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Abstract: Usually, before being used in biomedical applications, a biomaterials’ bioactivity is tested
by in vitro methods that simulate similar conditions to those found in the human body. In this
work, we report on the synthesis of zinc-doped hydroxyapatite–chitosan (ZnHApC) composite
coatings by the vacuum deposition method. The surface microstructure and the chemical and
molecular modification of the coatings before and after soaking in DMEM (Dulbecco’s Modified
Eagle’s Medium) were studied. For this objective, techniques such as attenuated total reflection (ATR),
Fourier transform infrared (FTIR) spectroscopy, metallographic microscopy (MM), and scanning
electron microscopy (SEM) were applied used. Also, water contact angle measurements and swelling
studies were made on ZnHApC composite coatings before and after soaking in a biological medium.
The coatings’ adherence to the substrate was also studied. The results of antifungal studies on
ZnHApC composite coatings against the Candida albicans microbial strain reveal their good antifungal
activity. The biocompatibility of the composite coatings was tested using a primary osteoblast cell line.
Our results suggest that zinc-doped hydroxyapatite–chitosan samples could be used as a bioimplant
material due to their enhanced bioactivity and biocompatibility.

Keywords: biological medium; zinc; surface changes; hydroxyapatite; osteoblast cell line

1. Introduction

Usually, prior to being used in biomedical applications (e.g., coatings for medical
devices, metallic implants, bone fillers, etc.), biomaterials are tested for their bioactivity
through in vitro methods that simulate similar conditions to those found in the human
body [1]. For this purpose, since the beginning of the 1990s, SBF (simulated body fluid)
was proposed by Kokubo et al. as a medium that could predict the in vivo bone bioactivity
of a biomaterial [2]. Normally, the SBF solution contains only the inorganic part of blood
serum [3,4].

Recently, in the literature, it was proposed to use DMEM (Dulbecco’s Modified Ea-
gle’s Medium) solution as a substitute for SBF solution in order to evaluate a material’s
bioactivity [1,4]. DMEM solution is frequently used as a culture medium for cell lines,
and, unlike SBF, contains both the inorganic and the organic parts of blood serum [1,4].
In previous studies, it has been highlighted that by immersing samples in SBF or DMEM
solution (between 1 and 21 days), the precipitation of an apatitic layer on the sample surface
occurs [4–6]. It is well known that the formation of new bone tissue around the implant
implies many biological processes that take place at the interface between the implant and
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the bone tissue [6]. Hydroxyapatite (HAp) is one of the most often used biomaterials for
covering metallic implants [6,7].

Among the most common causes that lead to implant failure are infections that occur
immediately after the implant and the formation of an insufficient amount of new bone
tissue around the implant [8]. Furthermore, previous studies have shown that the bioac-
tivity of hydroxyapatite layers can be improved by ionic substitution [8,9]. For example,
in the study conducted by Kazimierczak P. et al. [10] regarding the biocompatibility and
osteoinductivity of chitosan–agarose–nanohydroxyapatite scaffolds, it was reported that
the hydrophilic surface of the obtained nanocomposites confers on them a good biocompat-
ibility with the osteoblast (hFOB 1.19) cell line. Furthermore, the presence of zinc ions in the
zinc-doped nanohydroxyapatite-based bone scaffolds gives them excellent antimicrobial
properties and a nontoxic effect against the osteoblast cell line [11].

On the other hand, Candida species are well known as an important nosocomial
pathogen. Moreover, Candida albicans is frequently identified in the biofilm found on
the surface of implanted biomedical devices (e.g., urinary catheters, joint replacements,
etc.) [12–14]. Therefore, the attainment of biomaterials with good antifungal activity is of
great interest to the medical community and could represent a viable alternative to the
classic antimycotic treatment.

