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Abstract: Non-conventional crystallization techniques have been developed in recent years. Non-
conventional crystallization techniques use primary structural elements (for example, clusters) rather
than atoms and molecules. Modern nanomaterial science is going through great changes as an
entirely new approach of non-conventional growth mechanisms is emerging due to cluster coupling,
catalyzing interest in cluster physics. The formation of fractal and percolation clusters has increased.
We carried out step-by-step modeling and an experimental study of the formation of fractal and
percolation clusters based on tin dioxide and silicon dioxide and formed by sol–gel technology. In
this paper, the growth of fractal aggregates (clusters) from sol particles SnO2 and SiO2 based on the
modified models of diffusion-limited and cluster–cluster aggregation is discussed. A percolation
model using simulated fractal clusters of SnO2 and SiO2 particles is proposed. Experimental data on
the sol–gel percolation structure of porous nanocomposites are presented. The modeling of SnO2 and
SiO2 particles, which also consist of clusters (the next step in the hierarchy), is shown. We propose
a generalized hierarchical three-dimensional percolation cluster model that allows calculating the
surface area, knowing the experimental sizes of macropores and taking into account the micro- and
mesopores (sizes less than a few nanometers).

Keywords: sol–gel films; computer modeling; micro-, meso- and macropores; dioxide tin; dioxide silica

1. Introduction

Non-conventional crystallization techniques, including oriented attachment [1–3] as
well as mesocrystals [4] and mesocrystals with mineral bridges [5], have been developed in
recent years.

A common feature of these new non-traditional crystallization mechanisms is the
use of primary structural elements rather than atoms and molecules. An example of
using polyatomic primary elements is the development of clathrate physics, this field
being especially relevant for the new generation of thermoelectric materials. Clathrates for
thermoelectricity were proposed in the 1990s and were termed “phonon glass–electronic
crystal”. The essence of this concept is to create a highly conductive shell of hollow elements
and fill the inner volume of the clathrate with chemically unbound atoms that would ensure
a reduction in thermal conductivity due to phonon scattering. This results in increased
thermoelectric efficiency [6].

Typical examples of structures made up of primary structural elements are zeolites [7].
Quasicrystals have recently been actively studied. As it was shown in [8–10], the

structure of icosahedral quasicrystals can be described without using the six-dimensional
space geometry. The Madison four-body model allows the structure of four types of
unit cells to be constructed while filling the space with identical copies of the unit cells
according to the self-similarity principle rather than the translational invariance. In addition,
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algorithms for the atom arrangement at the cell interface have been developed. The
multicell approach was proposed.

There are other examples of practical application of structural elements in modern
nanomaterials [11–15] in the form of a polyhedra of one or more types.

As it follows from the above, a relevant task of scientific and practical interest is to de-
velop the sections related to formation of polyhedral nanocrystals, the connection between
the morphology of nano-objects and their size, as well as the transition of morphological
forms into each other in accordance with the minimum energy principle.

Modern nanomaterial science [16–24] is going through great changes as an entirely
new approach of non-conventional growth mechanisms is emerging due to cluster coupling.
Non-conventional crystallization incorporates processes that are not governed by the con-
dition that only orders 1, 2, 3, 4 and 6 of symmetry should exist, and since not an infinitely
solid body is considered, orders 5, etc., can also exist, so energy forms are considered that
are favorable with respect to various symmetry axes. Whereas previously, all issues related
to the expansion of atoms were considered, nowadays more and more attention is focused
on the possibility of engaging the attachment mechanisms and obtaining mesocrystals.

Interest in cluster physics increased in the late 20th century, when a new term “cluster”
was coined [25–29], meaning “a group of similar things growing or held together”. The
concept of “clusters” [28,29] is becoming ever more relevant due to the recent trend in the
development of nanomaterials.

Nanomaterials obtained using non-conventional growth mechanisms are of extreme
interest [25–29] in the field of electronics and photonics, as well as in catalysis. For example,
a new class of materials, i.e., the “phonon glass-electron crystal”, opens a new chapter in
thermoelectric materials science.

Nanoclusters and nanocrystals are known to be nanosized complexes of atoms or
molecules. The main difference between them lies in the way their constituent atoms or
molecules are arranged, as well as the chemical bonds between them. In terms of the degree
of their structural order, nanoclusters are subdivided into ordered, otherwise known as
magic, and unordered.

