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Abstract: The ceramic pastes of ca. 31 samples recovered from the Almaraz archaeological site,
located in the south bench of Tagus River, were studied in detail using XRF, micro-Raman and
GSDR spectroscopies, as well as the XRD technique. The ceramic sherds could be grouped into six
categories, red slip tableware, decorated tableware, yellow slip tableware, grey tableware, common
tableware, and handmade pottery. Our studies of the mineralogic composition of the sherds’ body
indicate all ceramics were produced locally, using siliceous clays in most cases and calcareous clays
in a few ones. Micro-Raman and ground state diffuse reflectance absorption spectroscopy provided
useful information regarding the materials used to produce the coloured ceramics: hematite and
brookite for the red slip and decorated ceramics, jacobsite or carbon black for the black decoration
or grey ceramics. For the yellow slip tableware, a simple engobe rich in yellow clay was used. XRF
spectroscopic studies provided the elemental composition of all samples, and biplots of the potassium
(K) versus calcium (Ca) contents, normalized to the silicon content of each ceramic paste, clearly
show Pliocene and Miocene local clays sources were used to produce most ceramics. Only one sherd
can be considered a Lisbon production.

Keywords: ceramic production; Tagus-estuary; Phoenician ware; micro-Raman; XRD; XRF; GSDR

1. Introduction

The first millennium BC marks a moment of significant cultural and socio-economic
changes that ultimately led to the emergence of early forms of urban life in the Tagus
Estuary [1]. Our understanding of this period has seen notable progress in recent years,
allowing us to expand our comprehension of the profound transformations that followed
the arrival of Phoenician populations in the region in the 8th century BC, according to
conventional chronology [2,3]. In the context of the arrival of these exogenous groups,
a new regional reality took shape, leading to a series of changes in material culture and
productive practices that to be well consolidated by the 7th century BC. Several factors
illustrate this situation, including the development of wheel-pottery production in the
Lower Tagus, which emerged between the 8th century and the early 7th century BC and
witnessed a progressive intensification and diversification throughout the Iron Age [4].

The advent of the potter’s wheel, coupled with advanced kilns that ensured precise
temperature control and predominantly oxidizing firing atmospheres, led to a signifi-
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cant upswing in ceramic production [5]. In contrast to preceding moments, the focus
of production shifted towards commercialization, primarily at a regional level, although
supra-regional trade was also practiced. Furthermore, the new technologies allowed the
development of a wide range of formal styles and unprecedented aesthetic finishes. The
new ceramic corpus, which includes storage containers, transport vessels, tableware, and
everyday ceramics, exhibits a notable degree of standardization and consistency, spanning
the entire southern region of the Iberian Peninsula [6].

Nevertheless, concrete evidence regarding production contexts in the Tagus Estuary is
currently limited and, as of now, no identifiable production center has been pinpointed. A
few isolated structures possibly linked to a low-scale ceramic production were, however,
already identified, namely the Miroiço kiln in the Cascais area [7] and the Rua dos Correeiros
structure, in the central area of Lisbon [4]. In addition to these elements, the presence of
objects referred to as “ceramic prisms” suggests the existence of additional production areas
along the Tagus Estuary. These artifacts, designed for tasks related to the drying and firing
phases—specifically, stabilizing and separating ceramic objects—are well-documented in
the Tagus Estuary. Examples include findings at Quinta da Marquesa II in Vila-Franca de
Xira [8] and, precisely, in Almaraz.

Given the limited number of data available, analytical approaches, especially those
rooted in systematic studies of ceramic assemblages, become particularly important for
characterizing ceramic production [9]. These approaches enable the identification of the
origins of the ceramics and the reconstruction of various aspects of production, such as
raw material selection, treatment methods, composition of surface decorations, and firing
temperature, which contribute to a deeper understanding of the technical developments
associated with this period.

Previous compositional studies of pottery ceramic pastes, clay raw materials, and
firing experiments enabled us to establish a limited number of clay sources and formula-
tions for the Phoenician potteries found at S. Jorge Castle and amphorae from the Almaraz
archaeological site [10–13]. Pliocene ceramic pastes (highly siliceous) or Miocene ceramic
pastes (with a high content of calcium carbonate) were detected. Potters settled preferen-
tially in areas with clayey soils. We could corroborate the identification of the sources of
clay with the presence of nearby archaeological finds.

One should emphasize in the Lisbon region, Miocene clays can be found in the North
and South of the Tagus River, while Pliocene clays only exist on the South bank [12–15].

