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Abstract: Polymer-based composites are widely used in the automotive, security, aeronautical and
space industries, to mention a few. This is because of their good mechanical properties, which are
similar to those of metals but with the attraction of being lightweight. Kevlar® is extensively used
as a reinforcement in the security industry owing to its good ballistic properties. This investiga-
tion presents a mechanical characterization based on in-plane quasi-static tensile testing of Kevlar®

29/phenolic resin with a polyvinyl butyral composite using a universal testing system. The method-
ology developed for the preparation of the coupons is based on pressure, temperature and time.
As a result of this work, elastic moduli (EL and ET), Poisson’s ratio (νLT), shear modulus (GLT) and
strengths (XT, YT, S) were obtained. It is worth mentioning that there is scarce or no characterization
of this material in the literature, and those studies that do characterize it do not present the coupons’
thermoforming conditions or the reasons for the coupons’ dimensions (width, length and thickness).

Keywords: Kevlar®; polymer composite; mechanical properties; quasi-static tensile test

1. Introduction

Fiber-reinforced composites are now firmly at the forefront of advanced materials and
are used in an increasing number of applications, from fishing rods to satellites. Today, the
largest use of high-performance composites is in civilian applications, but initially they
were mainly used in the military and, in particular, in aerospace structures. The reason for
the use of these materials is due to weight savings [1].

The present work consisted of the in-plane characterization of a Kevlar® material
preimpregnated with phenolic resin with polyvinyl butyral on both sides. As the first
stage of this study, our aim was to determine the mechanical properties of the in-plane
interweaving through tensile tests based on a standard method using a universal testing
system to acquire the elastic moduli and strengths. The elastic constants obtained from this
study will be used for a subsequent improvement study of an antifragment helmet using the
finite element method. In the literature, there are studies that can be classified according to
the geometry under study, either focused on military helmets or on rectangular geometries
subjected to a ballistic impact using computational tools such as LS-DYNA® or ABAQUS®

(Table 1). The mechanical properties used in this type of research come from the study
carried out by van Hoof et al. in –2001 [2,3], who was a pioneer of the use of numerical
simulations of ballistic impact on reinforcement laminates of Kevlar® 29/phenolic material.
Hoof [2] simulated a rectangular-geometry piece of laminate that was impacted by a
projectile fragment; in his numerical simulation he took the mechanical properties of
Kevlar® from Guoqi et al. [4], who in turn characterized the Kevlar® 29/polyester material
through quasi-static and dynamic tests in 1981 [4]. From the validation, van Hoof observed
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that there was no correlation between the numerical simulation and the ballistic test,
therefore a “calibration” of the mechanical properties (strengths) was carried out to force a
correlation. From this work, the parameters of the Kevlar® material were obtained, which
are still used today for ballistic studies on combat helmets [5–12], as shown in Table 1.

Table 1. In-plane mechanical properties of Kevlar® found in the literature.

Rectangular Plate Helmet

Mechanical Property Kevlar
29/Phenolic

Kevlar
29/Epoxy

Kevlar
29/Epoxy

Kevlar
29/Epoxy Kevlar Kevlar 29 Kevlar

EL [GPa], Longitudinal
elastic modulus 18.5 18.5 7.618 10.06 18 18.5 18.5

ET [GPa], Transversal
elastic modulus 18.5 18.5 11.05 10.06 18 18.5 18.5

νLT, Poisson’s ratio L-T 0.25 0.25 0.18 0.25 0.25 0.25 0.25

GLT [GPa], Shear modulus in
L-T plane 0.77 0.77 2.123 0.77 0.77 0.77 0.77

XT [MPa], Tensile strength in
longitudinal direction 555 (2) 1850 (1) 400 425 555 555 555

YT [MPa], Tensile strength in
transversal direction 555 (2) 1850 (1) 530 425 555 555 555

S [MPa], Shear strength in
L-T direction 77 77 67 77 77 77 77

Autor van Hoof [2] Bresciani
et al. [11]

Nunes
et al. [13]

Scazzosi
et al. [14]

Tan et al.
[9]

Caçoilo
et al. [8]

Lee and
Gong [6]

(1) Strength property adopted “initially” in the numerical model for woven Kevlar® by van Hoof [2]. (2) Strength
property adopted “finally” in the numerical model for woven Kevlar® by van Hoof et al. [2,3].

