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Abstract: Among the preparation methods of functional coatings, the electrodeposition technique
has attracted much attention due to its advantages of economy, high efficiency and good structural
adaptability. The application of aluminum alloy materials is greatly limited due to their poor
friction reduction and wear resistance. Therefore, to enhance the tribological behaviors of aluminum
alloy materials, the Ni-MoS2, Ni-SiC and Ni-MoS2/SiC composite coatings were prepared on the
2218 aluminum alloy by an electrodeposition technique. The prepared composite coating samples
exhibited a compact and dense microstructure, which was consistent with the result of their high
microhardness. No obvious microcracks and defects appeared at the interfaces, indicating that
the composite coating samples had good adhesion to the substrates and can effectively improve
the frictional shear resistance. The results of wear experiment showed that the wear rate, friction
coefficient and friction response time of all composite coating samples were lower than that of the
substrate sample. However, the friction reduction and wear resistance of the same composite coating
sample were not consistent. The friction coefficient of the Ni-MoS2 composite coating sample was
the lowest, and the wear rate of the Ni-SiC composite coating sample was the lowest. According
to the worn surface observations, the wear mechanism of composite coating samples was mainly
characterized by the mild abrasive wear, flake spalling, tearing and pits caused by particle shedding,
and the substrate sample showed a severe adhesive wear and abrasive wear.

Keywords: electrodeposition; composite coating; microstructure; friction; wear mechanism

1. Introduction

Two contacting elements with relative sliding in industrial equipment may reduce
the service life and cause more economy and energy losses due to surface wear, and
even lead to their failure [1,2]. The research of surface coating technique, which reduces
wear and improves service life and reliability of industrial equipment by preparing a
protective coating on the contact surface, has aroused great interest [3–5]. Laser cladding [6],
chemical/physical vapor deposition [7,8], plasma spraying [9] and electrodeposition [10]
are all commonly used as surface coating techniques to enhance wear resistance of materials.
Among these methods, the electrodeposition method has received much attention owing to
its low cost, ease of implementation and applicability to various geometries [11–15].

In order to obtain a coating with excellent tribological properties, the commonly
used surface coating materials are hard ceramic particles such as SiC, WC, Al2O3, and
excellent solid lubricants such as MoS2, graphite, GO and so on [3,16–19]. The improved
wear resistance of coatings containing SiC particles is attributed to an increase in the
hardness [3,20]. The increase of SiC particle content in the electrodeposited Ni-SiC
composite coating can effectively improve its hardness, and reduce the wear rate and
friction coefficient. The wear mechanism of the coatings mainly includes abrasive wear
and oxidation wear under dry wear test [16,21]. Sun et al. [22] successfully prepared
the Ni-SiC coating on mild steel by a magnetically assisted pulse electrodeposition
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method. The results showed that the Ni-SiC coating had higher hardness and good
wear resistance. Yazdani and Zakeri [23] obtained the Ni-SiC composite nanocomposite
coating on aluminum-based materials by a high energy ball milling technique. It can
be found that the microstructure, mechanical performances and wear resistance obvi-
ously depended on the charge composition, and the dispersion strengthening effect of
composite materials could reduce the grain size of SiC particles and Ni matrix to the
nanoscale. Ji et al. [24] proposed a method for the preparation of Ni-SiC coating by
rotating magnetic-field-assisted electrodeposition. The results showed that the surface
morphology was effectively improved and the defects were reduced because the rotating
magnetic field reduced the agglomeration of SiC particles. The thickness, hardness and
adhesion of the coating were then significantly improved. In addition, the tribolog-
ical behaviors of composite coatings of SiC with MoS2 [25], PTFE [26], graphite [27],
BN [28] or GO [29] were also widely investigated. The results showed that the friction
reduction and wear resistance of the composite coating containing hard particles and
self-lubricating powder were significantly improved compared to the substrate materi-
als. Likewise, MoS2 solid lubricants with excellent lubrication properties are also often
selected as coating materials in the research of coating technique. Maharana et al. [30]
successfully prepared the Ni-MoS2 coating by means of the electrodeposition method,
and investigated its mechanical and tribological performances. It can be found that the
wear resistance of coatings depends primarily on a combined effect of coating morphol-
ogy and hardness caused by dispersion hardening and crystal orientation. He et al. [31]
studied the tribological behaviors of the Ni-P-MoS2 composite coating deposited on
mild steel. It is interesting that the composite coating had a very small wear rate and
friction coefficient. The MoS2 particles had been broken into slender fragments, which
may be one of the reasons for their excellent tribological properties. Furthermore, the
MoS2 content in the plating solution had a significant effect on the surface roughness of
the coating. Under current-carrying tribological conditions, the low friction coefficient of
MoS2-based coatings was mainly due to the high adhesion and a higher density transfer
film of the coating materials on the metal surface, meanwhile the high wear rate was de-
termined by the high roughness surface caused by the heat release from the current and
enhanced abrasive properties [32]. The reorientation and compaction of porous MoS2
coating materials can be achieved by friction pretreatment, which effectively inhibits
the formation of wear debris. As a result, the MoS2 coating had good friction reduction
and wear resistance [33–36]. Multi-phase composite coatings containing MoS2 particles
and diamond-like carbon [37], Si3N4 [38] or CeO2 [39] were prepared, their tribological
properties were investigated and the wear mechanism was explored. As a result, the
addition of MoS2 had effectively enhanced the friction reduction and wear resistance of
the metal materials.