The systematic study of the ceramic assemblage from the Quinta do Almaraz archaeo-
logical site, conducted as part of a multi-annual research project, has yielded analytic data
that provide further insights into the characterization of this local and regional ceramic
production. It is precisely these new data that will now be presented in detail.

2. Archaeological Context and Framework

The settlement of Quinta do Almaraz is located in a long spur on the left bank of
the Tagus mouth, opposite Lisbon. Discovered in 1986, the site saw an initial phase of
archaeological research conducted until 2001 [16]. This was followed by a period of limited
research activity, which was only resumed with the start of the project named Proj.In.QA,
in 2020.

The assortment of artifacts recovered through the excavations distinctly emphasizes
the Phoenician cultural imprint on the site. This influence is evident through the presence
of characteristic ceramic types from this period, such as red slip and grey ware, pithoi,
Cruz del Negro type urns, and amphorae. Furthermore, the architectural features provide
additional validation of this influence, manifesting in the layout of domestic structures,
construction techniques, and the defensive system, all exhibiting a visible Mediterranean
influence [17].

Almaraz played a crucial role in the economic and commercial framework of the Tagus
Estuary, a reality that is substantiated by a notable collection of imported artifacts such
as the Egyptian scarab, alabaster vases, ivory plaques, and Middle Corinthian ceramic
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fragments [18,19], as well as by the set of lead weights, some of which are affiliated with
the oriental measurement system [20]. Moreover, evidence strongly suggests the settlement
served as an important center for metallurgical production [21], which along with other
production activities indicated by a diverse range of artifacts such as pottery, weaving, and
fishing implements, underscores the economic importance of the settlement during the
Iron Age [17].

Based on the available data, it is evident the settlement of Almaraz came into existence
between the latter part of the 8th century BC and the early 7th century BC, experiencing a
significant phase of growth around the 6th century BC. However, this scenario underwent
a shift at some point during the 5th century BC, marked by a progressive decline in
the settlement’s vitality. This transition was reflected in various ways, including the
deactivation of the defensive structure and the abandonment of the residential area adjacent
to the river [22].

Until recently, most of the ceramic assemblage of Almaraz remained unknown, with
only the amphorae having undergone a complete and comprehensive study [23], which
was further subjected to an archaeometric approach [12]. However, within the scope of
the new research project, it was possible to conduct a detailed study and categorization
of the entire ceramic assemblage, which included common ware, red slip ware, painted
ware, grey ware, and handmade pottery. It is precisely these ceramic categories that form
the focus of the archaeometric analyses presented in this paper in Figure 1.
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Figure 1. Phoenician ceramic sherds collected from the Almaraz archaeological site.

3. The Ceramic Samples—Selection Methodology

The selection process began with a comprehensive macroscopic analysis of the var-
ious ceramic categories identified in Almaraz. The goal was to delineate the productive
and technical diversity inherent to each category and subsequently propose preliminary
Manufacturing Groups (MG).

To this end, we applied a set of criteria established within the realm of ceramic studies
for the macroscopic characterization of MGs [24,25]. These criteria encompassed factors
such as the nature of the clay material, the color of both the external and interior surface, the
appearance of the production in terms of hardness and texture, the frequency of inclusions,
the presence of voids and cracks, as well as the firing technique.

These first observations led us to the identification of eight MGs for red slip ware,
four MGs for painted pottery, four MGs for yellow slip pottery, six MGs for grey ware,
four MGs, five MGs for common ware, and for handmade pottery. From these groups,
specific samples from different contexts were chosen for the current analysis. Additionally,
samples of coating techniques, specifically red slip and yellow slip engobe surfaces, were
also subjected to archaeometric analysis.

4. Experimental Techniques under Use

The X-ray diffraction (XRD) analyses were conducted utilizing a Panalytical X’ PERT
PRO diffractometer system equipped with a copper source. This method furnishes essential
insights into the mineralogical and phase composition of the ceramic body of the sherds
or raw materials. Micro-Raman investigations were carried out employing a Renishaw
InVia Confocal Raman equipment in a backscattering configuration, using a 532 nm laser
excitation. These spectra provide both complementary information and confirmation of
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the mineralogical composition provided by the XRD data. For elemental composition on
the studied pastes, X-ray fluorescence (XRF) analyses were performed using a Niton XL3T
GOLDD spectrometer from Thermo Scientific. Ground state diffuse reflectance absorption
spectra spectroscopy (GSDR) experiments were conducted employing a custom-built dif-
fuse reflectance setup, incorporating three standards: Spectralon white and grey disks, and
barium sulfate powder. Data treatment starts with the calculation of the reflectance versus
wavelength, followed by the calculation of the remission function, which is a function of
the concentration of the absorbing species. This technique provides spectral information re-
garding the absorption bands in the UV and Visible region that correlates with the coloured
surfaces.

