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Abstract: The integration of product design and supply-chain management can lead to an increase in
the profitability and efficiency of companies. However, considering manufacturing, supply chain,
and aircraft criteria in the early design phase increases the size of the solutions’ trade space and, thus,
the complexity of performing the decision-making process. This paper demonstrates how to leverage
value-model theory to simplify the decision-making process when multiple criteria related to multiple
systems are considered at the same time. The proposed concurrent approach is formalized from
a systems-engineering perspective, considering the interactions between the lifecycle stages of the
System of Interest, i.e., the aircraft, and Enabling Systems like the supply chain and manufacturing. A
value-based interactive dashboard, called VALORISE, is developed to automatize the process, support
decision-makers in modeling their expectations, analyze real-time strategic scenarios, and easily
explore the value-driven trade space for best-solution identification. An aeronautical application case
highlights the advantages of leveraging the proposed concurrent approach to overcome the limits
of traditional approaches, in which decisions about supply chain and manufacturing are addressed
once the aircraft configuration is decided.

Keywords: decision-making; value engineering; supply-chain management; aircraft design;
manufacturing; system of interest; enabling systems; concurrent engineering; model-based systems
engineering (MBSE); multidisciplinary design and optimization (MDO)

1. Introduction

To meet heterogeneous societal needs, even more complex, innovative, sustainable,
and circular aeronautical systems are required. The objective of sustainable and circular
aviation is to reduce its environmental impact in terms of fuel consumption, waste, and
emissions associated with all the lifecycle stages of the aeronautical system [1]. Hence, there
is a necessity to extend the branches of aeronautical research to the entire aircraft lifecycle,
from design to production to disposal after the end of system operability. This enlarges
the design space, making the decision-making process even more complicated. How-
ever, it offers potential for aeronautical industries to succeed in a global and competitive
market [2,3].

In this context, the Digital Development Process Group of the DLR Institute of System
Architecture in Aeronautics aims to develop methods, processes, and tools that support the
concurrent design of multiple systems to achieve solutions optimizing, at the same time, the
System of Interest (SoI) and the Enabling Systems (ESs). In this study, the System of Interest
is the aeronautical system; Enabling Systems, supporting the System of Interest in one or
more lifecycle stages [4], are the supply chain and manufacturing systems. The supply-
chain system is defined as a combination of multiple enterprises spread all over the world
with the competencies to produce the aeronautical system. The manufacturing system, by
contrast, is identified as the combination of machines needed to perform the manufacturing
and assembly processes necessary for different aircraft components. Both the supply chain
and manufacturing systems support the System of Interest in the development lifecycle
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stage in which the aeronautical system is built. Consequently, decisions on the supply chain
and manufacturing have traditionally only been addressed once the aircraft configuration is
fixed, therefore once decisions in terms of the operational performance of the aircraft have
already been made [5]. This approach, however, limits the identification of the best solution
in terms of competitiveness, sustainability, and circularity. Indeed, the most efficient
aeronautical system is identified with the traditional approach. However, there is a high
risk that this solution does not match, for instance, stringent environmental requirements
(in terms of pollution emission) or production constraints (in terms of feasibility of realizing
the product). This may lead to an unforeseen redesign of the aircraft with a consequent
increase in cost [4,6].

