is as follows:

ln gdpit = β0 + β1 ln Dit + β2 ln Lit + β3 ln Kit + β4t
+ 1

2 β5t2 + 1
2 β6(ln Dit)

2 + 1
2 β7(ln Lit)

2 + 1
2 β8(ln Kit)

2

+β9 ln Dit ln Lit + β10 ln Dit ln Kit + β11 ln Kit ln Lit + β12 ln Ditt + β13 ln Litt + β14 ln Kitt
+(vit − uit)

(2)

Among them, gdpit, Dit, Lit, and Kit represent output, digital, labor, and capital factors,
respectively. The inefficiency term, uit, is defined as follows:

uit = uie−η(t−T) (3)

γ =
σ2

u
σ2

u + σ2
v

(4)

When η is an estimated parameter, if η < 0, the technical inefficiency term e−η (t − T)

increases at an increasing rate, indicating that the technical efficiency decreases at an in-
creasing rate. On the other hand, if η > 0, the technical inefficiency term e−η (t − T) decreases
at a decreasing rate, indicating that the technical efficiency increases at a decreasing rate. γ
represents the proportion of the inefficiency term in the random disturbance term. If γ is
close to 1, it suggests that the model error primarily comes from the inefficiency term uit.

3.2. Calculation of Elasticity

Based on the aforementioned transcendental logarithmic production function formula,
the partial derivatives of the digitalization, labor, and capital inputs can be calculated to
obtain their respective input elasticities, which indicate the percentage change in output
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resulting from a one percent change in the respective input, holding all other factors
constant. That is, the elasticities reflect the responsiveness of output to changes in each
type of input within the production process [57].

The input elasticity of digitalization is:

δDit =
d ln y
d ln D

= β1 + β6 ln Dit + β9 ln Lit + β10 ln Kit + β12t (5)

The input elasticity of labor is:

δLit =
d ln y
d ln L

= β2 + β7 ln Lit + β9 ln Dit + β11 ln Kit + β13t (6)

The input elasticity of capital is:

δKit =
d ln y
d ln K

= β3 + β8 ln Kit + β10 ln Dit + β11 ln Lit + β14t (7)

These input elasticities are calculated as point elasticities for each year in the prefecture-
level cities, and they vary with time, deviating from the fixed input elasticities in the
Cobb–Douglas production function, which is more in line with the actual situation. Based
on these input elasticities, the elasticities of substitution between the pairs of inputs can
be calculated to reflect the substitution relationships between the different factors, which
measure the degree to which one production factor can replace another under the condition
of constant cost or other technical conditions without affecting the total output. When the
elasticity of substitution is greater than 0, it indicates that the two factors are substitutable.
When it is less than 0, it indicates that the factors are complementary.

The elasticity of substitution between digital and labor inputs is:

ξDLit =

[
1 +

(δDit /δLit)β7 − β9

δLit − δDit

]−1

(8)

The elasticity of substitution between digital and output inputs is:

ξDKit =

[
1 +

(δDit /δKit)β8 − β10

δKit − δDit

]−1

(9)

The elasticity of substitution between labor and output inputs is:

ξKLit =

[
1 +

(δKit /δLit)β7 − β11

δLit − δKit

]−1

(10)

3.3. Decomposition of TFP Change (TFPC)

In this study, we adopt the method proposed by Kumbhakar et al. (2000) to calculate
the growth rate of total factor productivity (TFP) and its decomposition efficiency [58].
Based on the parameter estimation of the stochastic frontier transcendental logarithmic
production function model, the growth rate of TFP is decomposed as follows:

TFPCit = TECit + TCit + SECit (11)

where TFPCit represents the growth rate of total factor productivity, TECit represents
the technological efficiency change, TCit represents the technological change, and SECit
represents the scale efficiency change. Since we are calculating growth rates, the final
calculated data does not include the data for the first year, 2011.

(1) Technological Efficiency Change (TEC)



Systems 2024, 12, 164 7 of 19

Based on the production function used in this study, the technological efficiency is
obtained as follows:

TEit = e−uit (12)

The technological efficiency change (TEC) is calculated as follows:

TECit =
TEit − TEit−1

TEit−1
(13)

TEC represents the change in the gap between the actual output and the maximum
possible output at a given level of technology and factor inputs.