Further details regarding all these techniques were described in previous publica-
tions [10–13].

5. Results and Discussion
5.1. XRD Studies

Ceramic bodies of the pottery recovered from the Almaraz archaeological site were
grouped into two main types (Figure 2). XRD diffractograms enabled us to establish the
main characteristics of each type. The main XRD peaks observed for each sample are
presented in Table 1.
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Figure 2. Representative XRD patterns for ceramic bodies of sherds from the Almaraz archaeological
site: Palença (Miocene) and Pliocene type pastes. XRD peaks: Quartz (Qz), anorthite (An), diopside
(D), illite (I) or muscovite (M), albite (Alb), calcite (CC) and microcline (Mic). (All diffractograms
were normalized to the quartz peak at 2θ = 21.0 (constant intensity), to allow comparisons of the
relative amounts of all the other minerals).
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Table 1. XRD main peaks used to identify the minerals in the diffractograms of all ceramic bodies.

Quartz—Q, SiO2, 2θ = 21.0, 26.7, 36.7, 46.0, 50.2, 60.0, 64.1, 68.2,
Microcline—Mic, K Al Si3O8, 2θ = 20.9, 25.7, 27.5, 42.0, 50.8,
Illite—I, (K, H3O)(Al, Mg, Fe)2(Si,Al)4O10(OH)2) 2θ = 8.8, 17.8, 19.8, 25.7,
Muscovite—M, KAl2(Si3Al)O10(OH)2, 2θ = 8.9, 17.8, 19.8, 25.7,
Calcite—CC, CaCO3, 2θ = 23, 29.4, 47.5,
Anorthite—An, CaOAl2O3(SiO2)2, 2θ = 22, 27.5, 27.9,
Diopside—D, CaMgSi2O6, 2θ = 29.9, 30.5, 31.0, 35.1, 35.7,
Albite—Alb, NaAlSi3O8, 2θ = 13.9, 22, 23.8, 24.1, 26.7, 27.8, 30.2, 51.3,
Hematite—H, α-Fe2O3, 2θ = 24.4, 35.7. 49.6, 54.2, 57.4

The Pliocene type pastes exhibit quartz (Q), albite (Alb)—a sodium alumino silicate
and microcline (Mic)—a potassium alumino silicate, (see Figure 2), consistent with the use
of high siliceous Pliocene clays as raw materials. Muscovite (M) was also detected, but
muscovite and illite diffractograms were indistinguishable. Nowadays, it is still possible to
collect the Pliocene clays in the surrounding areas of Almaraz. The presence of muscovite
in the ceramic body shows the firing temperatures inside the kiln did not exceed 850 ◦C,
because above that value all muscovite (or illite) becomes unstable [10–12].

The third diffractogram in Figure 2 exhibits a considerable amount of calcium carbon-
ate. Again, it is possible to collect some clays in the left margin of the Tagus River that
exhibit a Pliocene pattern but also include a large amount of calcium carbonate (calcite).
Despite being less typical, these clays exhibit a Pliocene XRD pattern.

Very similar diffractograms were obtained in a previous study of red slip ware from
the archaeological site of São Jorge Caste (samples R1 to R5 in the paper ref. [10]. This
means most probably the workshops that produced this Phoenician pottery were located
at Almaraz, since these Pliocene clays did not exist in the right margin of the Tagus River.
No traces of kilns were found at Almaraz thus far, but some trivets of triangular section
were recovered from local pits, pointing to the existence of local workshops with kilns at
Almaraz.

Palença type pastes were produced with clays of Miocene origin from sources located
in the left margin of the Tagus River. These ceramic bodies have complex diffractograms,
as Figure 2 shows. Quartz is the major mineral component, and anorthite (An), a calcium
alumino silicate, is the second major component and appears as a typical fingerprint of the
Palença ceramic bodies. The absence of calcite (CC) and the presence of Diopside (D), a
calcium and magnesium silicate, implies Tf ≥ 850 ◦C [10,26]. Diopside formation implies
the existence of magnesium in the raw materials. Anorthite’s formation needs very high
firing temperatures in the kiln (above ~900–950 ◦C) together with a long-lived firing [10,26].