Currently, for the development of bioceramic layers, techniques such as electrophoretic
deposition [15], pulsed laser deposition (PLD) [16], matrix-assisted pulsed laser deposition
(MAPLE) [17], radio frequency magnetron sputtering (RFMS) [18], the sol-gel method [19],
electrochemical deposition [20], vacuum deposition [21], etc., are used.

For example, Vranceanu D. M. et al. [6] have found, along with the growth of the
immersion time (up to 21 days) of silver-doped hydroxyapatite (AgHAp) and hydroxya-
patite (HAp) coatings in a DMEM solution, the formation of increased quantities of new
apatite phases on their surface [6]. This behavior suggests that the studied samples have
an improved biomineralization ability [6]. The results obtained on the AgHAp and HAp
coatings after immersion in an SBF solution were discussed. Their results indicate that the
DMEM solution may be used for preliminary evaluation of biomineralization efficiency [6].

Another study, conducted by Dumelie N. and collaborators [22] revealed that after
the immersion of up to 21 days in a DMEM medium of calcium-deficient hydroxyapatite
coatings on a Ti6Al4V substrate, the precipitation of a new crystalline apatite occurs. It was
also noticed that there was an increase in the Ca/P atomic ratio value from 1.5 (before the
immersion in the DMEM medium) to a Ca/P value of around 1.65 (after the immersion
in the DMEM medium) [22]. Further, it was noticed that by immersing in a DMEM
solution, the dissolution of calcium-deficient hydroxyapatite coatings occurs followed by
the precipitation of a new apatite layer [22]. These results make such biomaterials suitable
for use in orthopedic or dental applications since they favor the formation of new bone
tissue [22].

It is known that Zinc (Zn) ions are one of the significant trace elements present in bone
tissue [23]. Zinc ions participate in important bone processes such as bone development and
biomineralization [23–25]. Therefore, the Zn incorporation in the hydroxyapatite structure
can enhance their bioactivity [23–26].

The point of this study was to evaluate for the first time the new layer formation on the
surface of zinc-doped hydroxyapatite–chitosan (ZnHApC) composite coatings after soaking
in a biological medium (DMEM). For this purpose, we used techniques such as attenuated
total reflection (ATR), Fourier transform infrared (FTIR) spectroscopy, metallographic mi-
croscopy (MM), and scanning electron microscopy (SEM). In addition, water contact angle
measurements and swelling and adhesion studies were performed. The ZnHApC coatings
were developed by vacuum deposition technique, and their physicochemical and biological
features before and after soaking in a DMEM medium were presented. The biological assay
conducted on ZnHApC was done with the aid of a primary osteoblast cell line. Moreover,
antifungal activity against the Candida albicans fungal strain was evaluated.
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2. Materials and Methods
2.1. Synthesis of Zinc-Doped Hydroxyapatite–Chitosan (ZnHApC) Powders

For the synthesis of zinc-doped hydroxyapatite–chitosan (Ca10−xZnx(PO4)6(OH)2;
xZn = 0.07; ZnHApC) powders, the protocol described in our previous paper was used [21].
For this objective, during the synthesis, the [Ca + Zn]/P ratio was kept at 1.67 and the pH
value was maintained at 11. The obtaining procedure was performed in air. The proper
amounts of Zn(NO3)2·6H2O (Alfa Aesar, Karlsruhe, Germany) and Ca(NO3)2·4H2O (cal-
cium nitrate tetrahydrate; Sigma Aldrich, St. Louis, MO, USA) were dissolved and the
obtained solution was slowly added into a solution containing (NH4)2·HPO4 (Alfa Ae-
sar, Karlsruhe, Germany) and chitosan (C6H11NO4; Sigma Aldrich, St. Louis, MO, USA).
The obtained mixture was stirred at 100 ◦C for 4 h and then centrifugated. Then, the pre-
cipitate was redispersed in an aqueous solution under vigorous stirring at 100 ◦C. Last,
the ZnHApC precipitate was dried at 100 ◦C and used for the vacuum deposition of the
ZnHApC composite coatings.