The formation of fractal and percolation clusters is also of interest. Recently, fractal
and percolation clusters [30–33] were formed in sol–gel processes [34,35].

Fractal clusters [36,37] can form in sol–gel technology. Such systems have a branched
structure and are formed in a large number of physical processes accompanied by the
association of solid particles of similar sizes. When sol–gel nanocomposites are obtained, it
is possible to form a percolation cluster with a fractal structure.

Percolation and fractal clusters differ in nature. A percolation cluster occurs in the
matrix only when the concentration of particles in its composition increases above a certain
threshold of flow. The density of an infinite percolation cluster must exceed a certain critical
value. In the case of a fractal cluster, it can be arbitrarily small.

The products of sol–gel technology [38–43] in microelectronics, as a rule, are layers
onto which the requirements of smoothness, continuity and uniformity in composition
are imposed. For gas-sensitive sensors of a new generation, technological methods for
obtaining porous [44] nanocomposite layers with percolation structure and controlled and
reproducible pore sizes are of greater interest. At the same time, nanocomposites must
contain a phase to improve adhesion and one or more phases of n-type semiconductor
metal oxides of electrical conductivity to ensure gas sensitivity.

The aim of the work was step-by-step modeling and experimental study of the forma-
tion of a percolation cluster based on tin dioxide and silicon dioxide and formed by sol–gel
technology: modeling of the growth of fractal aggregates (clusters) from sol particles SnO2
and SiO2 using modified models of diffusion-limited and cluster–cluster aggregation; cre-
ation of the percolation model using simulated fractal clusters of SnO2 and SiO2 particles;
obtaining experimental data on the sol–gel percolation structure of porous nanocomposites;
modeling of SnO2 and SiO2 particles, which in turn also consist of clusters (the next step in
the hierarchy); creation of a generalized hierarchical three-dimensional percolation cluster
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model allowing calculating the surface area, knowing the experimental sizes of macropores
and taking into account the micro- and mesopores (sizes less than a few nanometers).

2. Materials and Methods

Materials based on SiO2, SnO2 and produced by sol–gel synthesis were investigated
in this study. The source of SiO2 was Si(OC2H5)4 (tetraethoxysilane, TU2637-187-44493179-
2014, Moscow, Russia), and the source of SnO2 was SnCl2·2H2O (GOST 36-78, Saint-
Petersburg, Russia). Films were produced from sols by spin casting.

The atomic force microscopy and electron microscopy were used to investigate film
materials.

A modified Witten–Sander model for a two-component system and a modified cluster–
cluster aggregation model were proposed using the program Microsoft Visual C++ 2013
and Processor Intel core i5 (calculation times were several tens of seconds).

Three-dimensional modeling of nanostructures was performed with Autodesk 3ds
Max 2019.

3. Results
3.1. The Growth of Fractal Aggregates (Clusters) from Sol Particles SnO2 and SiO2 Based on the
Modified Models of Diffusion-Limited and Cluster–Cluster Aggregation

The growth model of fractal aggregates in ash refers to the model of diffusion-limited
aggregation (DLA or Witten–Sander model). Computer experiments based on the modified
DLA model were performed on a two-dimensional (triangular) lattice. Within the frame-
work of the model, each particle started from a randomly selected point on a large circle
centered in the embryo. In calculations, the number of points on the large circle varied from
4 to 20. The probability of adhesion of a particle was set to 100%, in the second coordination
sphere, 50%, and in the third coordination sphere, 25%. Since sols were obtained using two
precursors, Si(OC2H5)4 and SnCl2·2H2O, computer modeling was carried out in a system
consisting of two types of particles. The addition of TEOS to an alcoholic solution of an
inorganic tin salt was carried out only after the destruction of the structure of the solute
(SnCl2·2H2O) and the interaction of the solvent with the solute particles. Therefore, the
particles of the second type began to diffuse in space after 50% of the particles of the first
type joined the aggregate. As illustrative examples, Figure 1 presents typical simulation
results that match the results of the experiment (Figure 2). It is shown that neighboring
branches of aggregates can be combined. Fractal branched macromolecules were formed.
The side chains interacted and connected. Incorrect grids were formed. The connection
was also carried out using short “jumpers” between the circuits.
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Figure 1. Typical DLA simulation results. Figure 1. Typical DLA simulation results.