(2) Technological Change (TC)

Technological change is mainly related to time and represents the efficiency change
caused by time. It can be viewed as the partial derivative of the function with respect to
time. The specific formula is as follows:

TC = δt =
d ln y

dt
= β4 + β5t + β12 ln Dit + β13 ln Lit + β14 ln Kit (14)

TC refers to the change rate of output over time when the input factors are fixed; that
is, the output growth brought about by technological progress.

(3) scale efficiency change (SEC)

SECit = (δDit + δLit + δKit − 1)(λDit xDit + λLit xLit + λKit xKit) (15)

λj =
δj

δDit + δLit + δKit

(16)

where δDit + δLit + δKit represents the sum of the input elasticities of each input factor,
indicating the scale economy effect. ∆j represents the elasticity of factor j, and λj represents
the proportion of the input elasticity of factor j on the production frontier to the overall
scale elasticity of returns. xDit, xLit, and xKit represent the input growth rates of the digital,
labor, and capital factors, respectively. SEC refers to the productivity changes caused by
economies of scale or diseconomies of scale.

4. Data Source and Variable Selection
4.1. Data Source

The output data used in this study is the regional gross domestic product (GDP) of 281
prefecture-level cities, measured in billions of yuan. The input variables include labor force
and capital stock from 2011 to 2019. The input and output indicators data are obtained
in China’s City Statistical Yearbooks from 2012 to 2020, and the relevant yearbooks for
Chinese provinces. The digitalization index is derived from the Digitalization Research
Center of Peking University, covering the years 2011 to 2019.

4.2. Variable Selection

The output variable used in this study is the regional gross domestic product (GDP),
measured in billions of yuan. Intuitively, the idea of incorporating data into the production
function is to treat the total amount of data as a factor in production. However, this implies
that the amount of data measured in GB or MB is an input, overlooking the fact that most
data results from production activities rather than serving as an input to them. Therefore,
identifying the data that enters the production system is crucial and aligns more closely with
the concepts of digitalization or the digital economy. Numerous studies have discussed the
positive effects of digitalization and the digital economy on improving economic efficiency.
This suggests that the level of digitalization or the advancement of the digital economy
is an input-driven factor that needs to be considered in the production system or in the
production function. Therefore, the digital factor is represented by the digitalization index,
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which is constructed based on the breadth of coverage, depth of usage, and digital support
services of digitalization [43–45]. The specific indicators of the digitalization index are
shown in Table 1:

Table 1. Digitalization index system.

Primary Dimension Secondary Dimension Specific Indicators

Breadth of coverage Account coverage
Number of Alipay accounts per 10,000 people

Percentage of Alipay-tied card users
Average number of bank cards tied to each Alipay account

Depth of use

Payment business
Number of payments per capita

Amount paid per capita
The number of active users with a high amount (50 or more annual

activities) as a percentage of annual activities 1 or more times

Credit business to individual
users

Number of Internet consumer loans per 10,000 adult Alipay users
Number of loans per capita

Loan amount per capita

Credit business for micro and
small operators

Number of Internet micro and small business loans per million adult
Alipay users

Average number of loans per household for micro and
small operators

Average loan amount for small and micro operators

Insurance business
Number of insured users per 10,000 Alipay users

Number of insurance strokes per capita
Amount of insurance per capita

Investment business

Number of Alipay users per 10,000 people involved in Internet
investment and wealth management

Number of investments per capita
Investment amount per capita

Credit business
Number of people using credit-based lifestyle services (including

finance, accommodation, travel, social, etc.) per 10,000 Alipay users
Number of calls per capita for natural person credit

Degree of digital
support services

Convenience
Percentage of mobile payment transactions

Percentage of mobile payment amount

Financial services costs
Average loan interest rate for small and micro operators

Average personal loan interest rate

For the above-mentioned comprehensive system containing 33 indexes, we refer to
Li (2022) [42], and adopt the efficacy function to realize dimensionless. Further, for the
weights, we refer to the weights given by the Digitalization Research Center of Peking
University, Li (2022), and Li et al. (2020) [42,43]. Their weight selection combines subjective
evaluation (expert scoring) and objective evaluation (data mining), which has been recog-
nized by other studies. Finally, the digital index is obtained by the weighted summation of
dimensionless indexes.