The methodology used by Guoqi et al. [4] to obtain the elastic moduli in the warp
and weft directions was through the use of coupons with interleaved layers at [0◦, 90◦],
obtaining an elastic modulus of 18.5 GPa for both orthotropy directions; therefore, no
distinction was made between the principal directions of the material. In addition, the
way in which the shear modulus was characterized is not recommended, since it generates
undesirable deformations at the ends of the coupons. Therefore, our work proposes a
methodology based on symmetrical laminates with straight coupons at [+45◦, −45◦]s that
can be used to obtain the shear modulus GLT to prevent the coupons from generating
moments in the universal testing system grips.

In the research presented by Nunes et al. [13], a Kevlar® 29/epoxy composite was
intensively characterized in the plane through tensile, compression, V-notch rail shear and
short beam tests. Also, Scazzosi et al. [14] determined the mechanical properties of a Kevlar®

29/epoxy composite in the plane by tensile tests. In the research by Gower et al. [15],
Kevlar® 129 was characterized through a tensile test, but neither the thermoforming
conditions nor the coupon’s dimensions were exposed.

Shim et al. [16] analyzed the Twaron CT 716 through dynamic tests using a Hopkinson
tension bar machine to study the viscoelasticity effect; the tests were performed at strain
rates of 280–550 s−1. Quasi-static tests were also performed with a universal testing system
at strain rates from 10−3 to 1 s−1. At high strain rates, the material behaves more rigidly,
but it fails at very small strains. While this work is ideal for the study of dynamically
loaded materials, not all laboratories have the necessary equipment, such as the Hopkinson
tension bar.

There are a limited number of works in the literature that characterize a Kevlar®

material embedded in thermosetting resin [17]. Even though Kevlar® 29/phenolic resin
with polyvinyl butyral is not a novel material [2,3,18], the intention of our work is to
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provide a methodology to characterize the material in the plane using quasi-static tensile
tests in each of the orthotropic directions of the Kevlar® composite. Subsequently, the goal
is to characterize the material in terms of its thickness and build a finite element model of
an antifragment helmet considering different orientations of the layers within the laminate
in order to protect against the impact of a fragment simulating a projectile. Finally, the
model will be validated with an impact test. For all of this, it is necessary to be certain of
the mechanical properties of the material under study to avoid discrepancies between the
numerical simulation and the experimental validation.

A woven fabric can be studied as an orthotropic material with nine elastic constants
represented in a matrix of compliances, as shown in Equation (1) [19]. The matrix considers
the elastic moduli (EL, ET, EN), shear moduli (GLT, GTN, GLN) and Poisson’s ratio (νTL, νNL,
νNT). The subscripts L, T and N represent the orthotropic directions of a woven fabric as
shown in Figure 1. The aim of this work is to characterize the Kevlar® material in the
L-T plane.



εL
εT
εN

2εTN
2εLN
2εLT


=



1
EL

− νTL
ET

− νNL
EN

0 0 0
− νLT

EL
1

ET
− νNT

EN
0 0 0

− νLN
EL

− νTN
ET

1
EN

0 0 0
0 0 0 1

GTN
0 0

0 0 0 0 1
GLN

0
0 0 0 0 0 1

GLT





σL
σT
σN

σTN
σLN
σLT


(1)

In brief: ε = c·σ, where ε represents the vector of strains, C is the matrix of the compli-
ances in the orthotropic direction and σ is the vector of stresses. According to symmetry:
νTL = νLT

ET
EL

, νNL = νLN
EN
EL

, νNT = νTN
EN
ET

. The principal material directions of the
individual layers within the laminate will not necessarily coincide with the global lam-
inate axis. The stiffness R′ and compliance C′ matrix for each layer must be expressed
within the global material axis of the laminate using the following transformations given in
Equations (2) and (3).

