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Abstract: Electropolymerized poly(o-ethoxyaniline) (POEA) nanostructured thin films were suc-
cessfully deposited on indium tin oxide (ITO) substrate. The surface dynamic of the films was
extensively investigated using morphological and multifractal parameters extracted from the atomic
force microscopy (AFM). AFM topographical maps reveal surfaces with different morphologies as a
function of the deposition cycles. The height parameters show that there is greater spatial vertical
growth for films deposited with higher cycles of deposition. After five cycles of deposition occurs the
formation of a more isotropic surface, while for 15 cycles a less isotropic surface is observed. The
Minkowski functionals confirm that morphological aspects of the two films change according to the
amount of deposition cycles employed. The POEA surfaces also exhibit a strong multifractal nature
with a decrease in the multifractal spectrum width as the number of deposition cycles increases. Our
findings prove that deposition cycles can be useful in controlling the vertical growth and surface
dynamics of electropolymerized POEA nanostructured samples, which can be useful for improving
the fabrication of POEA-coated ITO-based devices.

Keywords: AFM; Minkowski functionals; multifractality; POEA; surface topography

1. Introduction

Intrinsically conducting polymers (ICP) are of great interest to researchers worldwide
in technological applications due to their unique morphological, thermal, electrical, and
mechanical properties. Additionally, they are easy to synthesize, low cost, and present
considerable long-term stability [1,2]. Soluble derivatives of polyaniline (PANI) have been
prepared by polymerization of ring or nitrogen-substituted aniline monomers copolymer-
ization [3–5]. Because it is highly soluble in various organic solvents and helps to prevent
corrosion on metal surfaces, poly(o-ethoxyaniline) (POEA), a ring-substituted polyaniline
derivative, has been currently reported in the literature [6,7].

The electrochemical polymerization of ICP has shown several advantages over the
chemical oxidation method. This technique allows the development of conducting films for
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several technological application [8]. However, rare reports have focused on using atomic
force microscopy (AFM) to perform both microtexture and micromorphology assessment
of POEA films [9]. This technique allows the evaluation of geometrical characteristics of
film surfaces at various scales and in different aspects [10,11]. Moreover, fractal analysis
accesses a complex surface geometry related to possible alignment of polymer chains
and/or long-range orders in semicrystalline conducting polymers [12–14]. Currently,
several parameters such as surface entropy, fractal succolarity, and fractal lacunarity are
included in the analysis of biopolymeric films, in addition to the use of commercial software,
such as MountainsMap, which provides many other surface parameters [15,16]. Surface
texture homogeneity and roughness are designed to be the key to predict some problems
(such as failure and low conductive performance) of the electropolymerized films based on
conducting polymers.

A new discussion of micromorphology, microtexture evaluation, and fractal analysis is
reported here based on the growth modes of POEA on the indium tin oxide (ITO) substrate
as a function of deposition parameters. The AFM methods were performed to examine the
surfaces of POEA films fabricated with varying cycles in the context of morphological and
multifractal parameters. According to the International Standardization Organization (ISO),
the results presented and discussed here helped us to understand the influence of varying
cycles on the evaluated statistical surface parameters, generating essential information
about the electropolymerized POEA thin films produced in this work.

2. Materials and Methods
2.1. Materials

All reagents used in this work were analytical grade. POEA thin films were produced
by electrodeposition and deposited on glass substrates coated with ITO (15 Ω/sq, Lumtech
Moorestown, NJ, USA). Electrochemical and the procedures were performed using an
AUTOLAB PGSTAT 204 (Methrohm Autolab, Utrecht, The Netherlands), controlled with
NOVA 2.1.2 electrochemical analysis software. The POEA electrodeposition was carried
out in a 0.2 mol·L−1 OEA and 1.5 mol·L−1 H2SO4 solution, using cyclic voltammetry from
−0.2 to +1.2 V at a scan rate of 50 mV·s−1. To make a complete study of the ITO substrate
morphology, including the different films prouced on it, 3 samples were deposited on the
ITO with 5, 15, and 25 cycles, respectively. In this way, we labeled the samples as #1, #2, #3,
and #4, where the first was considered as a clean substrate and the others representing 5, 15,
and 25 cycles, respectively. Subsequently, after removing the electrolyte solution, they were
streaked with water and air-dried. Further details on processing the samples analyzed in
this work can be found elsewhere [9].