The result of the simulation is a visual observation of fractal changes and an under-
standing of the possibility of varying the value of the flow threshold. Modeling allowed
us to explain the high value of the flow threshold in the experiment. It is shown that the
nonconducting phase is formed not only due to the formation of the dielectric-phase SiO2,
but also due to the formation of mixed-phase SnO2 and SiO2.

As the sol exposure increases, chemical crosslinking reactions occur between branched
macromolecules. Computer experiments were carried out using a modified model of
cluster–cluster aggregation (CCA), in which the formed clusters perform chaotic motion in
solution together with particles. In our generalized model, the processes of DLA and CCA
proceed simultaneously. Simultaneous movement of all particles was carried out, and the
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movement of clusters was carried out at a speed inversely proportional to their mass. The
particles diffused in a limited space according to the CCA. A solid dimer was formed when
two particles collided. The dimer also made random wanderings in the ash. This dimer
was connected to another dimer or to a separate particle, etc. Two colliding clusters formed
a large cluster after the collision. Figure 3 shows typical computer simulation results. The
processes are shown in the ash with an increase in the holding time of the solution. A large
percolation cluster was forming.

1 
 

13 

 
2 

 
8 

Figure 2. A scanning electronic microscopy image (SiO2 sample).
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3.2. The Percolation Model Using Simulated Fractal Clusters of SnO2 and SiO2 Particles

Sol–gel technology products can be objects with a fractal structure, but not belonging
to the group of fractal aggregates. These are so-called percolation clusters. The fundamental
differences between a fractal aggregate and a percolation cluster are that a fractal aggregate
begins to form at arbitrarily small concentrations of particles, and a percolation cluster
occurs only when the concentration corresponding to the flow threshold is exceeded. In
this work, the flow thresholds were calculated on two-dimensional lattices with specified
parameters (node tasks, the number of nodes varied from 100 to 40,000). The software
product also implements the capabilities of oriented flow analysis, for example, under
conditions of an applied electric field. Since, under the action of a constant electric field,
the movement of electrons through conducting grains is carried out only against the field,
during calculations, restrictions were imposed on the search for a percolation contracting
cluster (geometric phase transition). It was assumed that the composites consisted of two
types of grains: conductive based on tin dioxide and non-conductive based on silicon
dioxide. An increase in the proportion of grains of the first type in the starting material
compared to grains of the second type allows one to change the electrical properties from
fully insulating to conductive. Near the threshold of leakage, the body is divided into
parts with different properties. It is shown that the geometry of these partitions acquires
new random shapes each time, but the values of the flow threshold for bodies of infinite
dimensions are strictly defined and depend on the symmetry and dimension of space
(Figure 4).
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Figure 5 shows histograms showing changes in the random value of the percolation
threshold in 50 experiments.
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In the case of predominant formation of SnO2 fractal aggregates at the initial stages of
growth, their sizes exceed those of SiO2 and mixed particles (SnO2 and SiO2). Therefore,
changes in the value of the percolation threshold when using the size ratio of conductive
SnO2 and non-conductive particles (SiO2 and mixed particles of SnO2 and SiO2) occur
(Figure 6).
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The percolation model on a two-dimensional lattice can also be interpreted as a model
of branched polymerization. Imitation of concentrated gel was carried out in the form of
colored dots, and that of pure solvent was in the form of white dots (Figure 4). It can be
seen that percolation systems represent grids. Heat treatment of nanostructures based on
such percolation systems leads to the release of solvent from the grid and the formation of
a system of pores, the size of which can be controlled by changing the conditions of sol–gel
synthesis.

3.3. Experimental Study on the Sol–Gel Percolation Structure of Porous Nanocomposites

The main sol–gel reactions based on tetraethyl orthosilicate (TEOS, Si(OC2H5)4) are as
follows:

(C2H5O)3≡Si-OC2H5 + HOH⇒ (C2H5O)3≡Si-OH + C2H5OH

and

(C2H5O)3≡Si-OH + C2H5O-Si≡(OC2H5)3 ⇒ (C2H5O)3≡Si-O-Si≡(OC2H5)3 + C2H5OH,

or

(C2H5O)3≡Si-OH + HO-Si≡(OC2H5)3 ⇒ (C2H5O)3≡Si-O-Si≡(OC2H5)3 + H2O

The formation of other organoelement compounds is possible. An example is shown
in Figure 7.
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Film porous nanocomposites based on tin dioxide and silicon dioxide were obtained
from sols based on polystanoxanes and polysiloxanes.