Therefore, the challenge is to formalize, model, and automatize the existing complex
interconnections between the System of Interest and Enabling Systems at the beginning
of the System of Interest lifecycle, particularly during the concept stage, before the pro-
duction of the system starts. The strength and innovation of this paper is, therefore, the
consideration of the concept stage of the aircraft and the operational requirements, as
is usually given, but also requirements related to the Enabling Systems, i.e., the supply
chain and manufacturing systems. These requirements, often described in the literature as
“nonfunctional requirements” [7], “-ilities” (e.g., manufacturability), or “-ities” (integrity)
of the System of Interest [8], represent hidden sources of cost increase, especially in the
case of large-volume production [9–11]. Trading in early-lifecycle-stage criteria derived
from supply chain and manufacturing requirements at the same time as product (aircraft)
criteria derived from operational requirements avoids re-work, reduces risk, and gener-
ally increases the value of the system [12,13]. Indeed, in recent decades, effort has been
focused on the research of concurrent methodologies simultaneously accounting for criteria
related to the product and/or supply and/or manufacturing [14–16] in the aeronautical
context [17,18]. Most of these methodologies leverage value models to identify the best
possible outcome when considering multiple and different criteria that are important for
decision-makers. These methodologies, collected under the VDD (value-driven design)
term [19,20], range from trade-space exploration [21–23] to value-centric design [24] and
value-driven optimization [25,26]. They are based on different value models, with each hav-
ing a unique interpretation, quantification, and representation of the term value. Among
others, the most-used value-model theories are Net Present Value (NPV), Surplus Value
(SV), Cost–Benefit Analysis (CBA), and Multi-Attribute Utility Theory (MAUT). In the first
three value models, the value function represents the discounted cash flows generated over
time and, thus, the profits gained from investing in a specific design of the system [25,27,28].
MAUT, by contrast, uses utility curves of system attributes to aggregate monetary and
non-monetary stakeholder perceived value to obtain a ranked ordering of system design
alternatives [29]. In general, the application of VDD methodologies leads to better solutions
since they support the elicitation of such “-ilities”, allowing the performance of tradeoff
studies accounting for multiple stakeholders’ needs and improving the communication
between businesses and engineers [30].

This paper leverages MAUT to trade operational aircraft criteria with those derived
from requirements related to manufacturing and supply-chain systems. In contrast to
papers found in the literature, the methodology aims to include the requirements of
Enabling Systems in the System of Interest concept lifecycle stage. In this way, stakeholders,
needs, and requirements related to manufacturing and supply-chain systems are also
accounted since the early lifecycle stages. Consequently, the best solutions can be identified
for decision-makers’ trading expectations related to aircraft production. The methodology
is also applied in the aeronautical context for the identification of the best supply chain to
produce a specific aircraft component.

Details of the formulation and implementation of the proposed concurrent value-
driven decision-making process are introduced in Section 2. The results of the aeronautical
application case are presented in Section 3, and in Section 4, the implications and the
findings of this research activity are discussed. Finally, conclusions are reported in Section 5.
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2. The Concurrent Value-Driven Decision-Making Process

The approach proposed in this paper aims at identifying the best solution in the
design space while trading decision-makers’ expectations with respect to criteria related
to aircraft, manufacturing, and supply-chain systems. To ensure that criteria related to
Enabling Systems are also accounted for in the early lifecycle stages of the System of Interest,
stakeholders’ needs related to the production of the aircraft are also collected early. From
these needs, important criteria for decision-makers to value the systems are derived. The
design space alternatives are then generated considering, at the same time, choices related
to all systems. More details on the decision-making process formulation are provided
in Section 2.1. In Section 2.2, the tools and technologies automatizing this methodology
are introduced, in particular for VALORISE, the interactive dashboard supporting the
multi-attribute decision-making process.

2.1. Methodology Formulation

To overcome the limits of the traditional sequential approach, in which decisions
on supply and manufacturing are addressed once the operational performance of the
aircraft is fixed (Figure 1a), this paper aims to include in the concept lifecycle stage
operational requirements of the aircraft but also requirements related to the Enabling
Systems (Figure 1b).
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Figure 1. System of Interest (SoI) and Enabling Systems (ES) lifecycle stages: (a) Traditional sequential
approach; (b) Proposed concurrent approach.

To achieve this objective, enterprises, engineers, and business managers are also
involved as stakeholders to collect their needs and derive requirements related to aircraft,
manufacturing, and supply-chain systems. At the same time, criteria identified by decision-
makers as key to the value of the systems are also collected. Criteria for the identification of
the best aircraft configuration are usually related to the operation of the system and, thus,
to its performance (e.g., thrust, fuel consumption). More challenging is the identification of
criteria related to aircraft production and, therefore, to the systems of supply chain and
manufacturing because of their tacit nature. However, production risk, quality, and time
are selected as criteria for the identification of the best supply chain because of the key
role they have in supply-chain management [31]. These criteria, also known as supply-
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chain performance, are estimated considering transportation, manufacturing, and fixed
contributions [32]. Since manufacturing contributions are included in the supply-chain
performance, criteria related to manufacturing have not been explicitly considered for best-
solution identification. A summary of the criteria is shown in Table 1. These criteria are
used to identify the best solution among all the alternatives populating the design space.