2.2. AFM Imaging and Morphological Analysis

All images used were obtained at relative humidity of (40± 1)% and room temperature
(296 ± 1) K using an AFM Innova from Bruker (Santa Barbara, CA, USA), operated in
tapping mode using a silicon cantilever, with a scan rate of 0.5 Hz. The images have an
area of 10 × 10 µm2 with 256 × 256 pixels. Analyses were performed using Gwyddion
2.59 software [17], in accordance with ISO 25178-2: 2012.

The AFM technique can generate 3D topographic maps of a surface, which allows for
performing various mathematical operations for a better understanding of spatial patterns.
Thus, by using the Gwyddion software (version 2.56) it was possible to extract the following
parameters: interface width (w); arithmetic mean roughness (Ra); and maximum height
of profile (Rz), which is the sum of Rp (maximum profile peak height) and Rv (maximum
profile valley depth). Based on the height distribution function z(xi, yj), the height statistical
parameters are presented according to Equations (1) and (2) [10,17]:

w =

√√√√ 1
Mx Ny

Mx

∑
i=1

Ny

∑
j=1

z2
(
xi, yj

)
(1)
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Ra =
1

Mx Ny

Mx

∑
i=1

Ny

∑
j=1
| z(xi, yj) | (2)

where M and N are the number of points of per profile and the number of profiles, respectively.
In addition, it was also possible to obtain autocorrelation function (ACF) and Minkowski

functionals (MFs). ACF associates information between valleys and peaks, for example, the
distribution of two points on the surface; thus, it is an important statistical tool [10,17,18]
and is described by Equation (3):

G
(
τx, τy

)
=
∫ ∫ +∞

−∞
z1z2w(z1, z2, τx, τy)dz1dz2 = lim

S→∞

1
S

x

S

ζ(x1, y1)ζ
(
x1 + τx, y1 + τy

)
dx1dy1 (3)

In this equation, for certain points (x1, y1) and (x2, y2), z1 and z2 are the respective
heights; τx is equal to x1 − x2 and τy is equal to y1 − y2 [17,19]. The function w(z1, z2, τx, τy)
is related to the probability density of the arbitrary function ζ(x, y) linked to points (x1, y1)
and (x2, y2) and the distance τ between them [17,19]. The anisotropy ratio (Str), Equation (4),
was also obtained, and is a parameter associated with the directional heterogeneities of the
microtexture of a surface [20]. Sa1 represents the fastest autocorrelation decay and Sa2 is
the slowest.

Str =
Sa1

Sa2
(4)

2.3. Multifractal Analysis

Multifractal analyses were obtained using MATLAB software, version 8.2.0.29 (R2013b).
Existing computational routines [21–23] were used in which the code is based on multi-
fractal theory dividing the image into a total square cell N(ε), where ε is the side. Thus, to
implement a case counting algorithm, a partition function (Equation (5)) was used [23] to
generate the multifractal parameters:

Z(q, ε) =
N(ε)

∑
i=1

pq
i (ε) ∼ ετ(q) (5)

where pi = Ni(ε)/N(ε), Ni(ε) represent the pixels of a given color within the i-th square, N(ε)
is the total number of pixels of this color, and q (a real number) is a power exponent. The
Rényi dimension [24] or generalized fractal dimension [25], also known as the multifractal
parameter Dq (Equation (10)), is highly relevant to study surface self-similarity. It is
calculated through the logarithmic fit of the curve Z(q,ε) versus ε:

Dq =
τ(q)

(q− 1)
(6)

where τ(q) is a scale exponent of the moment q of measurement p, known as the mass expo-
nent, and it represents the multifractal singularity. It is found by f (α(q)), Equation (7) [10]:

f (α(q)) = qα(q)− τ(q) (7)

where the parameter α(q) indicates the singularity strength along the surface and is given
by Equation (8) [10]:

α(q) = dτ(q)/dq (8)

2.4. Statistical Analysis

The results obtained from the samples studied here were statistically evaluated using
the OriginPro® 2016 software, in which the means were checked by analysis of variance
(one-way ANOVA) with p < 0.05.
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3. Results
3.1. AFM Measurements

Atomic force microscopy (AFM) has contributed significantly to analyzing the surface
morphology of material surfaces. In this regard, Figure 1 displays the variation in morphol-
ogy or roughness of poly(o-ethoxyaniline) thin film surfaces as a function of the number of
deposition cycles. A linear trend of increase in surface roughness is evident with increase
in cycles from the interface width (w) and average roughness (Ra) values listed in Table 1.
This observation can be attributed to the coalescing of smaller particles into larger grains as
reported in the literature [9]. In addition, growth of the analyzed surfaces with formation
of islands with uneven peaks from sample #2 to sample #4 is shown in Figure 1.
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Table 1. Different surface roughness parameters of the samples.