R′ = Oσ · R · O−1
ε = Oσ · R · Ot

σ (2)

C′ = Oε · C · O−1
σ = Oε · C · Ot

ε (3)

where Oσ and Oε represent the rotation matrices used to obtain the compliance matrix in
the global axis system, according to Equation (4) and Equation (5), respectively.

Oσ =



c2

s2

0
0
0
cs

s2

c2
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0
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Oε =



c2
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0
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0
0
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0
0
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0
0
0

0
0
0
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0

0
0
0
s
c
0

−cs
cs
0
0
0
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 (5)

where c = cos θ and s = sin θ. Finally, the vectors of stresses σ′ and strains ε′ in the global
axis system are determined by Equation (6) and Equations (7), respectively.

σ′ = R′ · ε′ (6)

ε′ = C′ · σ′ (7)
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For a plane stresses study, Equation (1) becomes Equation (8). In the first stage of
this work, the composite material was characterized in the plane using tensile tests. The
matrix of compliances in Equation (8) is required to determine the elastic moduli (EL and
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2. Materials and Methods

Figure 2a shows one sheet of Kevlar® 29/phenolic resin with polyvinyl butyral used
for the production of antifragment helmets. This material is preimpregnated with resin on
both sides. As shown in the image, the material has horizontal and vertical cuts, as it has
been prepared for use in the manufacture of helmets; these cuts limited the extraction of the
coupons. For the development of this in-plane testing program, straight geometries based
on the ASTM D3039/D3039M standard [20] were implemented to determine elastic moduli
(EL, ET), shear modulus (GLT), Poisson’s ratio (νLT) and strengths (XT, YT, S) through tensile
tests. Straight coupons are beneficial when a water-jet cutting machine is not available,
facilitating the cutting process of each layer by using sheet-metal-cutting scissors. A
Hitachi® scanning electron microscope model SU3500 was used to identify the orthotropic
directions (Figure 2b); a repetitive unit size of 3 mm was observed, with the yarn width
being greater in the longitudinal direction than in the transversal direction. The orthotropic
directions of each sheet were identified in order to produce coupons with the properly
identified directions.

Figure 3 shows the coupon geometry, as well as the dimensions and number of locally
thermoformed tabs at the coupons’ ends, which were used to protect the material from the
universal machine grips and ensure the coupon breakage occurred away from the grips. A
coupon width of 32 mm was considered, taking into account that, to obtain the Poisson’s
ratio νLT, a strain gage has to be positioned transversely to the coupon. The material was
cut according to the orthotropic directions, as shown in Figure 1. The coupon length used
was 197 mm, which represents the maximum length that it was possible to obtain from the
as-received material. For the tabs, it was proposed that we should make a smooth transition
in the thickness of the coupons and thus avoid a pronounced concentration of stresses.

The grid length in the longitudinal direction of the gage is 12.7 mm, which is large
enough to cover 4.2 repeat units of the woven fabric and thus to obtain a correct measure-
ment of the Poisson’s ratio νTL. During the tensile test, large strains were expected, so
EP-08-500GB-120 gages (Micro-Measurements, Raleigh, NC, USA) were selected, which
can be used for applications of up to ±20%; these gages have a resistance of 120 Ω, which
the equipment can read.
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Figure 3. Geometry of coupons for the in-plane characterization.

A mold and cover were designed and fabricated from 6.35 cm × 25.4 cm × 1.27 cm
AISI 1018 steel plates. The thickness of 1.27 cm was chosen to avoid buckling in the middle
of the plate during the manufacturing of the mold. Figure 4a shows the stacking of resin–
preimpregnated Kevlar® layers; the use of Teflon® paper was necessary to prevent the
sample from sticking to the mold. Figure 4b shows the closed mold and Figure 4c shows a
Carver® 4122 Manual Heated Press (10 t) where the coupon thermoforming process was
performed. The thermoforming conditions were 192 ◦C with a compression load of 6.5 t for
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10.5 min, which were based on the manufacturing conditions of the antifragment helmets.
The compression load and time conditions applied to the tabs were reduced to 2 t and
3 min, respectively, to avoid a local reduction in the thickness of the coupons’ ends.
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For the tensile test, an Instron® 3382 universal testing system was used (Figure 5).
A head displacement rate of 2 mm/min (0.019 min−1) was used, according to the ASTM
D3039/D3039M standard [20]. Mechanical wedge-action grips type 2716-003 were used.
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Fibers 2024, 12, 38 7 of 17