Table 1. Criteria defined by decision-makers for best-solution identification.

System Criteria

Supply Chain
Quality

Risk
Time

Aircraft Operational Parameters

To generate the design space in which to select the best solution, several architectures
are derived from the requirements, as shown in Figure 2. These architectures differ for the
materials and processes of components, machines, and enterprises. Therefore, a huge num-
ber of architectures can be generated by making choices related to manufacturing, aircraft,
and supply-chain systems. Once they are evaluated and optimized, these architectures
represent the alternatives populating the design space.
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makers’ expectations with respect to criteria identified as key to value the manufacturing, aircraft,
and supply-chain systems.

As the last step, the best alternative on the generated design space is identified, trading
decision-makers’ expectations with respect to criteria related to the manufacturing, supply
chain, and aircraft systems. To identify the best solution while trading all the criteria
reported in Table 2, Multi-Attribute Utility Theory is leveraged (see Appendix A). In
fact, it is good practice to use MAUT when at least three criteria are considered for the
decision-making process [33]. With this theory, all the criteria—also called attributes—are
aggregated into one single dimensionless measure, i.e., value. In this way, the best solution,
depending on multiple criteria, can be easily identified as the one with the highest value.
To estimate the value, a weight and a utility function are assigned to each attribute. The
weights represent the relative importance of each attribute. The single-attribute utility
(SAU) functions, instead, are used to quantify decision-makers’ expectations with respect
to each attribute. SAU functions represent the way decision-makers would select a solution
by only considering the specific attribute. In other words, they are used to translate the
qualitative decision-makers’ preferences into analytical curves.
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Table 2. Decision-makers’ expectations.

System Attributes Stakeholder’s Expectation

Supply Chain
Quality Higher the better

Risk Lower the better
Time Lower the better

The value-model theory allows decision-makers to explore several strategic scenarios
by assigning attribute weights, thus prioritizing such attributes in different ways according
to their needs. In addition, SAU functions support decision-makers by easily quantifying
their expectations with respect to each criterion. Regarding this, several methods can
be used to define utility functions; however, interactive tools in which decision-makers
can directly design utility functions might support decision-makers in representing their
qualitative preferences well [21]. VALORISE, the interactive dashboard introduced in the
next subsection, has been developed in house for this reason.

In summary, once the key criteria for decision-makers to value the systems are defined,
and the alternatives of the design space are evaluated, the value-model theory is used to
easily identify the best solution in the value-driven trade space as the one with the highest
value. This solution represents the best alternative for decision-makers with respect to
operational and production aircraft requirements, i.e., value, and the aggregation of key
criteria related to aircraft, manufacturing, and supply-chain systems.

An application case of this methodology is reported in Section 4. The tools and tech-
nologies used to implement such a methodology are introduced in the following subsection.

2.2. Methodology Implementation: VALORISE as a Value-Based Interactive Dashboard

The steps of the methodology shown in Figure 3 have been implemented in the AGILE
4.0 framework [34], extended, and applied to the aircraft, manufacturing, and supply-chain
systems, as shown in Figure 3. Therefore, the tools and technologies of this framework
allow the implementation of stakeholders’ needs and requirements of three systems, the
definition of criteria important for decision-makers, the creation of the system architectures,
and the evaluation of them to generate the design space [35,36].
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By contrast, to identify the best solution in the design space (last step of the framework)
by trading decision-makers’ expectations with respect to the criteria identified as key
to valuing the system (first step of the framework), VALORISE has been developed by
the DLR.

VALORISE, which stands for Value-driven trAde-space visuaLizatiOn, exploRatIon,
and aSsEssment, is an interactive dashboard based on Multi-Attribute Utility Theory. It has
been implemented to simplify and automatize the multi-criteria decision-making process,
analyze real-time strategic scenarios, and easily explore the value-driven trade space for
best-solution identification.