The motivation of this work is to obtain a composite coating with good tribological
behaviors on aluminum alloy substrates to enhance their wear resistance. To achieve
this purpose, the hard SiC ceramic particles and solid MoS2 lubricant were selected as
coating materials, and the Ni-SiC, Ni-MoS2 and Ni-MoS2/SiC composite coatings were
prepared on the surface of 2218 aluminum alloy by an electrodeposition method. The
surface morphologies, microstructure, microhardness and interfacial bonding strength
were investigated. The tribological behaviors were discussed under dry sliding friction,
and the wear mechanism was explored.

2. Experimental Procedures
2.1. Materials and Chemicals

Molybdenum disulfide (MoS2) and silicon carbide (SiC) were commercially purchased
from Shanghai Chaowei Nanotech Co., Ltd., Shanghai, China. The 2218 aluminum alloy
chosen as the substrate material was purchased from Dongguan Avis Metal Materials
Co., Ltd., Dongguan, China. The chemicals used were commercially purchased. The
information of all materials is shown in Tables 1–3.
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Table 1. The coating materials and properties.

Materials Average Particle Size
(nm)

Specific Surface Area
(m2·g−1)

Density
(g·cm−3)

Purity
(%)

MoS2 600 12.4 1.83 ≥99.9
SiC 600 3.2 1.52 ≥99.5

Table 2. Chemical composition of 2218 aluminum alloy substrate.

Elements Fe Si Mn Cu Mg Al

wt.% 0.5 0.35 0.28 1.8 2.6 balanced

Table 3. The chemicals.

Chemicals Purity (%) Brand

Ni(NH2SO3)2·4H2O 99 Macklin
CH3(CH2)11OSO3Na 98 Aiyan

HBO3 99.5 Nanshi
Na2CO3 99.8 Nanshi
Na3PO4 98 Nanshi
NaOH 96 Nanshi
HNO3 65–68 Aladdin
ZnO 99 Aiyan
FeCl3 97 Nanshi