The input of the labor force is represented by the number of employed people at the
end of the year, measured in ten thousand individuals. The capital input is measured
by the fixed capital stock, following the calculation method of inter-provincial material
capital stock in Zhang’s (2008) perpetual inventory method [59]. The capital stock for
prefecture-level cities is calculated using the following formula:

Kit = Kit−1(1 − υit) + Iit (17)

where Vit represents the capital depreciation rate for city I in year t, which is derived from
the economic depreciation rate of the total fixed capital formation calculated by Zhang
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(2008) at 9.6% [59]. Iit represents capital investment, measured in billions of yuan, using the
actual total fixed capital formation.

4.3. Descriptive Statistics of the Data
4.3.1. Descriptive Statistics of Input-Output Variables

Descriptive statistical analysis was conducted on the input-output variables of 281
cities from 2011 to 2019. The results are presented in Table 2.

Table 2. Descriptive statistics of input-output variables.

Mean Std.Dev Min Max

GDP 2414.766 3502.174 34.953 38,156.010
D 165.261 65.429 17.020 321.646
L 60.104 90.076 5.691 986.872
K 6092.681 6867.597 289.685 72,423.381

lngdp 7.280 0.972 3.554 10.549
lnD 5.003 0.513 2.834 5.774
lnL 3.647 0.849 1.739 6.895
lnK 8.301 0.887 5.669 11.190

In Table 2, it can be observed that there are significant differences in output and
the input of digital, capital, and labor factors among the various prefecture-level cities,
which is consistent with the current uneven regional development situation in China. The
natural logarithm of input-output factors was used to reduce the impact of large numerical
differences among different factors and to ensure that their standard errors fall within the
range of 0–1.

The correlation coefficients between the various factors and between the factors and
output are obtained in Table 3, as shown in the following table. It can be seen that there is a
significant positive correlation between the input factors and output, as well as significant
positive correlations among the different factors. Moreover, the correlations between lnD,
lnL, and lnK are all below 0.4, which indicates that there is no significant collinearity
between variables.

Table 3. Correlation coefficients between variables.

lngdp lnD lnL lnK

lngdp 1
lnd 0.548 1
lnl 0.872 0.209 1
lnk 0.793 0.389 0.266 1

4.3.2. Comparison of Input-Output Elements between 2011 and 2019

Using ArcGIS 10.8 software, spatial distributions of input-output elements were cre-
ated to illustrate the regional differences between 2011 and 2019 (as shown in Figures 1–4).

From the above graphs, it can be observed that there are significant regional differences
in both output and input variables between 2011 and 2019, indicating the persistent issue of
regional development imbalance. The regional disparities between 2011 and 2019 remain
relatively stable. In particular, as shown in Figure 2, it is evident that the digital economy
was mainly concentrated in coastal areas and provincial capital cities in the central and
western regions in 2011. However, by 2019, there had been a significant improvement in
the digitalization index for all 281 prefecture-level cities, resulting in a reduction in regional
disparities. In terms of the labor force, there was not much variation among regions in 2011.
However, by 2019, there was a significant increase in labor force input in the southeastern
and central regions compared to other areas. This can be attributed to the influx of a large
number of laborers to economically developed regions such as the Beijing-Tianjin-Hebei
region and the Yangtze River Delta, which provide substantial labor input.
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On the whole, the spatial distribution of labor force and GDP is partially similar, while
other indicators are spatially differentiated, which indicates that the driving mechanism of
various production factors for GDP is complex and probably non-independent. Therefore,
it is necessary to integrate all the elements through the SFA method to measure TFP. This
also reflects the advantages of SFA, which describes the complementary or substitution
relationship between elements by transcending logarithmic functions [60].

5. Estimation of Parameters and Elasticity
5.1. Results of the SFA

The specification of the stochastic frontier production function is crucial for the specific
analysis. Therefore, it is essential to correctly specify the production function based on
the data. In this study, different models were used to test the parameters of the stochastic
frontier production function. The final, suitable production function model was selected for
subsequent estimation and analysis. The specific parameter estimation results are presented
in Table 4:

Table 4. Model estimation results.