Samples RS1 to RS8, DC1 to DC4, G1 to G6, H1 to H4, and C1 to C3 have siliceous
pastes (Pliocene) while samples YS1 to YS4 and C5 are Palença (Miocene) type. Sample RS
5 is an exception because it is siliceous but it has a high level of calcium carbonate. Sample
C4 exhibited a different diffractogram, not presented in Figure 2, was produced in Lisbon
workshops as can be seen in previously published diffractograms [12].

5.2. XRF Studies

The XRF results achieved for the ceramic bodies of sherds from the Almaraz archaeo-
logical site are presented in Table 2.
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Table 2. Chemical composition of the powdered pastes of the ceramic fragments collected in the Almaraz archaeological site, obtained by XRF. Data are presented as
wt.% for major and minor constituents and ppm for trace elements. (nd: not detected; nq: not quantified).

MgO Al2O3 SiO2 P2O5 K2O CaO TiO2 Fe2O3 Mn V Cr Ni Cu Zn As Rb Sr Zr Nb Pb
(SiO2 + Al2O3 +

K2O)/CaO

Red slip tableware

RS1 1.2 16.9 65.2 nd/nq 4.8 2.2 1.3 8.4 nd/nq 269 182 nd/nq 52 178 23 115 67 249 24 47 40

RS2 nd/nq 18.2 64.6 nd/nq 4.6 2.5 1.3 8.6 nd/nq 378 270 412 114 266 43 118 115 282 33 70 35

RS3 nd/nq 14.1 71.2 0.4 3.6 2.6 0.9 6.7 nd/nq 213 132 2571 66 138 48 88 94 258 20 61 34

RS4 1.4 14.5 64.9 nd/nq 4.6 5.4 1.2 7.9 nd/nq 240 159 281 134 219 nd/nq 91 107 206 24 59 16

RS5 nd/nq 13.5 56.8 nd/nq 4.1 15.4 1.3 8.8 nd/nq 225 201 nd/nq 75 191 22 78 225 197 24 54 5

RS6 1.6 17.8 63.0 nd/nq 4.7 2.5 1.3 9.0 nd/nq 273 209 nd/nq 93 215 33 101 86 217 22 39 34

RS7 1.2 16.8 65.2 nd/nq 4.6 2.3 1.3 8.6 nd/nq 271 203 nd/nq 55 163 25 87 71 188 18 31 38

RS8 1.6 20.0 60.4 nd/nq 4.9 2.4 1.4 9.0 nd/nq 482 284 301.3 133 315 38 124 90 295 26 59 36

Dercorated
ceramics

DC 1 1.3 17.4 60.8 nd/nq 4.4 5.7 1.3 9.0 nd/nq 321 251 196 63 216 nd/nq 102 130 234 23 42 15

DC 2 1.2 19.6 61.5 nd/nq 4.9 2.0 1.4 9.2 nd/nq 356 289 nd/nq 132 276 33 118 100 245 27 51 43

DC 3 1.5 17.4 65.1 0.2 4.5 1.9 1.3 7.8 nd/nq 263 172 nd/nq 56 178 27 113 84 287 26 35 45

DC 4 1.8 18.4 63.1 0.2 4.9 1.6 1.3 8.5 nd/nq 363 213 204 110 204 37 112 58 231 23 41 55

Yellow slip
tableware

YS 1 1.4 14.9 58.1 0.0 4.4 10.0 1.4 9.5 nd/nq 288 234 410 73 217 24 97 191 226 29 41 8

YS 2 1.5 14.1 59.8 0.0 4.3 9.7 1.3 9.1 nd/nq 280 213 205 nd/nq 173 26 81 155 187 23 36 8

YS 3 0.0 17.3 50.4 0.2 3.2 16.7 1.5 10.3 509 519 430 812 204 234 58 76 509 219 32 45 4

YS 4 1.6 15.2 53.2 0.3 3.1 15.9 1.3 9.1 352 399 288 318 92 151 43 61 388 191 22 37 5

Grey
tableware

G 1 nd/nq 16.5 66.5 nd/nq 5.0 1.9 1.3 8.6 nd/nq 248 190 360 47 209 nd/nq 110 60 262 25 63 47

G 2 nd/nq 17.5 65.4 nd/nq 5.1 1.8 1.4 8.7 nd/nq 311 222 318 56 216 nd/nq 105 56 236 23 59 49

G 3 1.5 14.5 68.4 0.4 2.8 2.9 1.1 8.1 793 249 162 1086 52 140 41 56 111 253 18 41 29

G 4 1.2 14.4 68.2 0.6 2.8 3.0 1.1 8.3 723 241 184 970 53 137 55 64 150 257 23 41 29

G 5 nd/nq 17.9 58.9 0.3 4.9 3.2 1.3 13.3 nd/nq 249 188 126 73 187 58 79 89 159 15 32 26

G 6 1.4 20.3 57.3 0.3 5.2 3.1 1.4 10.6 nd/nq 521 352 189 149 334 69 99 99 177 23 58 26
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Table 2. Cont.