C6H8O7 99.5 Macklin
NaNO3 99 Nanshi

2.2. Deposition of the Composite Coatings

The surface of the 2218 aluminum alloy disc samples (φ 50 mm × 8 mm) was polished
using 400, 600, 800 and 1000 grain metallographic sandpapers in a certain order [10,40]. The
surface roughness was measured to be ~0.22 µm with a TR 200 surface roughness meter
with an accuracy of 0.001 µm (Beijing Saiboruixin technology Co., Ltd., Beijing, China). The
electrodeposition device consists of a WYK-5010 DC-regulated voltage and current power
supply with an output voltage of 0–50 V and output current of 0–10 A (Yangzhou Jintong
Eletronics Co., Ltd., Yangzhou, China) and a DF-101S collector type thermostatic heating
magnetic stirrer with a rotation speed of 0–2600 rpm and a temperature of ~400 ◦C (Gongyi
Yuhua Instrument Co., Ltd., Zhengzhou, China). The stable current density is provided
by a power supply, and the constant plating solution temperature and continuous stirring
are ensured by the thermostatic heating magnetic stirrer. Furthermore, the pretreated
aluminum alloy disc was taken as a cathode, and a nickel plate (60 mm × 60 mm × 2 mm)
was used as the anode. A distance of 30 mm was maintained between the nickel plate
and the aluminum alloy disc. Table 4 shows the operating conditions of electrodeposition
determined based on the literature [10,11,16,21,25] and pre-experiments.

Table 4. The operating conditions.

Parameters Quantity

pH 3.5
Stirring speed n (rpm) 350

Plating solution temperature T (◦C) 50
Current density J (A·dm−2) 4

Deposition time t (min) 60

The specific process of preparing composite coating is as follows:
Step 1—The aluminum alloy disc samples were etched to remove contaminants and

surface oxides in an alkali mixed solution for 2 min.
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Step 2—The aluminum alloy disc samples were washed in an acid solution for 30 s.
Step 3—The aluminum alloy disc samples were treated with zinc immersion in the

mixed solution for 60 s. Afterwards, the zinc was dezincified in HNO3 solution for 30 s.
Finally, the second zinc immersion was carried out in the mixed solution for 40 s.

Step 4—According to the operating conditions in Table 4 and composite coating
requirements, the pretreated aluminum alloy disc samples were subjected to composite
coating electrodeposition in plating solution for 60 min.

After each step, the treated aluminum alloy disc samples were ultrasonically cleaned
by deionized water for 5 min. Thus, the Ni-MoS2, Ni-SiC and Ni-MoS2/SiC composite
coatings were achieved. For the convenience of subsequent analysis, the samples of
aluminum alloy substrate, Ni-MoS2 coating, Ni-SiC coating and Ni-MoS2/SiC coating are
denoted as E0, E1, E2 and E3, respectively. The solution composition, operating time and
technological process is illustrated in Figure 1.
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Figure 1. Flow diagram of the technological process.

2.3. Wear Experiments

To investigate the tribological behaviors, the experiments were carried out on a
ball-on-disc type tester (HT-1000, Zhongke Kaihua Technology Development Co., Ltd.,
Lanzhou, China) against the AISI 52100 steel balls with a diameter of 5 mm and micro-
hardness of 780 HV. The tester with a load of 1.5–20 N, a rotation speed of 5–2800 rpm
and a temperature of room temperature—1000 ◦C and schematic diagram are shown in
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Figure 2. The friction coefficient was automatically obtained during the experiment by
the tester. The dry wear experiments were performed at a rotation speed of 400 rpm,
a radius of 6 mm, a load of 2 N, a temperature of 100 ◦C and a time of 10 min based
on the purpose of the experiment and pre-experimental analysis. The wear mass loss
was obtained by using an electronic balance with an accuracy of 0.1 mg and a weighing
capacity of 200 g (FA2204C, Shanghai Yueping Scientific Instrument Co., Ltd., Shanghai,
China). The wear rate, WR, was then calculated by the formula WR = ∆W/PS, where ∆W
is the wear mass loss (mg), P is the normal load (N) and S is the sliding distance (m).
Before and after each test, the samples were ultrasonically cleaned using deionized water
for 5 min. At least three tests were completed for each condition.
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2.4. Characterization