The inputs needed for VALORISE, collected in different file formats—among others,
CPACS files [37]—are the specification of the criteria defined by decision-makers, e.g., the
name and unit of measures, as well as the numerical estimation of such criteria for all the
alternatives populating the design space. The settings of the value model, and, therefore,
the assignment of weights and utility functions, can instead be defined by decision-makers
directly in VALORISE, as shown in Figure 4.
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Decision-makers can interactively draw utility functions to represent their expectations
with respect to each selected attribute and set several weight combinations to analyze the
scenario of interest. Real-time scenarios can be investigated in VALORISE since changes
in the attribute weights and/or utility functions (e.g., on the boundaries of contents) are
directly visualized on the dashboard. This allows decision-makers to compare different
scenarios before making strategic decisions. VALORISE also offers the possibility to export
a table including the value and the attribute contents of each solution in a different format,
if needed, for further analysis.

Finally, VALORISE can also be used as a stand-alone tool to be integrated into a
toolchain with other tools. This integration is useful when, for instance, uncertainty prop-
agation or sensitivity analysis on weights and utility functions must be performed for
the identification of the robust solution. In this case, since a huge number of combina-
tions must be explored, using VALORISE as a stand-alone tool instead of a dashboard
reduces the computational time, as decision-makers do not have to set all the possible
combinations manually.

In this research activity, however, VALORISE is used as a dashboard. Results related
to an aeronautical application case leveraging VALORISE for the value-driven decision-
making process are shown in the next section.
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3. Aeronautical Case Study

The methodology described in Section 2, thus the identification of stakeholders’ needs
and requirements, the system architecture, and the design space exploration, have already
been applied to an aeronautical case study [32,38]. In this paper, the focus is on the
decision-making process and, in particular, on the identification of the best supply chain
producing a specific aircraft component, namely the horizontal tail plane (HTP). The aim
is to address decisions related to manufacturing and the supply chain in the early aircraft
lifecycle stage to avoid increases in costs usually related to production issues. Attributes
identified as key by decision-makers for the identification of the best supply chain were
introduced in Section 2, Table 1. These are the production risk, quality, and time. To simplify
the multi-attribute decision-making process, these criteria are aggregated into one single
dimensionless measure, i.e., value, by assigning a weight and utility function to each of
them. The best solution, trading decision-makers’ expectations, can be easily identified in
the value-driven trade space as the one with the highest value.

In Section 3.1, assumptions are introduced, leading to alternatives populating the
design space on which to select the best solution. Then, the SAU functions provided by
decision-makers are discussed. Based on these assumptions, in Section 3.2, the best supply
chain in the value-driven trade-spaces is identified for each decision-maker. Two cases
are presented: the first (Section 3.2.1) does not prioritize criteria; the second (Section 3.2.2)
prioritizes time. The second case study is proposed as a proof of concept to show if and how
the value-driven trade space changes when prioritizing attributes. Many other strategic
scenarios can be further analyzed.

3.1. Application Case Setup

The baseline for the application case is the horizontal tail plane of a 90-passenger
aircraft, mainly made of aluminum [39]. To simplify the problem and reduce the number of
alternatives populating the design space, this HTP configuration is assumed to be fixed
in terms of materials and process. The materials, manufacturing, and assembly processes
characterizing the horizontal tail plane components are shown in Figure 5.
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The alternatives populating the design space are generated considering the combina-
tions of enterprises with the competencies to perform these selected materials and processes
for each HTP component. Several enterprises can be selected for the manufacture of such
components, as shown in Figure 5 (upper panel). For the assembly processes, by contrast,
several enterprises can be selected for each assembly process, as shown in Figure 5 (lower
panel). In particular, 4 enterprises can be selected for Assembly 1, in which skins and
stringers are joined together, and 9 enterprises can be selected for the Main Assembly, in
which the joined skins and stringers are combined with the joined spars and ribs. Instead,
the Final Assembly of installing the HTP into the rest of the aircraft is the only process
assumed to be performed by a single enterprise. The qualitative decision-makers’ expecta-
tions are summarized in Table 2. As expected, decision-makers prefer supply chains with
low production time and risk and high quality.