2.2. Deposition of ZnHApC Coatings on Si Substrate

The ZnHApC thin films were deposited on Si substrates. Before the vacuum de-
position, the substrate was cleaned several times with acetone and dried in the air at
40 ◦C. The parameters used for the coating’s deposition were described in detail by Predoi
et al. [16]. Further, the ZnHApC thin films were soaked in a DMEM medium (Sigma
Aldrich, St. Louis, MO, USA) in an incubator (GFL 4010, GFL Gesellschaft für Labortechnik
mbH, Burgwedel, Germany) at 37 ◦C ± 0.5 ◦C. Initially, 2 sample batches were soaked
in DMEM (which was changed daily). The first sample batch was taken out after 7 days
(ZnHApC-7D) and the second sample batch after 14 days (ZnHApC-7D). After being taken
out from the biological environment, the samples were washed with double-distilled water
and placed in a desiccator.

2.3. Physical, Chemical, and Morphological Characterizations

The attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectra were
obtained with the aid of a Jasco FTIR-6600 spectrometer (Easton, MD, USA). The spectra
were acquired from 450 to 2000 cm−1 with a spectral resolution of 4 cm−1 averaging
128 scans.

The morphology and EDX compositional studies of ZnHApC powders and coatings
were performed using a scanning electron microscope (Hitachi S4500, Hitachi, Tokyo, Japan).

Preliminary assessments of the ZnHApC coatings surface before and after the soak-
ing in the biological medium were obtained using the 10× magnification objective of
an inversed trinocular metallographic microscope OX.2153-PLM, (Euromex, Arnhem,
The Netherlands). Image J software (Image J 1.51j8) [27] was used for the 3D represen-
tation of SEM and metallographic images.

The water contact angle studies were performed under ambient conditions using a
contact angle goniometer (DSA30 Kruess GmbH, Hamburg, Germany). For these experi-
ments, the sessile drop technique was used. The contact angle measurements were repeated
3 times for each composite coating. The values of the contact angle ± SD are presented.

Dried ZnHApC, ZnHApC-7D, and ZnHApC-14D coatings were weighted (WD) before
the swelling test. Then the dried coatings were immersed in deionized water. Finally,
the samples were taken out of the water after 24 h. The water excess was removed with
filter paper and then the samples were weighed again (WW). The swelling test was repeated
3 times, and the results are presented as mean value ± SD. The swelling percentage was
calculated with the following formula:

Swelling (%) =
WW−WD

WD
× 100 (1)
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The adherence of the ZnHApC, ZnHApC-7D, and ZnHApC-14D coatings to the
substrate was determined using the tape-pull test. The adhesion tests were performed
using the 3M Performance Flatback Tape 2525, having a peel adhesion of 7.5 N/cm.

2.4. Cytotoxicity Assay

The biological properties of the ZnHApC, ZnHApC-7D, and ZnHApC-14D samples
were investigated using primary human osteoblast cells, hFOB 1.19. The cells were procured
from the upper part of a patient’s femur following the protocol described by Gallagher
et al. [28]. The in vitro biocompatibility study assays were performed as previously reported
in detail in [29] and the cell viability of the hFOB 1.19 cells was determined after 24 and 72 h
of incubation with the composite layers. The in vitro experiments were done in triplicate.
The data were reported as mean ± standard deviation (SD). Furthermore, the statistical
analysis was performed using the t-test and analysis of variance (ANOVA).

2.5. Antifungal In Vitro Assay

Studies regarding the antifungal activity of the ZnHApC, ZnHApC-7D, and ZnHApC-
14D coatings were performed against the fungal strain Candida albicans ATCC 10231.
The in vitro antifungal assays were done according to the experiments described in [30]
and the activity of the samples was determined after 24, 48, and 72 h of incubation with the
fungal suspensions. All the experiments were performed in triplicate and the data were
graphically represented as mean ± SD.