Scanning electron microscopy (SEM, MIRA3, TESCAN, Czech Republic) with the
energy dispersive spectroscopy (EDS) function was employed to analyze the surface mor-
phologies, cross-section microstructures, worn surface morphologies and element distri-
bution of the samples. In addition, a 3D optical microscope (DVM6, Wetzlar, Germany)
was employed to analyze the three-dimensional morphologies and obtain wear depth. A
digital Vickers hardness tester (THV-5, Beijing Time High Technology Co., Ltd., Beijing,
China) was applied to measure the microhardness of all samples. In this work, the load
applied was 200 g and the holding time was 15 s. For the validity of the results, at least
5 points were measured at different locations according to GB/T 4340. The average value
was taken as the surface microhardness of the sample. The bonding strength of the com-
posite coatings was obtained using an automatic scratch instrument with a loading rate of
10–100 N/min, a scratch rate of 1–10 mm/min and a scratch length of 2–6 mm (WS-2005,
Zhongke Kaihua Technology Development Co., Ltd., Lanzhou, China) according to the
method in references [41,42]. In this case, a diamond indenter with a 120◦ conical shape
and a tip radius of 200 µm was employed, and a scratch rate of 6 mm/min and a loading
rate of 20 N/min were used. The average value of the results measured at three different
locations was used as the bonding strength of the composite coating.

3. Results and Discussion
3.1. Characterization of Composite Coatings

The SEM images and EDS mappings of original surface of all composite coatings are
shown in Figure 3. The composite coating of the E1 sample has an irregular and rough
morphology with nodules similar to sunflower stamens. However, it can be observed that
the distribution of composite coating particles is relatively homogeneous. It is believed
that this composite coating structure is because MoS2 particles attached to the substrate
not only become nucleation sites for Ni growth, but also result in higher current density
on the surface. Ni ions prefer to nucleate on the particles’ surfaces rather than around the
particles, resulting in nodular structures. Shourije et al. [43] and He et al. [31] reported the
strong influence of conducting particles on the local current distribution and its growth
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kinetics during the electrodeposition process. In addition, the MoS2 particles enhance
the denseness of the composite coating structure. The presence of MoS2 particles hinders
the growth of Ni ions, resulting in smaller Ni grains, as shown in Figure 3(a1). Similar
structural morphology has also been observed by Zhou et al. [44] and He et al. [28]. The
EDS mappings in Figure 3(a2) illustrate that uniform Ni, S and Mo elements are enriched
on the surface, indicating that the Ni-MoS2 composite coating was achieved. As shown in
Figure 3(b1,b2), compared with the E1 sample, the surface of the E2 sample has a smoother
and denser microstructure, and the Ni grains are finer. The SiC particles are irregularly
distributed on the surface of the composite coating without any obvious agglomeration.
This should be attributed to the fact that the addition of SiC particles increases the number
of nucleation sites of Ni crystals while effectively inhibiting the growth of Ni grains [10,45].
Gyawali et al. [46] and Huang et al. [16] described the similar structural morphology of
Ni-SiC coating prepared by electrodeposition methods. The EDS mappings indicate that
the Ni-SiC composite coating is prepared. As shown in Figure 3(c1), the surface of the E3
sample is a relatively smooth and compact microstructure. The MoS2 and SiC particles
show irregular and relatively uniform distribution, and some SiC particles are wrapped by
the layered MoS2 particles. Compared with the E1 sample, the coronal protrusion of the
nodules is finer and the composite coating is more compact, which may be one of the reasons
for its higher microhardness. The combined effect of the two coating particles enhances
the nucleation sites of Ni ions, and the growth of Ni grains is inhibited. However, the
refinement of the Ni grains is inferior to that of the E2 sample, which could be attributed
to the addition of MoS2 particles leading to a change in the current distribution, thus
attenuating the inhibitory effect of the SiC particles. Based on the distribution of Ni, Mo,
S, Si and C elements in the EDS mappings in Figure 3(c2), it can be concluded that the
Ni-MoS2/SiC composite coating has been successfully obtained.

Figure 4 shows the SEM cross-section images of the composite coating samples. It
can be found that the coating thickness of the E2 sample is relatively thin, about 41 µm,
which is 71.93% and 89.13% of the E1 and E3 samples. It can be concluded that the
thickness of coating mainly depends on the properties of the deposited particle and the
electrodeposition rate. The internal structure of all composite coatings is compact, integral
and consequent, tightly fitted with the 2218 aluminum alloy substrate. No microcracks and
visible pinhole defects were observed at the interface between the composite coatings and
the 2218 aluminum alloy substrate, indicating that the electrodeposited composite coatings
are well bonded to the 2218 aluminum alloy substrate. However, the surface flatness of the
composite coatings is different. The surface of the composite coating of the E2 sample is
relatively smoother.