The enterprises involved in the manufacture and assembly of the HTP components are
spread all around the world, and are in-house sites and suppliers. Therefore, depending on
the combined enterprises, production scenarios are analyzed in which the HTP components
are fully made in house, fully outsourced to suppliers, or partially made in house and
partially outsourced. The full enumeration of alternatives is 9 × 106. However, only
19 supply-chain alternatives are identified on the 4-objective Pareto front [39–41]. These
solutions are the optimum supply chains in terms of production performance. The aim
of this application case is to identify the best supply chain among these 19 optimized
alternatives while considering, at the same time, decision-makers’ expectations with respect
to production risk, time, and quality. Therefore, as the next step, the decision-makers’
expectations must be defined.

To estimate the value of the 19 alternatives, these qualitative expectations have to be
translated into analytical functions that are the single-attribute utility functions. The utility
functions drawn by decision-makers in VALORISE are reported in Figure 6. These utility
functions, shown in Figure 6, have been provided by the two industrial partners involved
in this research activity within the European Project AGILE4.0, here called Decision-Maker
A and Decision-Maker B. The qualitative preferences are the same for both decision-makers
(Table 2). By contrast, the quantification through utility functions of those expectations
changes with respect to each decision-maker (Figure 6b,c). A different utility is associated
with each attribute by each decision-maker, depending on the way they make decisions. For
example, referring to the time utility functions, Decision-Maker A’s willingness to accept a
solution with low production time is lower than that of Decision-Maker B, as shown by
the yellow stars in Figure 6b,c. As a consequence, the same solution (supply chain) has
a different value based on the utility associated with attributes by decision-makers. The
utility function implementation, therefore, allows the consideration of decision-makers’
expectations in the design space.

Linear utility functions, in the first row of Figure 6, are included in the case study
since they are used to create a reference value-driven trade space uninfluenced by decision-
makers. Attribute contents are normalized (0 to 100) due to the intellectual properties of the
industrial partners involved in the application case. In the case of linear functions, utilities
do not represent decision-maker preferences, but they can be read as analytical functions
that can be used to translate different parameters with different scales of measurement
in the same dimensionless ones for correct comparison. In this case, the solution with
the highest value might not be the best solution for decision-makers since decision-maker
expectations have not been considered yet.

Once the utility functions are defined, a weight must be assigned to each attribute
to estimate the value of the 19 alternatives and identify the best solution. In the next
subsection, the best supply chain for decision-makers is identified when the same weight is
assigned to all the attributes (no prioritization) or when one of them (time) is prioritized.
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Figure 6. Single-attribute utility functions quantifying decision-makers’ expectations drawn in
VALORISE (a) Reference Case (b) Decision-Maker A (c) Decision-Maker B.

3.2. Results: Value-Driven Trade-Space Exploration

Here, the value-driven trade-spaces are presented, implementing decision-makers’
expectations through the utility functions introduced in the previous section. Two case
studies are addressed. In the first, attributes are not prioritized, meaning that the same
weight is assigned to all the attributes. In the second, one of the attributes (time) is
prioritized. As already mentioned, this case study is proposed as a proof of concept to
show if and how the value-driven trade-spaces change when prioritizing attributes. Many
other strategic scenarios can be further analyzed.

3.2.1. Case Study without Attribute Prioritization

The value-driven trade-spaces generated by implementing the utility functions re-
ported in Figure 6, and assuming the same weights for all the attributes, are reported in
Figure 7. In this case, there is no attribute prioritization since the same weight (0.33) is
assigned to all the attributes. Instead, decision-makers’ expectations are accounted for in
the design space through the utility functions.

The solution with the highest value highlighted in the reference case is the best an-
alytical solution since decision-makers’ expectations are not implemented, as explained
in Section 3.1. This solution turns out to be the best one for Decision-Maker A but not for
Decision-Maker B. Implementing utility functions is, therefore, essential for the identifica-
tion of the best solution that matches the decision-makers’ expectations. Indeed, the best
solution for Decision-Makers A and B, i.e., the one with the highest value in the value-
driven trade-spaces, is different, being, respectively, Solutions 1 and 10, as highlighted by
the red circles in Figure 7b,c. The reason for this lies in the different utilities that decision-
makers assign to attributes and, thus, to the different ways of making decisions. These best
solutions correspond to supply chains matching decision-makers’ expectations in terms of
risk, time, and quality since these are the attributes aggregated in value.