3. Results

ATR-FTIR measurements were used to study the molecular changes that took place
before and after the soaking of ZnHApC coatings in DMEM (Figure 1). In Figure 1,
the presence of characteristic adsorption bands of HAp can be easily observed. The ab-
sorption bands were found at 480, 564, 606, 960, and 1090 cm−1 and are ascribed to PO4

3−

vibration, and their presence was observed for all studied coatings [21,31]. On the other
hand, in the FTIR spectra of ZnHApC-14D (Figure 1c) coatings, the presence of the adsorp-
tion bands at 869, 1416, and 1484 cm−1, ascribed to CO3

2− groups, was noticed, which
suggests the presence of a carbonated hydroxyapatite layer on the sample’s surface [31].
Furthermore, in the region from 1300 until 1500 cm−1, bands that are ascribed to the
chitosan structure are present [21,31].
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According to the studies made by Vladescu A. and collaborators, [32] the presence of
carbonate bands in the FTIR spectra suggests the formation of an apatitic layer. Moreover,
the presence of carbonate bands in the FTIR spectra underlines the replacement of PO4

3−

with CO3
2− functional groups in the HAp structure [31,32].

After the coatings were soaked in DMEM for 7 and 14 days, the increase in adsorption
band intensity can be observed. Also, the ZnHApC-14D exhibits more intense peaks
ascribed to carbonate groups. The FTIR studies’ results underline that samples soaking in
DMEM induce some changes in the soaked coatings [31,32].

First, we have conducted SEM and EDX studies on ZnHApC powders and the re-
sults are depicted in Figure 2. Close observation of the SEM micrographs reveals that
the ZnHApC powders consist mainly of spherical particles with dimensions in the nano-
metric range. In the collected SEM images, it can also be observed that the nanoparticles
are agglomerated.
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From the EDX spectra and elemental distribution maps, as depicted in Figure 2,
the characteristic peaks of Ca, P, Zn, N, and O are present in the ZnHApC powders. The N
line in the EDX spectra arises due to the presence of chitosan in the sample. Also, the surface
homogeneity is underlined by the good distribution of the chemical elements in the studied
powder. The results of the EDX chemical composition highlighted the purity of the samples.

Figure 3 shows the results of the SEM and EDX studies performed on the ZnHApC
coatings before and after soaking (for 7 and 14 days) in DMEM. In the case of ZnHApC,
the coatings were inspected before soaking in DMEM. There was the presence of a continu-
ous and uniform layer on the Si substrate surface without the observation of any crack on
the coating surface, as indicated by the SEM micrographs (Figure 3a,d).

The formation of a new layer based on calcium and phosphorus (probably a calcium-
deficient hydroxyapatite) on the surface of the ZnHApC coatings after 7 and 14 days of
exposure to DMEM was proven. The formation of the new layer probably took place by
the biomimetic mineralization process as explained by Vranceanu, D.M. and coworkers [6]
in their paper entitled: “In vitro evaluation of Ag doped hydroxyapatite coatings in
acellular media”.

Regarding the EDX chemical composition of the analyzed layers, our results indicate
the presence of the following chemical elements: calcium, phosphorus, zinc, carbon, nitro-
gen, and oxygen, in all the samples (Figure 3g–i). Some variation of Ca and P line intensity
was observed.
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The results of energy dispersive X-ray spectroscopy (EDS) quantitative analysis (inset
of Figure 3g–i) suggest the presence of stoichiometric hydroxyapatite (Ca + Zn)/P = 1.67
in the chitosan matrix in the case of ZnHApC composite coatings. After the soaking
in a DMEM medium, the value of the (Ca + Zn)/P ratio varies between 2.095 (for the
ZnHApC-7D sample) and 1.99 (for the ZnHApC-14D sample). These values can indicate
the formation of a new apatite layer. Our results are in good agreement with the EDX
quantitative results previously reported by Vranceanu, D.M. et al. [6].