To better illustrate the electrodeposition mechanism of coating particles, the electrode-
position process of the Ni-MoS2/SiC composite coating is shown in Figure 5. The dispersed
SiC and MoS2 particles in the plating solution are wrapped by Ni ions through weak
adsorption, which causes the particles to be transported towards the cathode (aluminum
alloy substrate) under electric field forces due to their positive charge. Afterwards, the
charged particles pass through the boundary layer and gradually diffuse to the cathode
surface. The particles are then adsorbed on the surface of the aluminum alloy substrate to
achieve electrodeposition. In the continuous electrodeposition process, the particles in the
diffusion layer on the surface near the cathode are continuously reduced. The continuous
magnetic stirring effect can cause the charged particles to transfer to the diffusion layer by
migration and diffusion, thus ensuring continuous electrodeposition.

3.2. Mechanical Performances

In general, it is believed that the surface hardness and interfacial bonding strength are
closely related to their tribological properties. Figure 6 shows the surface microhardness
and bonding strength of experimental samples. The hardness is often used to evaluate
a material’s wear resistance, cutting and scratching properties [10,47–49]. To investigate
the effect of surface microhardness on its tribological properties, the microhardness of
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experimental samples is measured. The surface microhardness of the E0, E1, E2 and
E3 samples are illustrated in Figure 6a. The results show that the microhardness of the
composite coating samples is significantly enhanced compared to the E0 sample. The trend
of increased microhardness of the Ni-MoS2 and Ni-SiC composite coatings has also been
reported in the literature [46,50]. The surface microhardness of the E2 sample is the highest
with its value of 407.48 HV, which is consistent with that reported by Huang [16]. The
surface microhardness of the E2 sample reaches 3.14 times that of the E0 sample. Likewise,
the surface microhardnesses of the E1 and E3 samples are improved by 111.92% and 175.13%
compared to the E0 sample, respectively. The increase in surface microhardness is chiefly
attributed to the strengthening of the co-deposited particles, the finer structure and the
grain refinement due to the hindrance of dislocation migration and grain growth [16,25].
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The bonding strength between the composite coating and the substrate plays a
key role in improving the tribological performances of a material by means of coating
techniques [51,52]. The evaluation method for determining the bonding strength using a
critical normal load is reported in references [41,53]. In this case, the critical normal load
of each composite coating is obtained by the scratching method based on the measure-
ment of friction and acoustic signals. During the test, the acoustic signal exhibits a stable
low value when the diamond pin is just touching the composite coating. However, the
acoustic signal will fluctuate and increase sharply when the severe plastic deformation
and peeling off occurs. At this time, it indicates that the diamond pin has contacted
the substrate [52]. As shown in Figure 6b, the measured critical normal loads of the
E1, E2 and E3 samples are 11.03, 17.13 and 13.67 N, respectively. It can be found that
the bonding strength of the E2 sample is the best, which is 55.30% and 25.31% higher
than that of the E1 and E3 samples, respectively. It implies that the wear resistance
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of the E2 sample is superior to other composite coatings. It can be inferred that the
interfacial bonding strength depends mainly on the pretreatment of the substrate surface,
the characteristics of the coating materials and the electrodeposition conditions.