(1) (2) (3) (4)

lnD
−1.382 * 4.847 *** 3.041 ***
(0.661) (0.450) (0.491)

lnL
0.602 0.470 -0.791 * 0.065
(0.371) (0.259) (0.376) (0.214)

lnK
0.876 * 0.687 1.399 ** 0.500
(0.442) (0.364) (0.458) (0.265)

t
2.161 *** −0.191 *** 0.0875
(0.227) (0.055) (0.165)

t2 0.122 *** 0.029 *** 0.0371 ***
(0.010) (0.003) (0.006)

lnD2 0.273 ** −0.540 *** −0.389 ***
(0.090) (0.064) (0.066)

lnL2 −0.031 −0.018 −0.055 −0.021
(0.028) (0.025) (0.029) (0.023)

lnK2 −0.019 −0.017 −0.0204 0.007
(0.031) (0.031) (0.033) (0.027)

lnD*lnL
−0.081 0.537 *** 0.280 ***
(0.138) (0.135) (0.073)
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Table 4. Cont.

(1) (2) (3) (4)

lnD*lnK
−0.075 −0.420 ** −0.045
(0.129) (0.132) (0.080)

lnK*lnL
0.061 0.044 0.152 −0.007
(0.097) (0.094) (0.104) (0.083)

lnD*t
−0.544 *** −0.0271(0.049)

lnL*t
0.027 0.014 −0.042 **
(0.014) (0.007) (0.013)

lnK*t
0.0221
(0.014)

−0.004 0.051 ***
(0.009) (0.015)

_cons 2.992 2.598 −7.668 *** 1.418
(1.861) (11.341) (1.693) (3.926)

µ 2.446 *** 1.589 2.008 *** 6.809
(0.458) (11.566) (0.352) (3.571)

η −0.060 *** −0.003 −0.027 *** −0.024 **
(0.008) (0.010) (0.007) (0.009)

σ2 0.320 *** 0.187 ** 0.258 * 0.209 **
(0.034) (0.010) (0.226) (0.012)

γ 0.700 *** 0.396 * 0.596 ** 0.486 **
(0.035) (0.034) (0.039) (0.039)

σ2
u

0.224 *** 0.074 *** 0.154 ** 0.101 **
(0.035) (0.010) (0.023) (0.015)

σ2
v

0.096 *** 0.113 *** 0.104 *** 0.107 ***
(0.003) (0.003) (0.003) (0.003)

Breusch–Pagan/Cook–Weisberg test for heteroskedasticity

chi2 0.371 4.120 0.611 6.852
Prob > chi2 0.541 0.042 0.436 0.009

Notes: Whit’s robust standard errors are in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001.

In Table 4, column 1 presents the regression results of the transcendental logarithmic
production function including the time trend terms t and t2, column 2 omits the digitaliza-
tion variable, and columns 3 and 4, in comparison to column 1, exclude the time trend terms
t and t2, respectively. This regression strategy benefits from allowing comparisons between
the results in columns 2–4 and column 1, which facilitate the assessment of which model
configuration yields the optimal fit for the transcendental logarithmic function through
the size of the signal-to-noise ratio. Furthermore, by comparing the coefficients of the
remaining variables after excluding certain variables, we can observe if there is significant
multicollinearity, that is, interference between variables, thereby evaluating the robustness
of the model.

The comparison reveals that the regression results of column 1, including digitalization,
time trends t and t2 possess the highest signal-to-noise ratio γ, surpassing 0.7 (a signal-
to-noise ratio closer to 1 indicates a better model fit [56]). Additionally, the inefficiency
standard deviation σ2 is significant across all results, indicating clear variations in technical
efficiency among the samples, which highlights the applicability of the stochastic frontier
analysis method. Lastly, the results of the heteroscedasticity tests indicate that models with
all four parameter settings do not exhibit significant heteroscedasticity. Nevertheless, to
ensure the reliability of the coefficients and their significance levels, we continue to use
Whit’s robust standard errors.

In column 1, the coefficients pertaining to digitalization suggest a U-shaped relation-
ship with economic growth. The negative linear term lnD indicates an initial decline in
productivity with increased digitalization, while the positive squared term lnD2 points to
a subsequent rebound. This U-shaped curve is consistent with the study of Xiang et al.
(2022) [61]. This is also consistent with many studies on science and technology investment
and economic growth [62], which aligns with the industry life cycle theory, where new



Systems 2024, 12, 164 13 of 19

technological adoptions or industry disruptions often lead to initial inefficiencies or chal-
lenges, represented by the downturn. As industries mature, adapt, and optimize the new
technologies, there is a phase of recovery and growth, leading to the upward curve of the.
In this context, the early stages of digital integration might have brought about challenges
such as the need for skill upgrades, infrastructure revamps, and alignment with existing
processes. However, as firms navigate these challenges, learn from their experiences, and
fully harness the potential of digital tools, the benefits start to materialize, reflected in
the eventual upturn in productivity. Therefore, further analysis will be conducted on the
elasticity of factors to output, the elasticity of substitution between factors, total factor
productivity, and its decomposition.