Jones [21] proposed determining the shear modulus GLT using a tensile test instead
of using the Iosipescu method, which requires special grips that are not available in most
laboratories. To perform this test, the layers are required to be oriented at 45◦ and, using
Equation (9), it is possible to determine the shear modulus in the GLT plane; Ex is the elastic
modulus with the material oriented at 45◦. Jones’ method generates angular strains at the
end of the coupon’s edges when the ends of the laminate are free to deform, as shown on
the left side of Figure 6. However, if the ends of the coupon are clamped, this causes the
coupon to twist and generate moments at gripping points, as shown on the right side of
Figure 6.

GLT =

(
1

4
Ex

− 1
EL

+ 2υLT
EL

− 1
ET

)
(9)
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An alternative procedure to the Jones’ equation is presented below, which can be used
to obtain the shear modulus GLT using straight coupons at [+45◦, −45◦]s by performing
tensile tests using a universal testing system, as shown in Figure 3. This methodology
avoids deformations such as those shown in Figure 6.

In the case of a laminate, the total force and moment resultants can be obtained by
adding the effects of all layers in a single-layer element, as shown in Figure 7.
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The force–deformation relationship and the moment–deformation relationship are
described by Equation (10) and Equation (11), respectively [19]:Nx

Ny
Ns

 =

Axx Axy Axs
Ayx Ayy Ays
Asx Asy Ass

εx
εy
γs

+

Bxx Bxy Bxs
Byx Byy Bys
Bsx Bsy Bss

κx
κy
κs

 (10)

Mx
My
Ms

 =

Bxx Bxy Bxs
Byx Byy Bys
Bsx Bsy Bss

εx
εy
γs

+

Dxx Dxy Dxs
Dyx Dyy Dys
Dsx Dsy Dss

κx
κy
κs

 (11)

where Nx, Ny are the normal forces per unit length, Ns is the shear force per unit length, Mx
and My are the bending moments per unit length and Ms is the twisting moment per unit
length [19].

Equations (10) and (11) can be combined into one general expression that briefly relates
the in-plane forces and moments to the reference plane strains and curvatures, as indicated
by Equation (12): [

N
M

]
=

[
A B
B D

][
ε
◦

κ

]
(12)

The above relationships are expressed in terms of three laminate stiffness matrices,
[A], [B] and [D], which are functions of the thickness, material properties and stacking
sequence of the individual layers. [A] is the extensional stiffness matrix expressed by
Equation (13), which relates in-plane forces to in-plane strains; [B] is the coupling stiffness
matrix expressed by Equation (14), which relates in-plane forces to curvatures and moments
to in-plane strains. [D] is the bending laminate stiffness matrix expressed by Equation (15),
which relates moments to curvatures [19].

A =
n

∑
i=1

hi
(
C′

i
)−1 (13)

B =
n

∑
i=1

eihi
(
C′

i
)−1 (14)

D =
n

∑
i=1

[
ei(hi)

2 +
e3

12

](
C′

i
)−1 (15)

where ei represents the vector of thickness for each layer and C′
i is the matrix of compliances

in the global system. As in symmetric laminates, B = 0; therefore, there is no coupling
between in-plane loading and out-of-plane deformation (curvatures) and between bending
and twisting moments and in-plane deformation. These laminates exhibit no distortion
or warpage after fabrication and are easier to analyze. Therefore, Equation (10) and
Equation (11) become Equation (16) and Equation (17), respectively:Nx

Ny
Ns

 =

Axx Axy Axs
Ayx Ayy Ays
Asx Asy Ass

εx
εy
γs

 (16)

Mx
My
Ms

 =

Dxx Dxy Dxs
Dyx Dyy Dys
Dsx Dsy Dss

κx
κy
κs

 (17)

When an axial load NX is applied through a universal testing system to a coupon with
a configuration of four layers [+45◦, −45◦]s, according to Equation (16), Ny = Ns = 0 and
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γs = 0 (the edges remain straight), and εx and εy are different of zero. Inverting matrix A
from Equation (16) yields Equation (18) which can be used to obtain εx.