MgO Al2O3 SiO2 P2O5 K2O CaO TiO2 Fe2O3 Mn V Cr Ni Cu Zn As Rb Sr Zr Nb Pb
(SiO2 + Al2O3 +

K2O)/CaO

Handmade
ceramics

H 1 nd/nq 14.3 63.9 nd/nq 4.4 3.2 0.9 13.0 395 222 195 1189 108 200 43 83 146 166 17 34 26

H 2 1.9 15.3 63.7 0.3 1.2 4.9 0.9 11.5 490 289 519 430 89 63 42 22 244 104 15 17 16

H 3 1.7 16.9 52.5 0.4 1.7 6.6 4.6 15.2 1304 610 501 nd/nq 68 125 41 19 351 220 58 nd/nq 11

H 4 1.3 18.4 63.1 0.3 5.0 1.2 1.3 9.3 nd/nq 299 194 nd/nq 53 175 26 118 76 253 29 45 72

Common
tableware

C 1 nd/nq 14.7 69.0 nd/nq 4.9 2.0 1.3 8.0 nd/nq 208 192 nd/nq 45 158 29 86 47 219 20 114 44

C 2 nd/nq 13.4 68.3 0.23 3.7 6.2 1.2 6.9 nd/nq 205 134 225 57 102 37 61 68 327 20 76 14

C 3 1.41 13.9 64.8 0.22 4.2 7.0 0.8 7.4 nd/nq 228 139 1715 94 184 26 84 126 183 22 76 12

C 4 1.81 14.0 50.3 nd/nq 2.9 21.7 1.4 7.7 nd/nq 252 219 434 59 147 nd/nq 62 196 212 29 81 3

C 5 nd/nq 14.0 60.4 nd/nq 3.0 14.0 1.2 7.3 nd/nq 209 150 228 nd/nq 110 nd/nq 50 133 185 23 25 6
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Scatterplots for K/Si versus Ca/Si (% wt ratio) for all sherds (Figure 3) clearly exhibit
two groups: Pliocene type sherds, with low calcium content, and Miocene type sherds with
a much higher calcium content. Only one sherd is separated from these two groups, the
sherd from tableware produced in the Lisbon workshops, the one with the highest calcium
content. The ratio, R, defined by:

R = (SiO2 + Al2O3 + K2O)/CaO (1)

was used in previous papers of our group [10–13], to quantify the relative amounts of the
structural components of the ceramic pastes, (SiO2 + Al2O3 + K2O), related to calcium
fractions (CaO).
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Figure 3. Scatterplot of K/Si versus Ca/Si count ratios for the studied ceramic. Pliocene type pastes—
Blue ellipse. Miocene type pastes—Red ellipse. The contents of K and Ca measured by XRF were
normalized to the Si content [27].

The plot in Figure 3 allows us to view the differences between the ceramic bodies with
clays of Pliocene origin (highly siliceous and calcium depleted, in most cases) in which
the R parameter is very high (R = 10 to 70—blue ellipse) [10,11]. Palença ceramic bodies
produced with Miocene clays show much smaller R values: R = 5 to 10 (red ellipse). The
Lisbon (C4) sample exhibits an R = 3. The compositional profile of decorative ceramics
shows very low compositional variability, revealing the careful selection of raw materials
and the manufacturing process. In contrast, handmade and common ceramics exhibit
the maximum dispersion of values in certain chemical components, indicating a less
standardized approach (Table 2). For handmade pastes, compositional differences are
mainly dependent on the quartz, Illite/muscovite, and alkaline feldspars proportions. For
common ceramics, the carbonate fraction of the pastes is very variable.

5.3. Micro-Raman Studies

Micro-Raman spectroscopy is an excellent technique to identify the compounds used
to decorate the surface of the ceramic or the engobes. In the case of the red slip tableware,
the red colour is due to the use of hematite (H, α-Fe2O3) associated with brookite (TiO2). All
the red slip ware ceramics were made with Pliocene clays, highly siliceous, so the detection
of quartz in all samples is no surprise. Also, the red engobe exhibits anatase (TiO2) and
carbon black in the darker surfaces. In some special cases, a remarkable amount of calcium
carbonate was detected, as shown in Figure 2 and also in the fifth curve of Figure 4a).
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Figure 4. Micro-Raman spectra from the surface colours of all sherds under study. H is hematite, CB
is carbon black.