In detail, the two best solutions (1 and 10) correspond to the same supply chain, thus
to the same combination of enterprises. However, these enterprises perform different
manufacturing and/or assembly processes. In this specific case, as shown in Table 3, the
only difference between the two supply chain relays in the in-house site responsible for the
Main Assembly is, respectively, In-House Site 1 for Supply Chain 1 and In-House Site 2 for
Supply Chain 10. The percentage of ribs specified in Table 3 represents the amount of ribs
produced by each single enterprise. For the other components (skins, spars, and stringers),
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it is assumed that each enterprise is responsible for the manufacture of all of them. The
number of components, materials, and processes characterizing the HTP components (skins,
stringers, spars, and ribs) were introduced in Figure 5.
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Table 3. Manufacturing and assembly processes are performed by the enterprises involved in the
best supply chains for Decision-Maker A—Solution 1 (X) and Decision-Maker B—Solution 10 (-).

Skin
Ribs

Spars Stringers Assembly1 Main
Assembly30% 70%

In-House Site 1 X - X - X
In-House Site 2 X - X - X - -

Supplier 1 X -

The difference in the enterprise performing the Main Assembly leads to different
production risks, time, and quality (and thus value). As shown in Figure 8, the production
performance of these supply chains is almost the same, except for the quality. This is mainly
related to the different competencies that the two in-house sites have in performing the Main
Assembly. The difference in production risk and time is related to competencies but also to
transportation contribution, with the two sites located in two different geographic locations.
However, this difference and, in general, the difference in the production performance of
Supply Chain 1 and 10 is very slight. This is also because the 19 solutions of the value-driven
trade-spaces are all optimized solutions.
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The slight difference in the production performance of Supply Chain 1 and 10 implies
a small difference in the value of these two alternatives. Nevertheless, Supply Chain 10 has
a relatively lower cost than Supply Chain 10. The motivations still rely on the competencies
of the enterprises, and thus on the manufacturing cost, as well as in the geographic location
in which enterprises are located that lead to different fixed and transportation costs. In
both cases, however, the costs related to Supply Chain 1 and 10 are high compared with
other solutions, e.g., solution 3. This solution has a lower cost but also value. Value vs. cost
tradeoff studies can be performed by exploring the value-driven trade space. An example
of a solution investigation of interest for Decision-Maker A is reported in Figure 9. The
same discussion can be addressed for Decision-Maker B.
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Buy” tradeoff studies.

The solutions highlighted in Figure 9 are Solutions 1 and 10, which have already
been introduced, and Solution 3. Looking at the value-driven Pareto front (the dashed
line in Figure 9), these solutions might be of interest to Decision-Maker A because they,
respectively, represent:

• Solution 1: the best solution with the highest value and cost
• Solution 10: a solution with high value but reduced cost
• Solution 3: the solution with minimum value and cost

Solutions 1 and 10 have already been introduced. These solutions represent the same
supply chain in which most of the processes are performed at in-house sites, and the only
difference is in the enterprise performing the Main Assembly. In Supply Chain 3, two other
enterprises are involved: another in-house site and a supplier. A summary of the processes
performed by each supply chain (1,10,3) is reported in Table 4.

Table 4. Manufacturing and assembly processes performed by the enterprises involved in the supply
chain with lowest value and cost—Solution 3 (#) compared with best supply chains for Decision-
Maker A—Solution 1 (X)—and Decision-Maker B—Solution 10 (-).