To determine the thickness of nanostructured layers on sitall substrates, cross-sections
(Figure 8) were created by an acutely focused beam of gallium ions provided by the Strata
FIB 205 (focused ion beam microscope).

 

2 

 
Figure 8. Image of the section.

This analytical and technological complex allows local ion beam preparation of com-
plex heterogeneous objects with a spatial resolution of 0.1 microns. To study the sample
section, the object table was rotated at an angle of 45◦, and the observation was carried
out in secondary electrons excited by an ion beam with a diameter of 7 nm. Grooves
(5 mµ × 5 mµ, depth 2 mµ) were formed. The thickness of the semiconductor layers
(indicated by bright green arrows in Figure 8) is 200 nm.

The transition from theoretical problems (which are reduced to finding the value of
flow thresholds for two-dimensional lattices) was made to solve experimental problems of
percolation theory in a system based on tin and silicon dioxides (Figures 9–11). The experi-
mental results of the study allowed us to determine the composition of the nanocomposite at
which a percolation cluster occurs (50 SiO2—50 SnO2 (mol. %), Figure 11). The percolation
cluster is a porous nanomaterial with macropore sizes of 150–200 nm and 350–400 nm (IU-
PAC recommendation: micropore size—below 2 nm, mesopore size—2–50 nm, macropore
size—over 50 nm).
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Figure 9. AFM image of SiO2 film: (a) image size 8 µm × 8 µm; (b) image size 3 µm × 3 µm.
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The value of the flow threshold significantly exceeds (16%) the solution of the classical
problem for 3D space. However, the simulation results predict such a deviation due to the
initial formation of SnO2 clusters and changes in the particle size ratio of conducting and
non-conducting phases at the stage of cluster–cluster aggregation during the formation of
nanocomposites.

It was possible to determine that the conducting branches of the studied percolation
structures contain a system of open mesopores of the order of 10 nm in size (Figure 12).Coatings 2023, 13, x FOR PEER REVIEW 9 of 18 
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Figure 12. AFM image of 80 SiO2—20 SnO2 (mol. %) film: (a) image size 15 µm × 15 µm, (b) image
size 5 µm × 5 µm, (c) image size 400 nm × 400 nm.

3.4. Generalized Hierarchical Three-Dimensional Percolation Cluster Model

This article proposes a three-dimensional percolation model of the formation of porous
hierarchical nanomaterials, limited from below, by applying the film to the substrate. The
percolation cluster is a porous nanomaterial with macropore sizes of 150 nm and 400 nm
(the first pore type, Figure 13). One of the eleven Kepler nets (Figure 13) with Schläfli
symbol no. 4612 [14,33] was used.
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Figure 13. One of the eleven Kepler nets with Schläfli symbol no. 4612 and fragment of the enhanced
Kepler net of the 4612 type.

A square was replaced by a regular hexagon. Thus, a large hexagon was obtained
(Figure 13).

Each regular hexagon in the enhanced Kepler net with the Schläfli 4612 symbol was
filled with clusters consisting of SiO2 and SnO2 particles. Simulations of SiO2 and SiO2
particle clusters are given below.

It should be noted that the results of earlier studies show that the conducting branches
of macroporous materials have a hierarchical structure.

3.5. Formation of Clusters along the Octahedral Line

Table 1 shows the results of calculating the number of structural units (atoms, molecules)
in the original octahedral clusters and in clusters that have been truncated in various ways.