The major differences in the Raman in the case of the decorated ceramics (Figure 4b)
is that part of the surface is decorated, and another part is not. In the black stripes, the
potters used the mineral jacobsite (Mn2+Fe3+

2O4), in the red stripes hematite and albite
(NaAlSi3O8,) could be detected. Non-surprisingly, anatase, quartz, and albite/feldspar
were detected in the non-coloured surface.

All yellow slip tableware sherds were obtained with the use of a yellow clay engobe
(Figure 4c). So, the Raman spectra reflect the mineralogical composition of this engobe, of
siliceous nature in two samples (YS1 and YS2—the first four curves) and also the Miocene
nature of the ceramic bodies (YS3 and YS4 samples), where anorthite is abundant—fifth
curve. Anorthite was observed in the parts of the sherds that are not covered with the
engobe.

Grey and common tableware Raman spectra are presented in Figure 4d. No engobe
exist in these two groups of ceramics, so the Raman reflects the ceramic body composition
of the siliceous pastes, with a major difference: huge amounts of carbon black is present in
the grey tableware, which reflects the reductive conditions of the firing process inside the
kiln.

Handmade tableware—anorthite exists in the Palença type sherds H2 and H3 (of
Miocene origin). The other curves of Figure 4e reflect the siliceous nature of the other
two samples.

5.4. GSDR Studies

Ground state diffuse reflectance absorption spectra for all coloured samples in Figure 1
are presented in Figure 5, where the remission function is presented as an ordinate and
the wavelength in nm is the abscissa. Figure 5a shows the absorption spectra of the red
slip ware. The absorption of red maximizes at ca. 530 nm which is the green colour, the
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complementary colour of red. This absorption is larger in the dark red when compared
with the light red.
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Figure 5. GSDR absorption spectra of: (a) red slip tableware; (b) decorated tableware; (c) yellow slip
tableware; (d) grey tableware.

Figure 5b presents the three colours, which exist in the surface of the decorated
ceramics: the red curve is similar to the one of Figure 5a and a clear distinction can be
observed for the colourless surface, which maximizes its absorption in the UV range at
about 400 nm. This contrasts with the black absorption which is broad in all the wavelength
range under study. Yellow tableware (Figure 5c) shows the engobe which covers all the
ceramic body and absorbs in the blue region, so it appears as a yellow surface. Finally, the
grey absorption (Figure 5d) is similar to the black curve of the decorated ceramic.

6. Conclusions

The mineralogical study of the pastes of all ceramic fragments found at Almaraz
showed two main types of pastes. The largest group was made with Pliocene clays collected
south of the Tagus River, usually presenting a very low calcium content. In this case, the
dominant minerals detected in the diffractograms were quartz, microcline, and albite. The
second group, also produced in local workshops, used Miocene clays from Palença clay
sources. Quartz, diopside, and anorthite were detected as dominant mineral components
of the second group.

Micro-Raman studies of the surfaces of the sherds revealed for the red slip tableware,
the engobe colour was due to the use of hematite (H, α-Fe2O3) associated with brookite
(TiO2). For the decorated ware, the black stripes evidence the use of a manganese mineral,
jacobsite, and the red stripes evidence hematite. For the yellow slip group, the engobe is
a yellowish clay, and for the grey tableware, the siliceous ceramic body evidences a high
content of carbon black, entrapped into the ceramic body in the firing process in reductive
conditions. The surface colour of the handmade and common wares varies with the origin
of the raw materials used in each specific case.

Regarding the red pigment, with the association of hematite and brookite, its exis-
tence/production in the Lisbon region can be considered hypothetical, depending on terra
rossa or levels of alteration of volcanic rocks. However, the black pigment, consisting of
the manganese oxide jacobsite, does not occur in the geological formations of this region;
therefore, its origin must be considered external. Despite the presence of various mineral
deposits with manganese oxides exposed in Portuguese territory, especially in the South
of Portugal, the origin of this type of pigment cannot be established now. Subsequent
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comparative studies with samples of ores and artifacts from various sources may help
clarify this matter.

Our studies of the mineralogic composition of the sherds body indicate all ceramics
were produced in local kilns, mostly located south of the Tagus River.
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