In the EDX elemental distribution obtained for the ZnHApC-14D coatings, it can be
observed that the major constituent are Ca, P, and O. The minor components are represented
by Zn, N, and C. Furthermore, the well spatial distribution of both minor and major
elements on the ZnHApC-14D coatings surface was observed (Figure 4).

The complementary information regarding the surface characteristics of ZnHApC
coatings were achieved by metallographic microscopy (MM) measurements. Figure 5
presents the metallographic image characteristics of the ZnHApC (a and d), ZnHApC-7D
(b and e), and ZnHApC-14D (c and h) coatings. In Figure 5, the lack of fissures on the
coatings’ surface can be observed. The metallographic data sustain the results provided
by the SEM studies regarding the formation of a new layer on the ZnHApC subsurface.
This is supported by the change in surface morphology of the DMEM-immersed coatings
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compared to that of the nonimmersed coating. The SEM features were in agreement with
the findings previously reported in the literature [6,32–34].
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Furthermore, the adherence of ZnHApC, ZnHApC-7D, and ZnHApC-14D on the
silicium substrate was investigated using the tape-pull test method. This test is widely
known and used for the determination of a coatings’ adherence being deemed one of
the simplest and fastest-used methods to evaluate a coating’s adhesion. In the case of
ZnHApC, ZnHApC-7D, and ZnHApC-14D, the experiments highlighted that the scotch
tape came off approximately clear, having an insignificant amount of material stuck to it.
Therefore, the analysis performed on the coatings suggested that not much of the ZnHApC,
ZnHApC-7D, and ZnHApC-14D coatings were actually removed from the substrate. These
results emphasized that the ZnHApC, ZnHApC-7D, and ZnHApC-14D coatings presented
a good adhesion to the substrate.

The surface properties of ZnHApC t”In ’ilms were evaluated by contact angle mea-
surements and their results are revealed in Table 1. It is known that values higher than
90◦ indicate a hydrophobic nature of the material surface and values <90◦ suggest the
hydrophilic nature of the sample surface [35].

Table 1. Water contact angle on ZnHApC composite coatings surfaces.

Sample Contact Angle θ (◦)

ZnHApC 57.86 ± 2.75
ZnHApC-7D 48.97 ± 2.3
ZnHApC-14D 42.05 ± 1.5

The obtained value for the contact angle varies between 57.86 ± 2.75◦ (for ZnHApC)
and 42.05 ± 1.5◦ (for ZnHApC-14D). Therefore, a decrease in the contact angle value
that could be attributed to the hydrophilic behavior of apatite could be noticed. More
than that, in previous studies, it was shown that the hydrophilic surfaces allowed better
cell proliferation and a good growth of apatite in the physiological environment, thus
supporting bone growth [36]. In this context, the wettability features of ZnHApC, ZnHApC-
7D, and ZnHApC-14D suggest that our samples are hydrophilic which makes them suitable
for biomedical applications (orthopedics, dentistry, tissue engineering, etc.) with our results
being in concordance with the results previously reported [37].

The water uptake abilities of ZnHApC thin films before and after their soaking in
DMEM medium were evaluated by aqueous swelling studies. The results of aqueous
swelling studies are presented in Figure 6. Our results suggest that the swelling per-
centage decreased with the increase in immersion time of the ZnHApC thin films in the
DMEM medium.
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The higher swelling percentage was obtained for the ZnHApC thin films (26%),
and the lowest value was obtained for the ZnHApC-14D sample (16%). In agreement
with the results reported by Bhowmick, A. et al. [38], this behavior may be attributed to
the fact that the presence of the apatitic layer on the ZnHApC thin films’ surface induced a
decrease in the water update capacity. Ponnusamy, S., and coworkers, showed that swelling
properties facilitate the use of nutrients from the physiological environment and lead to
better adherence [39].