Parameter Unit #1 #2 #3 #4

w nm 1.83 ± 0.09 121.88 ± 18.24 138.95 ± 22.22 194.15 ± 150.05
Ra nm 1.41 ± 0.07 96.15 ± 12.03 110.68 ± 21.09 150.05 ± 22.28
Rz nm 8.77 ± 0.73 210.00 ± 88.45 313.10 ± 97.86 440.00 ± 12.00

According to Liete et al. [26], this phenomenon is positively correlated with the re-
alization of conductive islands in POEA film surfaces linked with its crystalline sections.
This indicates that increase in cycles can contribute to the enhancement of electrical con-
ductivity in POEA films. Furthermore, the values for the maximum height of the profile
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(Rz) registered by the algebraic sum of the maximum profile peak height and maximum
profile valley depth in a surface shows augmentation in values with increasing cycles. This
implies the presence of heights and valleys with larger values contributing to the increase
in surface roughness. The significant roughness of sample #4 as compared to the other
analyzed samples is validated from the absence of discrete patterns in one part of ten-point
height profiles to its neighborhood as a function of length, as shown in Figure 2.
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3.2. Spatial Autocorrelation (ACF)

Recently, morphological analysis of AFM images with appropriate parameters con-
tributed to the understanding of correlation between variations in surface microtexture and
roughness and deposition parameters, and consequently to the interfacial properties [11,27].
In this context, the autocorrelation function (ACF) [28] and texture aspect ratio (Str) [16]
are used to investigate the repeatability of specific patterns or isotropy in the investigated
surface textures. Figure 3 and Table 2 show the ACF graphs and data with the fastest and
slowest decay for four sample surface lengths and their corresponding values.

Table 2. Corresponding values of τa1, τa2, Sa1, Sa2, and Str for the samples.

Parameter Unit #1 #2 #3 #4

τa1
◦ 45.0 15.6 −9.67 −87.2

τa2
◦ −52.1 −44.2 50.9 −53.4

Sa1 µm 69.1 × 10−3 1.27 1.34 0.99
Sa2 µm 111.3 × 10−3 2.79 4.11 2.18
Str - 0.62 0.45 0.25 0.45
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From the figure, increase in oscillation is obvious with number of cycles and con-
tributes to the formation of hillocks with uneven peaks in the surfaces, as observed in
Figure 1. In addition, the fastest decay of the ACF (or autocorrelation length) presents
the smallest value for sample #1, indicating the existence of negative correlation between
the lateral surface heights. It is interesting to note that the slowest decay length exhibits
the largest value for sample deposited at 15 cycles. This observation suggests that a small
change in two surface heights can introduce an appreciable change in roughness, as there
is a marked difference between them. Through the division between the fastest and the
slowest decay length of the ACF, one can define parameter Str, which varies between 0
and 1; if Str = 1, then there is an isotropic surface [29]. In this framework, from Table 2, the
Str values show the highest and lowest values for samples deposited at 5 and 15 cycles,
respectively, suggesting the highest and lowest microtexture isotropy for the samples. The
lowest isotropy for sample #3 microtexture can be validated from its largest value for the
slowest decay of ACF, while absence of preferred texture direction in the case of sample
#1 is attributed to it having the smallest value for autocorrelation length. Our analysis
validates that accounting for surface roughness is not the only comprehensive way to study
the microtexture of film surfaces; other relevant parameters should also be considered for
analyzing the variation in the microtexture of the investigated samples.