εx =

{
Nx
[
E2

L + ELET + 4ELGLT + 2ELETνLT − 4ETGLTν2
LT
]}

[16ELe(ELGLT + ETGLT + 2ETGLTνLT)]
(18)

where e is the thickness of each layer considering/in this case/that each layer has the
same thickness. σx = Nx

4e represents the average stress across all of the layers because the
stress changes from layer to layer and E∓45_S = σx

εx
, thus obtaining the shear modulus GLT

(Equation (19)).

GLT =
E∓45_SEL(EL + ET + 2ETνLT)

4
[
EL(EL + ET + 2ETνLT) + E∓45S

(
ETν2

LT − EL
)] (19)

If EL = ET, Equation (19) becomes Equation (20).

GLT =
2E∓45_SEL(EL + ETνLT)

4
[
2EL(EL + ELνLT) + E∓45S

(
ELν2

LT − EL
)] (20)

3. Results and Discussion

Figure 8 shows the tensile stress–strain curves of four coupons tested at 0◦ (longitudi-
nal direction). It is worth mentioning that three of them (EL-2, EL-3, EL-4) did not reach
the strength or strain of coupon EL-1 due to the debonding of their tabs; however, the four
coupons performed similarly in the 0–2% strain range, which was adequate to calculate
the longitudinal elastic modulus (EL = 11.78 ± 1.07 GPa). Two additional coupons (EL-5,
EL-6) with no strain gage instrumentation were tested to determine a suitable strength
(XT = 648.33 ± 56.31 MPa) (Figure 9).
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Figure 10 shows the longitudinal strain–transversal strain curves of the coupons tested
under tension at 0◦, from which the Poisson’s ratio (νLT = 0.29 ± 0.06) was calculated.
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Figure 11 shows the coupons’ appearances after these tensile tests.



Fibers 2024, 12, 38 11 of 17

Fibers 2024, 12, x FOR PEER REVIEW 11 of 18 
 

 
Figure 10. Poisson’s ratio νLT of coupons tested in tension at 0°. Strain measured with strain gages. 

Figure 11 shows the coupons’ appearances after these tensile tests. 

 
Figure 11. Condition of coupons after the tensile test at 0°. 

Figure 12 shows the tensile stress–strain curves of four coupons tested at 90° (trans-
versal direction). Due to the debonding of one of the tabs on coupon ET-3, it did not reach 
the strength and deformation of the other three coupons; however, the four coupons per-
formed similarly in the 0–2% strain range, which was adequate to calculate the transversal 
elastic modulus (ET = 15.38 ± 1.34 GPa). The strength calculation (YT = 659.57 ± 20.42 MPa) 
was made excluding coupon ET-3. Figure 13 shows the coupons’ appearances after these 
tensile tests. 

Experimental characterization of the stress–strain behavior of the coupons in the 0° 
and 90° directions revealed two distinct slopes (see Figures 8 and 12). The first slope cor-
responds to the straightening and the second to the stretching of the yarns until the rup-
ture; this behavior was also noted by Gower et al. [15]. 

Figure 11. Condition of coupons after the tensile test at 0◦.

Figure 12 shows the tensile stress–strain curves of four coupons tested at 90◦ (transver-
sal direction). Due to the debonding of one of the tabs on coupon ET-3, it did not reach the
strength and deformation of the other three coupons; however, the four coupons performed
similarly in the 0–2% strain range, which was adequate to calculate the transversal elastic
modulus (ET = 15.38 ± 1.34 GPa). The strength calculation (YT = 659.57 ± 20.42 MPa)
was made excluding coupon ET-3. Figure 13 shows the coupons’ appearances after these
tensile tests.
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Figure 13. Condition of coupons after the tensile tests at 90◦.

Experimental characterization of the stress–strain behavior of the coupons in the 0◦

and 90◦ directions revealed two distinct slopes (see Figures 8 and 12). The first slope
corresponds to the straightening and the second to the stretching of the yarns until the
rupture; this behavior was also noted by Gower et al. [15].