5.2. Elasticity of Factors

Based on the final results obtained, Table 5 presents a systematic evolution of the elas-
ticity coefficients for digitalization, labor, and capital in terms of output and the substitution
interplay between digitalization and other factors over the period 2011–2019.

Table 5. Input elasticity and elasticity of substitution.

Year
Input Elasticity Elasticity of Substitution

Digitalization Labor Capital Digitalization and Labor Digitalization and Capital Labor and Capital

2011 0.4301 0.5678 0.4104 0.1399 1.2987 0.1779
2012 0.5646 0.5454 0.4518 −0.4762 1.6381 0.0299
2013 0.6290 0.5722 0.4342 −2.4564 0.9826 0.1546
2014 0.6522 0.5882 0.4234 0.8302 1.0550 0.1922
2015 0.6887 0.5995 0.4199 −1.1001 1.2114 0.2099
2016 0.7128 0.6151 0.4120 −0.6615 1.0561 0.2552
2017 0.7334 0.6385 0.3983 3.0075 0.5801 0.3065
2018 0.7342 0.6700 0.3755 −0.0552 1.1150 0.3846
2019 0.7322 0.7095 0.3451 −0.9825 1.2260 0.4675
mean 0.6530 0.6118 0.4079 −0.1949 1.1292 0.2420

Over the span from 2011 to 2019, the input elasticity of digitalization, labor, and capital
has generally shown an upward trend, indicating that all three inputs are increasingly
effective in contributing to economic output. Specifically, digitalization’s elasticity increased
from 0.4301 to 0.7322, labor’s from 0.5678 to 0.7095, and capital’s from 0.4104 to 0.3451. This
trend can be attributed to technological advancements that enhance the productivity of
digital technologies and improvements in workforce skills and capital equipment efficiency.
The growing integration of digital tools has likely made labor and capital not only more
productive individually but has also enhanced their interdependencies and collective
output potential.

The elasticity of substitution between digitalization and labor exhibits clear periodicity,
alternating between positive and negative values, which aligns with practical observations.
Digitalization development itself relies on substantial human capital investment and simul-
taneously creates numerous new job positions, leading to a negative substitution elasticity.
However, once digital technologies are established, their integration into production tends
to replace some labor, especially in the industrial sector. The phenomenon in China is
particularly interesting; for example, after the central government launched the “Internet
Plu” action plan in 2015, digital technology development accelerated, creating many related
jobs and showing a complementary relationship with labor. By 2017, various e-commerce
platforms, industrial digital platforms, and other artificial intelligence technologies were
extensively integrated into the real economy, resulting in significant labor substitution (with
coefficients reaching 3.0075). According to this pattern, complementarity and substitution
between labor and digitalization will continue, but the complementary relationship may
weaken as the scale of technical staff reaches its limit, whereas the substitution relationship
may strengthen.
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The substitution relationship between digitalization and capital shows a growing
trend. Over the past period, China has invested heavily in capital to build the infrastructure
necessary for the internet and other digital platforms, resulting in a weak substitution
relationship between the two. However, as these infrastructures are completed and gradu-
ally put into operation, the vitality of digital technologies has increased, replacing a large
amount of industrial production capital and even leading to “stranded asset” phenomena.
Nonetheless, compared to labor, digitalization still depends somewhat on capital; therefore,
overall, the substitution elasticity between the two is not high (average only 0.2420), and
the positive elasticity is more likely due to China’s industrially oriented economic structure.

In summary, the data underscores the growing prominence of digitalization in influenc-
ing output and its interplay with traditional factors like labor and capital. The consistently
rising input elasticity for digitalization accentuates its pivotal role in the production process.
Concurrently, the evolving elasticities of substitution highlight the shifting dynamics and
adaptations in integrating digital processes within the traditional production framework.

6. Decomposition of TFPC and Comparative Analysis
6.1. TFPC and Decomposition

Based on the fitting of the random frontier transcendental logarithmic production
function model and the calculation of input elasticity mentioned above, the mean value of
TFP change (TFPC) is calculated annually. The average values are provided in Table 6.

Table 6. TFPC and decomposition.