The biocompatibility of the ZnHApC, ZnHApC-7D, and ZnHApC-14D coatings was
assessed by in vitro experiments using human fetal osteoblast hFOB 1.19 cells. The coatings
were incubated for 24 and 72 h with the hFOB 1.19 cell suspensions, and their viability
was determined with the aid of the MTT assay. The results obtained from the in vitro MTT
tests regarding the cell viability of the hFOB 1.19 incubated with ZnHApC, ZnHApC-7D,
and ZnHApC-14D coatings are depicted in Figure 7.
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Figure 7. Cell viability of the hFOB 1.19 cells after 24 and 72 h of incubation in the presence of
ZnHApC, ZnHApC-7D, and ZnHApC-14D. The results of the experiments are graphically represented
as mean ± SD. The data were statistically analyzed using paired and two-sample t-tests for means,
with p ≤ 0.05 accepted as statistically significant.

The experiments were performed in triplicate and the presented data is mean ± SD.
The results of the MTT assay determined that all the samples exhibited very good bio-
compatibility after 24 h of incubation with the hFOB 1.19 cells. However, an increase in
cell viability was observed in the case of ZnHApC-7D and ZnHApC-14D compared to the
ZnHApC sample. The data suggested that the cell viability increased for the ZnHApC
coatings immersed in a DMEM medium. More than that, the results also suggested that the
immersion period of the samples in the DMEM medium had an influence on cell viability.
In addition, the results of the MTT assays highlighted that all the samples exhibited excel-
lent biocompatibility, being above 92% compared to the control. The obtained results are
in concordance with previously reported data regarding hydroxyapatite biocompatibility
and its properties of promoting the adherence and proliferation of osteoblast cells [40–50].
Moreover, the cell viability of the hFOB 1.19 cells after 72 h of exposure to ZnHApC,
ZnHApC-7D, and ZnHApC-14D coatings presented a significant increase compared to the
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control cell culture. Furthermore, the results obtained from the MTT assays after 72 h of
exposure of the hFOB 1.19 cells with the composite layers emphasized that all the composite
layers presented strong biocompatibility activity and that also helped promote the hFOB
1.19 cells’ proliferation and adhesion on the surfaces of the coatings. In addition, the studies
demonstrated that the increase observed in the cell viability of hFOB 1.19 cells exposed
to ZnHApC-7D and ZnHApC-14D for 72 h was higher than the increase observed in the
case of the ZnHApC composite layers. These results could be attributed to the surface
changes attained by the ZnHApC composite layers following their immersion in the DMEM
medium for 7 and 14 days. More than that, the data also suggested that the increase in cell
viability was also influenced by the period of time that the layers were immersed in the
DMEM. Therefore, the results highlighted that the immersion in DMEM of the ZnHApC
composite layers provided the layers with new surface properties that are responsible for a
better proliferation and adhesion of the hFOB 1.19 cell.

Furthermore, the morphology of the hFOB 1.19 cells incubated for 24 and 72 h with
the ZnHApC, ZnHApC-7D, and ZnHApC-14D coatings was investigated by microscopy.
The results of the morphology investigation of the hFOB 1.19 cells incubated for 24 h with
ZnHApC, ZnHApC-7D, and ZnHApC-14D coatings are depicted in Figure 8.
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used as control (a,e).