Skin
Ribs

Spars Stringers Assembly1
Main

Assembly30% 70%

In-House Site 1 X - # X - # X

In-House Site 2 X - X - X - - #

In-House Site 3 # #

Supplier 1 X - #

Supplier 2 #

The production performance of Supply Chain 3 is instead reported in Figure 10. This
supply chain has a higher production risk and time and a lower quality if compared to
Supply Chains 1 and 10. This is, once again, mainly related to the competencies of the
enterprises involved. In this specific case, however, the manufacturing of stringers is
also outsourced to suppliers. In addition, the cost associated with this supply chain is



Systems 2023, 11, 578 13 of 18

lower than those of Supply Chains 1 and 10. The motivation relies on the competencies
of enterprises since low competencies lead to low cost, but also to transportation. In fact,
in Supply Chain 3, most of the components are transported by water, which reduces the
transportation cost but increases the risk and time with a consequent decrease in value.
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With this approach, decision-makers can, therefore, decide, from the early aircraft
lifecycle stage, whether to select a solution with lower risk and time and higher quality
(so high value), therefore investing more cost, or pay less, therefore selecting a riskier
supply chain. In addition, decision-makers can also address the “make or buy” tradeoff
by deciding whether to produce mostly in house, paying more but having higher value
(Solution 1 and 10), or rely more on suppliers, which can be risky (low value) but less
expensive (Solution 3).

3.2.2. Case Study with Time Prioritization

In the previous case study, the best solution for the value-driven trade-spaces was
identified by assuming the same weights for all the attributes. This assumption implies that
there is no prioritization among attributes, and, as a consequence, the value-driven trade
space is influenced only by decision-makers’ expectations implemented in utility functions.
However, strategic scenarios can be analyzed by prioritizing attributes, therefore assigning
different weight combinations to attributes. This can be easily done in VALORISE since it
gives decision-makers the possibility to check the value-driven trade-space changes in real
time based on the weight combination analyzed. As a proof of concept, an example of value-
driven trade-space exploration, when time is prioritized with respect to the other attributes,
is addressed in this case study to show how and if the value-driven trade-space changes.

The weight combination analyzed is reported in Table 5, where, by contrast, the utility
functions are the same as those plotted in Figure 6. The aim of this application case is to
identify the best supply chain producing the specific HTP configuration (Figure 5) in a
scenario in which production time plays a key role for decision-makers.

Table 5. Weight combination: time prioritization.

Attribute Weight

Risk 0.25
Time 0.50

Quality 0.25
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The value-driven trade-spaces of this case study, called time prioritization, are shown
in Figure 11 for both decision-makers. In this specific case, the best solutions for Decision-
Makers A and B are still, respectively, Supply Chain 1 and Solution 10. However, the value
associated with these solutions drastically changes because of the higher weight associated
with time.
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Therefore, for this specific case, the best solutions remain the same for both decision-
makers even if the value associated with these solutions changes because of time prioriti-
zation. Exploring several weight combinations, it is possible to identify the best solution,
i.e., the solution with the highest value, but also the most robust solution, i.e., the solution
whose variation in value does not drastically change in the different strategic scenarios.
Decision-makers can perform other interesting tradeoff studies and decide whenever to
select the best solution for specific scenarios or the robust solution whose oscillation in
value is not so high in all the strategic scenarios of interest.
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4. Implications and Findings

A value-driven concurrent approach addressing decisions considering aircraft, manu-
facturing, and supply-chain criteria at the same time is proposed in this paper. The objective
is to overcome the limits of the sequential approach, traditionally adopted by aeronautical
companies, in which decisions about supply chain and manufacture are addressed once the
aeronautical system configuration is fixed after decisions about the aircraft configuration
have already been addressed.

The challenge faced in this research activity is to formalize, automatize, and simplify
multi-criteria decision-making processes when the aircraft, i.e., the System of Interest, and
the manufacturing and supply-chain systems, defined as Enabling Systems, are designed
at the same time, i.e., when decisions on the three systems are concurrently addressed in
the concept stage. To perform the multi-criteria decision-making process, decision-makers’
criteria related to both the operation and production are collected. The design space is then
generated considering choices related to the aircraft (e.g., number of components), to the
manufacturing (e.g., materials and processes), and to the supply chain (e.g., enterprises).
Then, value-model theory is adopted to simplify the multi-criteria decision-making process,
thus identifying the best solution in the design space while trading decision-makers’ expec-
tations with respect to criteria related to multiple systems. This allows decision-makers
to also consider, from the early lifecycle stages, “-ilities”, which usually represent hidden
sources of increasing cost.