Table 1. The results of calculating the number of structural units (atoms, molecules) in the original
octahedral clusters.

l
NOK

l at p Values

0 1 2 3 4 5 6

1 1

2 6 0

3 19 13

4 44 38 14

5 85 79 55

6 146 140 116 62

7 231 201 147

8 344 314 260 164

9 489 405 309

10 670 586 490 340

11 891 807 711 561

12 1156 976 826 610

13 1469 1289 1139 923

The octahedral numbers are also obtained by direct calculation, if we consider that
an octahedron with l structural units per edge consists of two square pyramids with (l−1)
structural units per edge, each containing NII

l−1 structural units, and a square with l2

structural units between them.
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NII
l−1 =

l−1

∑
i=1

(i− 1)2 =
1
6
[(l − 1) · l · (2l − 1)]

Therefore, the octahedral number is calculated using the following equation:

NOK
l = 2NII

l−1 + l2 =
l
(
2l2 − l − 2l + 1 + l

)
3

; NOK
l =

l
(
2l2 + 1

)
3

at p = 0

Figures 14–17 present isometric shapes of crystallographic octahedral clusters with the
number of structural units per octahedron edge l = 2 and l = 3 and their axonometric views
with a visual representation of all 6 and 19 structural units in the cluster, respectively.
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Modeling in the Autodesk 3ds Max software revealed that eighteen structural units
are located on the faces and one structural unit is in the center of the octahedron at the
intersection of its three equal diagonals (in the octahedron, all diagonals are equal to each
other and perpendicularly intersect in the center in pairs).

If we “round off” an octahedron (Table 1) by cutting off square pyramids with p
structural units per edge (p ≤ [l/2]) from its six vertices, then the general equation of the
“magic numbers” for such configurations will take the following form:

NOK
l (p) = NOK

l − 6NII
p

p = l − 1 ⇒ l = p + 1

NII
p =

1
6
[p · (p + 1) · (2p + 2− 1)] =

1
6
[p · (p + 1) · (2p + 1)]

NOK
l (p) = NOK

l − 6NII
p =

l
(
2l2 + 1

)
3

− [p · (p + 1) · (2p + 1)]

For example : NOK
l=6(p = 3) =

6
(
2 · 62 + 1

)
3

− [3 · (3 + 1) · (2 · 3 + 1)] = 146− 84 = 62

Figures 18 and 19 present an image of a 44-atom octahedral cluster with the number of
structural units per octahedron edge l = 4 and its schematic representation of the location
of structural units in a 44-atom octahedral cluster.
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edge l = 4 (without cutting off at p = 0).
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Figure 19. Schematic representation of the location of structural units in a 44-atom octahedral cluster,
shown in Figure 18.

Figure 20 presents a cross-section of a 44-atom octahedral cluster along the symmetry
plane (bottom view), and Figure 21 shows an orthogonal view of a 44-atom octahedral
cluster centered by an edge.
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Figure 21. Orthogonal view of a 44-atom octahedral cluster centered by an edge.

Since 4 structural units are on one octahedral cluster edge, there are 30 structural units
on its 12 edges. There is one structural unit in the center of each edge, which makes eight
structural units on eight edges of the octahedron. Two structural units are located on each
diagonal of the octahedral cluster, so the results of modelling in the Autodesk 3ds Max
software show that six structural units are located inside the octahedral cluster on its three
diagonals (with no structural unit in the center).

Figure 22 presents an image of an 85-atom octahedral cluster with the number of
structural units per octahedron edge l = 5.
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Figure 22. Image of an 85-atom octahedral cluster with the number of structural units per the
octahedron edge l = 5 (without cuffing off at p = 1).

Since 5 structural units are on one octahedral cluster edge, there are 42 structural
units on its 12 edges. There are 3 structural units in the center of each edge, which makes
24 structural units on eight edges of the octahedron. Based on the results of modeling in the
Autodesk 3ds Max software, it was found that there is a small octahedron with 19 structural
units inside the octahedron cluster with the number of structural units per octahedron edge
l = 5 (Figure 23). Thus, the result of summing up 42, 24 and 19 structural units produces 85.
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Figure 23. A visual representation of the internal small octahedron of an 85-atom octahedral cluster,
shown in Figure 22.