3.3. Minkowski Functionals

The variation in morphology of thin film surfaces following a deterministic but stochas-
tic behavior can be probed using the Minkowski functionals. For a Gaussian random field,
the analytic form of the functionals takes the form [30]:

V(h) = 1/2[er f z(x, y)/1.414w] (9)



Coatings 2022, 12, 1216 7 of 12

S(h) =
k√
8π

[
exp (−z(x, y))2

2Ra

]
(10)

χ(h) =
k2z(x, y)√

2π3Ra
exp

[
(z(x, y))2

2Ra

]
(11)

where V(h), S(h), and χ(h) are the Minkowski volume, boundary, and connectivity, re-
spectively. For surfaces of thin films, these parameters probe the covered area, boundary
length, and dissimilarity between the linked components and holes, respectively. Figure 4
provides the graphs of the variation in Minkowski volume, boundary, and connectivity for
the analyzed surfaces as a function of z, and Table 3 gives their corresponding values.
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the ITO surface; (d–f) are, respectively, volume, boundary, and connectivity for the POEA thin films.

An increase in values of the volume parameter with V > 0.5 is observed for films
deposited at 5, 15, and 25 cycles. Additionally, greater density of peaks is attributed to
sample #3 from its highest value for Minkowski volume, while all the other samples exhibit
a regular type of topography [31,32] as observed in Figure 4d. Additionally, a similar trend
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in morphology is experiential for samples #1 and #4, shown in Figure 4e, although the
enhanced roughness in the case of the sample deposited at 25 cycles is attributed to its
low autocorrelation length. Interestingly, the Minkowski connectivity, computed using the
Gaussian radially averaged power spectral density function, displayed the largest value for
sample #2, indicating the presence of significant peaks in the surface. Additionally, its value
for sample set down at 25 cycles shows a smaller value compared to those at 5 and 15 cycles,
indicating a smaller difference between the linked components and holes, validating the
enhancement in surface roughness owing the existence of negative correlation between the
lateral difference in surface heights, as suggested from the value of fastest decay length.
This analysis is also supported by Figure 4f, which shows enhanced irregularity in the
connectivity spectra.

Table 3. Values of Minkowski functionals of the POEA films surfaces.

Parameter Unit #1 #2 #3 #4

V - 0.50 0.54 0.83 0.58
S (10−3) - 3.32 0.98 1.75 6.86
χ (10−6) - 1.71 72.45 24.30 1.61

3.4. Multifractal Analysis

Fractal analysis of thin film surfaces is unable to assess the specificities in growth
probabilities as a consequence of the presence of local irregularities and scaling variation
along the surface. This limitation is overcome with the implementation of multifractal
analysis. The nonlinear trend of mass exponent (τ) as a function of moment of order
(q), shown in Figure 5a, indicates multifractal settings of virgin ITO electrode and the
samples deposited at 5, 15, and 25 cycles. However, as observed in Figure 5b, the analyzed
film surfaces, except for the ITO electrode, displays a nonlinear decreasing behavior of
generalized dimension (Dq). This observation validates the multifractal nature of POEA
films, while the electrode surface shows monofractal behavior [33]. The multifractal spectra
for the investigated surfaces are shown in Figure 5c. Table 4 provides their respective
values. The width of the multifractal spectrum is computed by the Equation (12) [10]:

∆α = αmax − αmin (12)

where the singularity strengths are given by αmax and αmin, which are the most and least
singular, respectively [34,35]. The surfaces of POEA displays decrease in multifractality
strength with increasing cycles, as observed in Table 4. In addition, this observation can be
attributed to enhancement in regularity and uniformity in surface heights with increase in
cycles. Furthermore, the spectrum arm height difference (∆f ) is given as [10]:

∆f = f (αmin) − f (αmax) (13)

Table 4. Sample multifractal data.

Parameter Unit #1 #2 #3 #4

Multifractal Parameters

αmax - 2.185 2.247 2.221 2.208
αmin - 2.179 2.178 2.178 2.179
∆α - 0.006 0.069 0.043 0.029

f(αmax) - 2.178 2.166 2.171 2.175
f(αmin) - 2.178 2.173 2.175 2.176

∆f - 0.00 0.007 0.004 0.001
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Figure 5. (a) Generalized dimensions and (b) the mass exponent τ(q) as a function of the order of
moments for the thin film surfaces. For better visualization, the curves referring to τ(q) were shifted
in by−0.5, −0.25, 0.00, and +0.25 for ITO, 5, 15, and 25 cycles, respectively. (c) Multifractal singularity
curve of the ITO and POEA films.
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A decreasing trend observed for the POEA samples with increasing cycles identifies a
larger distribution of surface heights in the valleys along with a decrease in vertical com-
plexity [33]. This observation supports the qualitative information gained from Figure 1
and quantitative evidence from other reported methods. Our analysis suggests that multi-
fractal analysis along with stereometric and Minkowski functionals analysis can shed light
on the dynamics of morphology in POEA thin films with varying cycles of deposition.