The value model adopted in this study is the Multi-Attribute Utility Theory. It is
not the aim of this paper to develop a new value-model theory. Instead, the idea is to
apply already existing value-model theories to new application cases and, in this case, to
extend the criteria important for making decisions to aircraft production (manufacturing
and supply chain). Therefore, MAUT has been applied to the design, manufacturing, and
supply chain of a specific aircraft component, i.e., the horizontal tail plane. This proved to
be useful for the identification of the best solution when the aircraft, manufacturing, and
supply-chain systems were considered. The best solution based on multiple criteria can be
then easily identified as that with the highest value. Other value-model theories might be
explored in future studies and implemented in VALORISE.

VALORISE is an in-house value-based dashboard developed to support and automa-
tize the multi-criteria decision-making process. It is used to automatize the decision-making
process and easily identify the best solution on the Pareto front by trading multiple decision-
makers’ expectations. VALORISE supports decision-makers in modeling their expectations,
analyzing real-time strategic scenarios by prioritizing criteria, and easily exploring the
value-driven trade space for best-solution identification. Having a tool supporting decision-
makers in the elicitation of the utility functions is key when applying the value-model
theory. With VALORISE, decision-makers could easily draw their own utility functions
and explore scenarios of interest by themselves, easily changing the weights associated
with attributes. This allows decision-makers to perform uncertainty propagation analysis
and, therefore, identify the most robust solution, i.e., the alternative whose value is almost
constant in all the strategic scenarios of interest. Decision-makers can decide whether
to select the best solution for a specific strategic scenario or the robust solution with a
lower value in a specific scenario but whose oscillation in value is relatively small in all the
strategic scenarios [7,42].

Finally, the application case demonstrates the possibility of performing “value vs. cost”
and thus “make or buy” tradeoff studies, giving decision-makers the opportunity to decide
whether to produce in house (high value, high cost) or outsource to suppliers (low value,
low cost). The final decision in this paper always falls on decision-makers as requested by
industrial partners. As the first study, a trade space in which several alternatives can be
explored and analyzed is preferred over having only one solution selected as the best by
applying artificial intelligence algorithms.
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5. Conclusions

A concurrent value-driven approach is proposed in this research activity. The objective
is to address decisions on the aircraft, supply chain, and manufacturing at the same
time. The formalization of the proposition and details on the tools and technologies used
to automatize it are reported in Section 2. The focus is especially on VALORISE, the
value-based interactive dashboard developed at the DLR, supporting decision-makers in
easily modeling their expectations through utility functions, analyzing real-time strategic
scenarios by prioritizing criteria, and exploring the value-driven trade-spaces for best-
solution identification. VALORISE was used by decision-makers to model their own utility
functions for the case study reported in Section 3. Results show that by leveraging this
approach, enterprises can perform “value vs. cost” or “make vs. buy” tradeoff studies.
This approach, therefore, provides decision-makers with the opportunity to consider, from
the early lifecycle stages, the “-ilities” related to production, usually representing hidden
sources of increase in cost.

Activities already in progress aim to complexify the application case, including the
variability of materials and processes and, thus, the HTP configuration for the identification
of the best supply chain for the best HTP configuration. From a decision-making perspec-
tive, the process is the same, with the only difference being the reliance on the number of
aggregated criteria. The challenge is more on the elicitation of the Pareto front, depending
on the optimization algorithms used.

As further studies, uncertainty propagation or sensitivity analysis on weights and
utility functions are recommended for the identification of robust solutions. In addition,
other value-model theories can be explored for study completeness.
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Appendix A

Several techniques can be used to support decision-makers in formalizing their value
structure. In this approach, the Multi-Attribute Utility (MAU) value model is used (Ross,
Rhodes, & Fitzgerald, 2005 [21]; Keeney & Howard, 1993 [43]):

value =
N

∑
i=1

λi U(X i) (A1)

In which:

• N is the number of attributes;
• U (Xi) is the single-attribute utility function;
• λi is the weight associated with attributes Xi:
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