Year TFPC TEC TC SEC

2011 - - - -
2012 −0.0993 −0.1112 −0.0258 0.0377
2013 −0.2981 −0.2603 −0.0709 0.0331
2014 0.0799 0.1333 −0.0641 0.0107
2015 −0.1388 −0.0889 −0.0636 0.0137
2016 −0.1013 −0.0398 −0.0703 0.0088
2017 −3.1595 −3.0825 −0.0858 0.0088
2018 0.5074 0.5972 −0.0918 0.0020
2019 −0.4120 −0.2816 −0.1337 0.0033
mean −0.4527 −0.3917 −0.0757 0.0148

Table 6 offers a comprehensive account of the total factor productivity change (TFPC)
and its constituent elements spanning from 2011 to 2019. The following observations and
interpretations can be drawn: The TFPC values, representing the amalgamated effect of
technological efficiency, technological change, and scale efficiency, predominantly exhibit a
negative trend. Averaging across the years, the mean TFPC stands at −0.4092, signifying a
general decline in productivity over the observed period. Noteworthy is the sharp decline
in 2017, with a value of −3.1136, marking the most significant dip in productivity. The
TEC values fluctuate over the years but lean towards the negative, with an average of
−0.3917. This suggests that the efficiency of utilizing available technologies has, on average,
been declining. The year 2017 again stands out with a pronounced decrease of −3.0825.
TC values, which highlight shifts in frontier technology, are consistently negative across
the years, averaging at −0.0347. This indicates that frontier technology might not have
progressed favorably over the period, possibly suggesting that innovations in the sector
may not have been adequately transformative. Although the SEC (scale efficiency change)
is positive, its mean value is only 0.0172, indicating that its contribution to the total factor
productivity change (TFPC) is minimal.

In summation, the data underscores a pressing need for interventions aimed at bolster-
ing technological efficiency, fostering impactful innovations, and refining scaling strategies.
According to the TFPC studied previously, the change in TFP in China is attributed to gen-
eralized technological progress. After considering digitalization, the negative TFPC reflects
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the important role of digitalization in TFP growth in China. That is to say, besides the role
of digitalization, other remaining technological innovations may not have a significant
positive effect on TFP in China. This further highlights the leading role of digitalization in
China’s economic growth.

6.2. Comparison with TFPC without Digitalization

In order to further clarify the role of digitalization in economic growth, TFPC with
digitalization (the new TFPC) and TFPC without digitalization are thought to be compared.
Going back to our methodology, a series of previous equations (Equations (1)–(11)) have in-
cluded digitalization as a production factor in the production function. In order to calculate
TFPC without digitization, the variable D (or lnD) in Equations (1)–(11) is eliminated, and
then TFPC with only labor (L) and capital (K) is calculated. Since the difference between
the two TFPCs is only whether digitalization is included, the detailed equation need not be
repeated. The results are shown in Figure 5.
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Figure 5 distinctly juxtaposes the trajectories of TFPC values, distinguishing between
scenarios with and without the incorporation of digital elements. The TFPC curve as-
sociated with digitalization is discernibly subdued in comparison to its non-digitalized
counterpart for a majority of the observed years, which is consistent with research results on
TFPC in China of Xia and Fu (2020), Chen et al. (2022), Ren et al. (2023), and others [63–65].
Furthermore, the digitalized curve even delves into negative terrain, indicating potential
declines in productivity.

When accounting for digitalization, there is a discernible accentuation in the declin-
ing trend of TFPC. This pronounced decline, post-consideration of digitalization, can be
attributed to the now-recognized role of digitalization in economic growth. Essentially,
by factoring in digitalization, we are isolating its effects on productivity. As a result, the
residual TFPC (after considering digitalization) exhibits a more pronounced decline or, in
certain contexts, a smaller value compared to when digitalization is not taken into account.
This nuanced perspective suggests that as we account for the transformative effects of digi-
talization on productivity, the remaining factors influencing TFPC become more apparent.
It underscores the transformative impact of digitalization and emphasizes the importance
of understanding its intricacies to get a clearer picture of the overall productivity dynamics.