According to the modeling results, it was established that the number of structural
units inside an octahedral cluster (Ll) with the number of structural units per the octahedron
edge l = 3, l = 4, l = 5 equals Ll=3 = 1, Ll=4 = 6, Ll=5 = 19, respectively. Therefore, if

NOK
l = 2NII

l−1 + l2 =
l(2l2+1)

3 npu p = 0, then Ll = NOK
l−2 =

(l−2)(2(l−2)2+1)
3 npu p =

0 u l ≥ 3. Thus, the dependence of the number of structural units per the octahedron
edge l on the number of structural units inside the octahedral cluster Ll without cutting
off is a cubic function (Ll(l) = 0.6667l3 − 4l2 + 8.3333l − 6), which is defined by a cubic
polynomial (Figure 24).

Figure 24. The dependence of the number of structural units inside the octahedral cluster Ll (without
cutting off) on the number of structural units per the octahedron edge l.

Table 2 shows the results of modeling and the dependence of the number of structural
units inside the octahedral cluster Ll on the number of structural units per the octahedron
edge l and the number of structural units in octahedral clusters.

It was established that the dependence of the number of structural units per the
octahedron edge on the number of structural units inside the octahedral cluster without
cutting off is a cubic function which is defined by a cubic polynomial. A formula is proposed
to calculate the number of structural units within an octahedral cluster.
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Table 2. The number of structural units inside the octahedral cluster.

l NOK
l (p=0) Ll

1 1

2 6

3 19 1

4 44 6

5 85 19

6 146 44

7 231 85

8 344 146

9 489 231

10 670 344

11 891 489

12 1156 670

13 1469 891

4. Discussion

Each regular hexagon in the enhanced Kepler net with the Schläfli 4612 symbol was
filled with upgraded three-dimensional deterministic Julien fractal aggregates (Figure 25).
Nonporous identical spherical particles in the Julien fractal cluster were replaced by 13-
atom octahedral clusters with the number of structural units per the octahedron edge l = 3
(with cutting off at p = 1, Figure 26).
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The following three pore types (Figure 27) were observed in the enhanced Kepler net
of the 4612 type with cells filled with 13-atom octahedral clusters.
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The growth of fractal aggregates (clusters) from sol particles SnO2 and SiO2 based on
the modified models of diffusion-limited and cluster–cluster aggregation was discussed.

The result of the simulation is a visual observation of fractal changes and an under-
standing of the possibility of varying the value of the flow threshold. Modeling allowed us
to explain the high value of the flow threshold in the experiment. It was shown that the
nonconducting phase is formed not only due to the formation of the dielectric-phase SiO2,
but also due to the formation of mixed-phase SnO2 and SiO2.

Two- and three-dimensional percolation models based on experimental data and
using simulated fractal clusters of SnO2 and SiO2 particles were developed in this work.
The transition from theoretical problems (which are reduced to finding the value of flow
thresholds for two-dimensional lattices) was made to solve experimental problems of
percolation theory in a system based on tin and silicon dioxides The experimental results
of the study allowed us to determine the composition of the nanocomposite at which a
percolation cluster occurs (50 SiO2—50 SnO2 (mol. %)).

Modeling of SnO2 and SiO2 particles, which in turn also consist of clusters (the next
step in the hierarchy), was performed based on principles for constructing nanoclusters
along one tetrahedral and octahedral lines using three-dimensional modeling. Therefore, a
generalized hierarchical three-dimensional percolation cluster model is proposed:

1. Micropores formed by the gaps between three or four globules (particles of SnO2 and
SiO2) with the circle radius β;

2. Mesopores formed by the gaps between 13-atom octahedral clusters;
3. Macropores formed by the gaps between the six regular hexagons and macropores

formed by the gaps between the twelve regular hexagons.

Thus, we propose a method to assess the surface area, knowing the experimental sizes
of macropores (of the third type) and taking into account the micro- and mesopores with
sizes below a few nanometers:

1. Estimate the size of macropores (of the third type) in a proposed multimodal model
based on an enhanced Kepler net of the 4612 type with hexagonal cells using atomic
force microscopy;

2. Estimate the experimental size of the necks between the macropores based on the
AFM data;

3. Calculate the radius size of the globule representing the glass-forming net of silicon
dioxide by relating the experimental neck size to 7;

4. Calculate the size of the second (mesopores) type of pores using the ratios 1.4 β and
1.1 β;
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5. Calculate the size of the first (micropores) type of pores using the ratios 0.16 β and
0.38 β.

6. Construct surface profiles taking into account pore sizes using a multimodal model
and calculate surface areas based on the triangulation method.
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