The images of the hFOB 1.19 cells incubated with ZnHApC, ZnHApC-7D, and ZnHApC-14D
coatings highlighted that the cells have adhered on the surface of the ZnHApC, ZnHApC-
7D, and ZnHApC-14D coatings and also that the adhered cells exhibit the typical morphol-
ogy of the hFOB 1.19 cells. Moreover, the visualization of the hFOB 1.19 cells incubated for
24 h with the ZnHApC, ZnHApC-7D, and ZnHApC-14D coatings revealed that coatings
did not induce changes to the morphology of the hFOB 1.19 cells. Furthermore, the fluores-
cence micrographs highlighted that after 72 h of incubation with the ZnHApC composites,
the hFOB 1.19 cells adhered and spread until covering almost the entire surface of the
composite layers. In addition, the results of the visualization depicted that after 72 h of
exposure to the composite layers, the osteoblast cells had the appearance of being orga-
nized in confluent layers spread out on the surface of the composite layers. More than that,
the results also suggested that the composite layers immersed in a DMEM medium exhib-
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ited better biological activity, conferring upon the cells the ability to proliferate and adhere
to their surface. These results are in agreement with the MTT assay and emphasized that
the immersion in the DMEM medium of the composite layers, as well as the immersion
time period, influenced the physicochemical and biological activities of the composite
surface, conferring on them enhanced biological properties that lead to better proliferation
and adhesion of the cells. Therefore, the data obtained from both the MTT assay, as well as
the optical visualization, suggested that the surface of the composite layers affected the
metabolic activity of the cells by enhancing their growth. The increase in the hFOB 1.19 cell
number was not significant after 24 h of incubation compared to the control cell culture,
however, the results showed an abrupt and significant increase (p < 0.05) in the number
of hFOB 1.19 cells after 72 h of incubation. These results are in good agreement with the
results of the quantitative MTT in vitro assay and highlighted that ZnHApC, ZnHApC-7D,
and ZnHApC-14D coatings have good biocompatibility and could be suitable for being
used in biomedical applications.

The results are in good agreement with previously reported studies [51–53] regarding
the biological properties of materials based on zinc ions and hydroxyapatite on human os-
teoblast cells MG-63 [50], mesenchymal stem cells derived from human adipose (MSCs) [44],
and MRC-5 fibroblast cells [45]. More than that, in their study, Thian et al. [44] reported
that the presence of zinc ions in the structure of hydroxyapatite influenced the bioactivity
properties of HAp. In addition to the existing reported data, the results of this study also
emphasize that immersion in DMEM of the ZnHApC for 7 and 14 days had an influence
on the biological properties of the coatings. Therefore, in the case of ZnHApC-7D and
ZnHApC-14D coatings, both the MTT in vitro assays, as well as the microscopic visual-
ization, the results depicted that the cell viability, adherence, and proliferation are higher
compared to the control cells and ZnHApC coatings. This phenomenon has been explained
due to the effect and transformation that appear on the surface of the ZnHApC coatings
after being immersed in a DMEM medium. Even though complex studies are still scarce,
it has been reported that the increase of the surface charge could also lead to an increase in
the wettability and surface energy of various HAp surfaces when using SBF and DMEM
mediums [54,55]. Bodhak et al. [50] demonstrated that the increase in the surface energy
of HAp obtained by immersion in SBF and DMEM mediums created a better hFOB cell
attachment and more points of adhesion between the cells and the surface. On the other
hand, Clupper et al. [54] demonstrated that S520 fibers immersed in SBF and DMEM
showed promising preliminary results regarding the proliferation, and cell attachment,
of osteoblast cells. These preliminary results are promising stepping stones for the future
development of novel materials and coatings for biomedical applications that will possess
higher bioactive properties and promote faster healing.

In addition, for a better understanding of the complex nature of the influence of the
DMEM medium on the biological properties of ZnHApC composite layers, the antifungal
properties of ZnHApC, ZnHApC-7D, and ZnHApC-14D coatings were also investigated.
For this purpose, due to the fact Candida albicans is known as being one of the most
opportunistic microorganisms and is also the prevailing cause of fungal infections in
humans [56–59], the antifungal properties of the ZnHApC, ZnHApC-7D, and ZnHApC-
14D coatings were evaluated against C. albicans ATTCC 10231. The composite layers were
exposed to the fungal suspensions and their activity against the fungal cell’s development
was assessed at three different time intervals, 24, 48, and 72 h. The results of the antifungal
studies were represented graphically and are depicted in Figure 9.