According to our study, the interwoven material is stiffer in the transversal direction
than in the longitudinal direction because the former corresponds to the warp direction of
the woven fabric; the orthotropic directions of the material were defined in Figure 2. This
difference between EL and ET was reported by Ito, who attributed it to the tension control
during the weaving manufacturing process [22]. Indeed, they observed that the yarns
in the warp direction were almost straight, while in the weft direction the yarns weaved
above and below the warp yarns, giving rise to a small slope or elastic modulus due to the
straightening of the yarns.

Figure 14 shows the tensile stress–strain curve of coupons oriented at [+45◦, −45◦]s. It
was not possible to determine the shear strength of the material from these curves because
the tabs of all coupons were debonded. Despite this, it was feasible to calculate the elastic
modulus in this direction (E∓45_S = 2.82 ± 0.21 GPa), as shown in Figure 15. Figure 16
shows the coupons’ appearances after these tensile tests. As can be seen, the end edges of
the coupons remained straight because symmetry was used in the laminate, which avoided
twisting the coupons (right side of Figure 6). A high longitudinal strain of about 38%
(Figure 14) was calculated because the laminate with the material oriented at 45◦ had the
lowest stiffness, as can be seen graphically in Figure 17. Once EL, ET, E∓45_S and νLT were
obtained, it was possible to calculate the shear modulus through Equation (19), which gave
a value of GLT = 0.717 GPa. Tsai–Hill failure criterion was used in Equation (21) to determine
the shear strength considering a minimum longitudinal strength of 80 MPa (Figure 14). The
Tsai–Hill criterion compares the stresses on the orthotropy system with their corresponding
strength direction. The stresses in the orthotropy direction are calculated with the theory
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of classical laminate model applying loads in the global system (Figure 7). The minimum
shear strength obtained was S = 40 MPa [21,23].(

σL
XT

)2
− σLσT

(XT)
2 +

(
σT
YT

)2
+
(σLT

S

)2
≥ 1 (21)
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Figure 18 presents a micrography of a damaged coupon far from the rupture region
but close to the tab obtained with a VHX-7000 model Keyence® digital microscope. As can
be seen, there is evidence of delamination.
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Table 2 summarizes the mechanical properties obtained in the present study, which
are compared with other results found in the literature. As can be seen, the elastic moduli,
shear modulus and strengths obtained in our work are of the same order of magnitude of
those in the literature.

Table 2. Mechanical properties of Kevlar® composite obtained in this study compared with the literature.

Property Present Work van Hoof and
Guoqi et al. [2,4] Scazzosi et al. [14] Nunes et al. [13]

Longitudinal elastic
modulus, EL [GPa] 11.78 (Weft direction) 18.50 10.06 7.618

Transversal elastic
modulus, ET [GPa] 15.38 (Warp direction) 18.50 10.06 11.05

Poisson’s ratio, νLT 0.29 0.25 0.25 0.18

Shear modulus, GLT [GPa] 0.717 0.77 0.77 2.123

Longitudinal Tensile
strength, XT [MPa] 648.33 555.00 425.00 400.00

Transversal Tensile
strength, YT [MPa] 659.57 555.00 425.00 530.00

Shear strength, S [MPa] >40.00 77.00 77.00 67.00

4. Conclusions

(a) A detailed methodology for the in-plane mechanical characterization of a Kevlar®

composite based on quasi-static tensile tests was presented.
(b) An alternative to the Jones’ method for the shear modulus calculation was proposed,

which avoids moment generation in the grips and prevents the coupon from twisting.
(c) As observed in the results of the tests, debonding of the tabs of some coupons occurred;

therefore, a time sweep study was performed at 192 ◦C using a TA® Instruments
RSA3 DMA System (dynamic-mechanical analyzer) on a rectangular layer of 12 mm
× 55 mm through a three-point bending test. The aim was to observe whether the
3 min of thermoforming given to the tabs was sufficient for them to adhere to the
main body of coupons. Figure A1 in Appendix A shows the storage modulus (E′),
showing that at a time of 328 s the stiffness remains stable. Therefore, at least 6 min of
local thermoforming of the tabs must be applied to avoid their debonding during the
tensile tests.
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