3.3. Tribological Performances

Figure 7 illustrates the variation characteristics of the wear rate and friction coefficient
of the E0, E1, E2 and E3 samples. As shown in Figure 7a, it can be found that the wear rates
of the composite coating samples are all much lower than that of the E0 sample, which
indicates that the composite coatings enhance the wear resistance of the 2218 aluminum
alloy substrate. The E0 sample has the maximal wear rate of 7.03 mg/N·m, indicating its
poor wear resistance. The wear rate of the E2 sample is the minimum, which is 39.83% of
the E0 sample. Compared with the E0 sample, the wear rates of the E1 and E3 samples
are decreased by 28.88% and 43.10%, respectively. Therefore, it can be concluded that
the wear resistance of the E3 sample is inferior to the E2 sample but better than the E1
sample. It can be clearly observed that the friction coefficient rapidly increases at the
beginning of the test, and then increases slowly and finally fluctuates in a stable interval.
Nevertheless, the friction response time is different for each sample, as illustrated in
Figure 7b. The response times of the E1, E2 and E3 samples are significantly lower than that
of the E0 sample. The E0 sample takes approximately 410 s to reach a stable friction state.
However, the response time of the E1 sample is about 60 s, which is only 14.63% of the E0
sample. The response times and variation patterns of the E2 and E3 samples are essentially
the same. For tribological problems, the rapid achievement of a stable friction state can
effectively improve its working performances and reduce friction energy consumption. As
shown in Figure 7c, it can be found that the average friction coefficient of all composite
coating samples is significantly lower than that of the 2218 aluminum alloy substrate. The
average friction coefficient of the E0 sample is 0.665, indicating its poor friction reduction.
Compared with the E0 sample, the average friction coefficients of the E1, E2 and E3 samples
are decreased by 59.70%, 33.98% and 52.63%, respectively. Therefore, the friction reduction
of the E1 sample is the best. However, it is worth noting that the average friction coefficient
of the E3 sample is increased by 14.92% compared to the E1 sample, while it is decreased
by 48.57% compared to the E2 sample.
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Based on the above analysis, it can be found that all composite coating samples can
effectively enhance the tribological behaviors of the 2218 aluminum alloy substrate, and
the same results have been reported by other researchers [23,38,46,50]. Interestingly, the
experimental results show that there are inconsistencies in the wear resistance and friction
reduction of the same composite coating sample. For example, the wear resistance of
the E2 sample is the best, while the friction reduction of the E1 sample is the best. For
a practical engineering application, if there is a high demand for both friction reduction
and wear resistance, a composite coating with comprehensive performance should be
selected, such as the E3 sample in this paper. It is well known that the wear resistance
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of a material is proportional to its surface microhardness according to Archard’s wear
law [54–56]. Therefore, the enhancement of wear resistance of the composite coating should
be mainly attributed to the improvement of the surface hardness. It can be concluded
that the improved friction reduction of the composite coating containing MoS2 is mainly
attributed to its excellent lubricating properties and the formation of a good lubricating
film between the friction interfaces by excited MoS2 [25,30,57]. Meanwhile, the increased
surface hardness of all composite coatings leads to a reduction in the adhesive wear, which
also enhances its friction reduction properties.