4. Conclusions

A conjugated polymer such as poly(o-ethoxyalinine) offers applications in corrosion
surface protection and must therefore possess surfaces with high strength and wear re-
sistance. This requires an understanding of morphology dynamics of POEA films as a
function of deposition parameters. In this regard, we analyzed the surfaces of POEA films
deposited with varying cycles in the context of stereometric, MFs, and multifractal analysis.
Height patterns strongly indicate the increase in surface roughness with increasing number
of cycles. The autocorrelation length indicates the presence of negative correlation between
lateral surface heights for film deposited at 5 cycles, while a steep difference between sur-
face heights for film at 20 cycles is revealed from the slowest decay length of autocorrelation
function. Minkowski volume indicates a similar pattern in the topography for films at 5, 15,
and 25 cycles, respectively, while it also realized the greatest density of peaks for sample
#3. The lower value of Minkowski connectivity for film at 25 cycles as compared to 5 and
15 cycles is attributed to the negative correlation between lateral separations in surface
heights. The multifractal nature of POEA surfaces deposited at varying cycles is validated
from the mass exponent and generalized dimension as a function of qth order moments.
The width of the multifractal spectra exhibited a decrement in multifractal behavior of
the investigated films with increase in cycles and is attributed to the increase in regularity
and uniformity of surface heights. In addition, the difference in fractal dimension corre-
sponding to the most and least probabilities of surface heights showed a decreasing trend
and signifies an increase in height distribution at surface valleys along with a decrease in
vertical complexity. Our work presented an in-depth view of the morphological dynamics
of poly(o-ethoxyalinine) as a function of increasing cycles for appropriate applications.
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28. Nečas, D.; Klapetek, P. One-dimensional autocorrelation and power spectrum density functions of irregular regions.
Ultramicroscopy 2013, 124, 13–19. [CrossRef]

29. Blateyron, F. The Areal Field Parameters. In Characterisation of Areal Surface Texture; Springer: Berlin/Heidelberg, Germany, 2013;
pp. 15–43.

30. Mantz, H.; Jacobs, K.; Mecke, K. Utilizing Minkowski functionals for image analysis: A marching square algorithm. J. Stat. Mech.
Theory Exp. 2008, 2008, P12015. [CrossRef]

http://doi.org/10.1039/c39900000180
http://doi.org/10.1016/0379-6779(94)02440-A
http://doi.org/10.1016/0010-938X(92)90187-8
http://doi.org/10.1002/app.13263
http://doi.org/10.1016/0013-4686(95)00130-7
http://doi.org/10.1007/s10965-020-02262-7
http://doi.org/10.1016/j.rinp.2017.08.018
http://doi.org/10.1070/RC2000v069n04ABEH000523
http://doi.org/10.1016/j.micron.2017.04.013
http://doi.org/10.1021/la0612769
http://www.ncbi.nlm.nih.gov/pubmed/17154578
http://doi.org/10.1016/j.matlet.2020.128111
http://doi.org/10.3390/ma15072635
http://doi.org/10.2478/s11534-011-0096-2
http://doi.org/10.1002/sia.6074
http://doi.org/10.1016/j.molliq.2020.115065
http://doi.org/10.1016/0043-1648(94)90128-7
http://doi.org/10.1115/1.4037891
http://doi.org/10.1115/1.4042579
http://doi.org/10.1140/epjb/e2016-60960-6
http://doi.org/10.1515/msp-2015-0086
http://doi.org/10.1103/PhysRevA.42.1869
http://www.ncbi.nlm.nih.gov/pubmed/9904234
http://doi.org/10.1007/s00339-008-4686-9
http://doi.org/10.1016/j.surfcoat.2021.127518
http://doi.org/10.1016/j.ultramic.2012.08.002
http://doi.org/10.1088/1742-5468/2008/12/P12015


Coatings 2022, 12, 1216 12 of 12

31. Mwema, F.M.; Akinlabi, E.T.; Oladijo, O.P.; Fatoba, O.S.; Akinlabi, S.A.; Ţălu, Ş. Advances in manufacturing analysis: Fractal
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