The results of the in vitro studies regarding the antifungal properties of the ZnHApC,
ZnHApC-7D, and ZnHApC-14D composite layers depicted that all the investigated sam-
ples exhibited good inhibitory effects against the C. albicans fungal cells’ development.
More than that, the data also suggested that the antifungal activity was influenced by both
the incubation time as well as the investigated samples. Therefore, the results showed
that the antifungal activity of the samples increased with the increase in the incubation
time. In addition, the data also suggested that the best inhibitory against the develop-
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ment and adherence of C. albicans fungal cells on the surface of the composite layers was
attributed to the ZnHApC-14D composite layers, therefore implying that the antifungal
activity of the ZnHApC composite layers was also influenced by the DMEM immersion.
The data obtained in this study is in agreement with previously reported data regarding
the antimicrobial properties of materials based on zinc-doped hydroxyapatite in a polymer
matrix [26,60–64]. The antifungal properties could be attributed both to the constituent
elements of the materials used in the obtaining of the composite layers, as well as to the
synergies that could take place between both the constituent elements found in the coatings
and the substrate, as well as the synergies between the constituent elements of the com-
posite layers [65,66]. In the case of ZnHApC, ZnHApC-7D, and ZnHApC-14D composite
layers, the antifungal properties could be associated first with the presence of zinc ions as
well as the presence of chitosan. Over the years, chitosan has been employed in different
medical applications due to the fact that is a natural, biodegradable, linear polysaccharide
that has been reported to possess both good biocompatibility as well as strong broad-
spectrum antimicrobial activity [67–69]. Even though there are numerous papers regarding
studies on the antibacterial activity of zinc-doped hydroxyapatite against gram-positive
and gram-negative bacterial strains, different efficiencies have been reported [60,61,70–72].
The differences in antimicrobial activity amongst the materials might were reported to be
attributed to both particles’ physio-chemical characteristics and, especially, to the different
surface properties, which can be strongly influenced by the type of material as well as their
surface properties.
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The results obtained by the biological assays emphasized that the Immersion in
DMEM medium for 7 and 14 days of the ZnHApC composite layers determined changes
in the layers’ surfaces and granted the layers novel enhanced biological properties that
helped promoted the adherence and proliferation of osteoblast cells on their surfaces while
inhibiting the development of C. albicans fungal cells. In addition, the data also suggested
that the immersion time helped improve the biological properties of the ZnHApC composite
layers. The results of this study could contribute significantly as leading-edge knowledge
for the future development of coatings with enhanced biological properties and antifungal
properties for biomedical applications.
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4. Conclusions

The main objective of this paper was to develop, by an adapted coprecipitation method,
zinc-doped hydroxyapatite–chitosan (ZnHApC) powders. The ZnHApC nanopowders
were used for fabrication by the vacuum deposition method of ZnHApC coatings. Then,
on the obtained coatings, studies were performed in order to evaluate the formation of a
new apatitic layer after their exposure to DMEM (a biological medium) for 7 and 14 days.
Thus, FTIR, SEM, EDX, and metallographic studies were carried out. Our findings prove
the development of a layer rich in Ca and P that underlines the good mineralization abili-
ties of ZnHApC exposed to a biological medium. The good biocompatibility of ZnHApC,
ZnHApC-7D, and ZnHApC-14D was pointed out with the aid of the hFOB 1.19 cell line.
Furthermore, the antifungal activity of the ZnHApC, ZnHApC-7D, and ZnHApC-14D
composite layers was also assessed against C. albicans fungal cells. The results of the biolog-
ical assays demonstrated that all the samples exhibited good biocompatibility and strong
inhibitory effects against the tested fungal cells. In addition, the results also suggested that
the biological properties of the ZnHApC composite layers were considerably enhanced due
to immersion in the DMEM medium. More than that, the data also emphasized that the bio-
logical properties of the layers were also influenced differently according to their immersion
time in the DMEM medium. These first results are promising stepping stones for the future
development of novel materials and coatings for biomedical applications that will possess
higher bioactive properties, promote faster healing, and exhibit antifungal properties.
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