Incorporating digitalization reveals pronounced negative shifts in TEC values, espe-
cially in 2017. This suggests that, as we factor in the efficiency contributions of digitalization,
traditional technological paradigms might seem less efficient in comparison. This could be
indicative of a transitional phase where industries and firms grapple with the integration of
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digital tools and technologies, leading to temporary efficiency lags. When considering digi-
talization, technological change appears to be less progressive. The predominantly negative
values, especially in the ‘new T’, emphasize that as we recognize the advancements brought
about by digitalization, traditional technological innovations might appear less impactful.
Factoring in digitalization brings about significant variations in scale efficiency. The sharp
negative dip in the new SEC in 2015 is particularly telling. This might point towards
challenges in scaling operations in the face of rapid digital transformations, possibly due to
the need for new infrastructure, skill sets, or organizational changes.

In essence, while the transformative potential of digitalization remains undisputed, the
graph underscores the importance of a calibrated and informed approach to its adoption.
The challenges highlighted by the TFPC trends emphasize the need for strategic planning,
continuous learning, and iterative adaptation in the journey of digital integration.

7. Conclusions and Implications

This research has embarked on an intricate exploration into the nexus between digi-
talization and the TFP, with a focal lens on China’s dynamic landscape. Utilizing robust
stochastic frontier analysis (SFA), we have unraveled several salient insights. The main
conclusions are as follows:

1. The study identified a U-shaped trajectory in the impact of digitalization on economic
growth. Initially, the integration of digital technologies might lead to productivity
setbacks due to adaptation challenges and investment costs. However, over time,
as firms adjust and synergies begin to materialize, digitalization significantly en-
hances productivity, resulting in long-term economic benefits. This U-shaped impact
underscores the transformative role of digitalization in reshaping economic outputs.

2. This analysis reveals the complex interplay of substitution and complementarity
among digitalization, labor, and capital within the production function. Digitalization
not only substitutes for labor and capital in certain cases but also exhibits dependency
on both. These relationships underscore that digitalization is no longer just an adjunct
to traditional production factors; rather, it highlights its role as a production factor in
its own right, dynamically interacting with other factors in both complementary and
substitutive manners.

3. By recalculating total factor productivity (TFP) to include digitalization, the study
demonstrated that TFP assessments that fail to consider digital inputs underestimate
economic outputs. The comparison between TFP calculations with and without
digitalization inputs revealed that ignoring digital inputs could lead to a significant
underestimation of productivity levels and potential economic growth.

The above conclusions have the following implications:

1. Policymakers and business leaders should anticipate initial productivity dips fol-
lowing digital investments. Supportive measures, such as training programs for
workforce adaptation and phased implementation strategies, can mitigate these early
stage challenges. Recognizing the long-term benefits, continued investments in digital
infrastructure and technologies are crucial, even if immediate gains appear modest.

2. The dual substitutive and complementary roles of digitalization necessitate a balanced
approach in policy and business strategy formulation. Firms should leverage digital
technologies to optimize labor and capital use, potentially reducing costs and enhanc-
ing output quality. Economic policies should facilitate this integration by supporting
digital skills development and encouraging R&D in digital technologies.

3. Economic analysts and policymakers should include digital inputs in productiv-
ity analyses to avoid underestimations of economic potential. The significant dif-
ference in TFP with and without digital inputs underscores the need for modern-
izing existing economic models to reflect the reality of digital impacts. This in-
cludes revising economic indicators and growth forecasts to integrate digitalization’s
effects accurately.
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While this study offers valuable insights into the relationship between digitalization
and TFP/TFPC in China, it also presents avenues for further exploration. A potential
limitation arises from the macro-level data employed, which may introduce aggregation
bias; future research could delve into micro-level, firm-specific data to tease out more
nuanced effects. The generalized metric for digitalization used in this research emphasizes
the tangible capital associated with digitization as a production factor. Additionally, the
measurement of intangible capital, especially with the advancement of technologies like
AI, also needs to be refined to accurately reflect the evolving nature of digital assets.
Extending the temporal scope or focusing on periods of rapid technological shifts might
provide a richer context, while integrating external factors such as global trade dynamics
or international technological spillovers can offer a more holistic understanding. Therefore,
a significant future research direction is how to measure the level of digitization from the
perspective of production factors appropriately, possibly by focusing more specifically on
technologies like AI, blockchain, or cloud computing. Complementing the quantitative
findings with qualitative insights from industry stakeholders could bridge interpretative
gaps and present a more comprehensive narrative of the digital transformation journey
in the service sector. This approach will enhance the robustness of digitalization metrics
and deepen insights into its economic impacts, highlighting areas for policy intervention to
maximize the benefits of technological advancements.
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