The SEM images and 3D morphologies of worn surfaces of all samples are shown in
Figure 8. It can be clearly observed that the worn surface exhibits obvious wide and deep
grooves along the sliding direction, and there is typical plastic deformation and plastic
flow, which is mainly due to the lower hardness of the 2218 aluminum alloy substrate.
Likewise, a few microcracks and debris are present. The worn surface is much rougher,
and the wear depth is 22.690 µm, as shown in Figure 8(a1,a2). The E0 sample exhibits
typical severe adhesive wear and abrasive wear. However, the worn surface characteristics
of all composite coatings are significantly different from that of the 2218 aluminum alloy
substrate. As shown in Figure 8(b1,b2), the worn surface of the E1 sample is smoother
and has the characteristics of smear wear, with very shallow and fine grooves distributed
along the sliding direction. The wear depth is 5.230 µm, which is only 23.05% of the E0
sample. It can be assumed that the softer MoS2 is released on the contact surface under the
experimental conditions, forming a good lubricating layer and filling the grooves to some
extent [57]. Considering the higher surface hardness of the E1 sample, this is the reason
why this sample has very good friction reduction and wear resistance properties compared
to the E0 sample, which corresponds to the results in Figure 7a,c. In the meantime, it
can be observed that there are tiny pieces of debris, tearing and larger flake spalling on
the worn surface, which are related to the characteristics of the composite coating. The
mild abrasive wear, flake spalling and tearing are the main wear characteristics of the
E1 sample. As shown in Figure 8(c1,c2), it can be observed that the worn surface of the
E2 sample is relatively rough, with an obvious distribution of continuous relatively deep
and wide grooves along the sliding direction. In addition, there are tiny pieces of debris,
piled up debris and pits. The shedding of the SiC particles forms pits, and the plowing
effect of the shedding SiC particles and hard debris on the worn surface cause the grooves
to become deeper. However, the increase in surface hardness of the composite coating
significantly reduced the depth of the grooves compared to the E0 sample. The results of
Huang et al. [16] also reported similar wear characteristics of Ni-SiC composite coating.
The wear depth of the E2 sample is 7.824 µm, which is 34.48% of that of the E0 sample
and 1.50 times of that of the E1 sample. It can be concluded that the improved tribological
behaviors of the E2 sample are mainly attributed to its increased surface microhardness.
The E2 sample mainly exhibited abrasive wear and particle shedding. Compared with
the E1 and E2 samples, the worn surface of the E3 sample is smooth and continuous,
with relatively obvious distribution of continuous fine grooves along the sliding direction,
smaller flakes spalling, pits caused by dislodged SiC particles and tearing of the composite
coating. Nevertheless, there are no obvious plastic deformations and debris piled up. The
wear depth of the E3 sample is 7.387 µm, which is 1.41 times that of the E1 sample and
94.41% that of the E2 sample. The good tribological properties of the composite coatings
mainly depend on the improvement of their surface hardness and the combined friction
reduction and wear resistance properties of the coating materials. However, the groove-
filling ability of MoS2 is diminished by the plowing effect of the hard particles. The tearing
and flake spalling marks are significantly reduced. The E3 sample mainly exhibits mild
abrasive wear, tearing and spalling, as shown in Figure 8(d1,d2). Therefore, when the
friction reduction and wear resistance are considered together, the E3 sample has better
tribological properties, which is consistent with the results of friction coefficient and wear
rate in Figure 7.
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4. Conclusions

The Ni-MoS2, Ni-SiC and Ni-MoS2/SiC composite coatings were prepared by an elec-
trodeposition method. The surface morphologies, microstructure, mechanical properties
and tribological behaviors were investigated. The main conclusions are as follows:

(1) Compared with the 2218 aluminum alloy sample, the surfaces of the composite coating
samples are rough. The coating materials are irregularly and relative uniformly
distributed on the surface, the microstructure is compact, integral and consequent,
tightly fitted with the substrate, without visible microcracks and pinhole defects. The
thickness of the composite coating samples is different due to the different coating
materials and their effects on the deposition rate.

(2) The surface microhardnesses of the Ni-MoS2, Ni-SiC and Ni-MoS2/SiC composite
coating samples are 274.9 HV, 407.48 HV and 356.9 HV, which are 111.92%, 214.12%
and 175.13% higher than that of the 2218 aluminum alloy substrate sample, respec-
tively. It mainly depends on the strengthening effect of coating particles, grain refine-
ment effect and fine microstructure.

(3) The tribological behaviors of all composite coating samples are significantly enhanced.
The wear rates of Ni-MoS2, Ni-SiC and Ni-MoS2/SiC composite coating samples
are 5 mg/N·m, 2.8 mg/N·m and 4 mg/N·m, and decreased by 28.87%, 60.17% and
43.10%, respectively. The average friction coefficients of corresponding samples are
0.2677, 0.4387 and 0.3153, and reduced by 59.73%, 34.01% and 52.56%, respectively.
Therefore, the Ni-MoS2/SiC composite coating sample is better from the viewpoint of
comprehensive friction reduction and wear resistance.

(4) The predominant wear mechanism of the 2218 aluminum alloy substrate is severe
adhesive wear and abrasive wear, which shows poor wear resistance.

(5) The Ni-MoS2 composite coating sample is mainly characterized by mild abrasive
wear, flake spalling and tearing. The Ni-SiC composite coating sample shows abrasive
wear, particle shedding and piled up debris. However, the Ni-MoS2/SiC composite
coating sample exhibits typical mild abrasive wear, spalling, pits and tearing.
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