
Citation: Li, R.; Wang, Y.; Long, T.

Efficient Isolation of Circulating

Tumor Cells Using Ultra-Convenient

Substrates Based on Self-Assembled

Hollow MnO2 Nanoparticles.

Coatings 2022, 12, 1214. https://

doi.org/10.3390/coatings12081214

Academic Editor: Alexander D.

Modestov

Received: 20 June 2022

Accepted: 16 August 2022

Published: 19 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

coatings

Article

Efficient Isolation of Circulating Tumor Cells Using
Ultra-Convenient Substrates Based on Self-Assembled Hollow
MnO2 Nanoparticles
Rui Li 1,2,3,*, Yuankun Wang 1 and Tengfei Long 1

1 Xinjiang Key Laboratory of Solid State Physics and Devices, Xinjiang University, Urumqi 830046, China
2 School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
3 Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and

Technology, Wuhan University, Wuhan 430072, China
* Correspondence: lirui@xju.edu.cn

Abstract: An efficient and active sorting platform of circulating tumor cells (CTCs) is still a challenge
in clinical research. In this paper, we design a novel system based on hollow MnO2 nanoparticles
for the capture and release of CTCs. Using the self-assembly method, we prepared rough MnO2

nanomaterial substrates that provide more binding sites for antibody grafting, increase the contact
probability between cells and materials and improve the capture efficiency. The highest capture
efficiency was 83.2% under the incubation time of 120 min. The MnO2 nanosubstrate was dissolved
by employing a 2 × 10−3 M concentration of oxalic acid to release the captured cells. The cell release
efficiency was up to 91.46% with a reaction time of 60 s. The released cells had a strong ability to
proliferate after being collected and re-cultured for 24 h. Identifying and counting CTCs from the
peripheral blood of breast cancer patients through the three-color immunocytochemistry method
proved the effectiveness of our design platform. Such a simple and economical approach provides a
promising platform for the capture and release of cells in clinical research.

Keywords: circulating tumor cells; efficient isolation; high activity; convenient platform

1. Introduction

Circulating tumor cells (CTCs) are tumor cells that fall off from the surface of the
primary tumor. They can invade blood vessels in the human peripheral blood system and
participate in human blood circulation [1,2]. CTCs carry a large amount of information,
which is considered to be the carrier of cancer metastasis [3,4]. Separating CTCs from
peripheral blood is a type of non-invasive tumor “liquid biopsy” [5,6]. This detection
method has several advantages, including simple and multiple sampling, high safety and
low cost. It is expected to replace the traditional tissue biopsy in monitoring treatment
response and determining the prognosis of patients.

In recent years, some sensitive and specific CTC detection techniques have been
established, which are broadly divided into physical and chemical methods. The physical
method mainly involves filtering technology chip [7,8], lateral displacement technology
chip [9,10], spiral structure separating chip [11,12], bulk acoustic wave and surface acoustic
wave (SAW) devices [13–15]. They sort tumor cells on the basis of cell size, morphology,
density, volume compression ratio and so on. The chemical method achieves tumor
cell sorting mostly through antigen–antibody-specific binding. Antibodies [16–18] or
Aptamer [19–21] are immobilized on various surfaces, such as microfluidic channels [22],
magnetic nanoparticles [23] and microarrays [24], specifically identifying and capturing
target cells. However, because of the cellular affinity, the feasible release of captured cancer
cells has become a major obstacle to follow-up analysis.
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The CTC isolation technique is becoming more advanced with the development of
nanomaterials, due to their high specific surface areas, size, shape and unique surface
chemical and optical properties. In addition, the structure of nanomaterials is close to the
surface structure of cells, which provides more binding sites for antibody grafting and
increases the contact probability between cells and materials, thus improving the capture
efficiency of cells [25,26]. In the early diagnosis and treatment of cancer, it is very attractive
to prepare nanomaterials with different morphologies via controlling the conditions for
enhancing the adsorption capacity between materials and cells. Nevertheless, statically
captured CTCs bind firmly to the substrate, hindering their release [27,28]. In terms of the
molecular analysis of the selected CTCs, it is necessary to develop a better platform that can
not only achieve efficient sorting of CTCs, but also keep the activity of the released cells.

In recent years, the research focuses on cancer detection, drug delivery and anti-cancer.
Some teams utilized the graphene material system as an ultra-sensitive biosensor for the
detection of biological fluids [29], and Fe3O4 and graphene material system was used
for drug delivery [30–34]. In addition, Gholami et al. [35] tried to use 3D nanostructures
for cancer treatment, and Ahmadi et al. [36] used the therapy of Ag and magnetic carri-
ers [37] for anticancer research. In addition, some nanomaterials are also widely used in
biomedicine [38–42].

In this paper, we designed an ultra-convenient MnO2 nanoparticle substrate for the
capture and release of CTCs. The surface of MnO2 is rich in hydroxyl groups, which
are easily modified and facilitate the grafting of epithelial cell adhesion factor antibody
(anti-EpCAM antibody). In addition, the preparation method of substrates through self-
assembling a layer of MnO2 nanoparticles with a hollow structure on transparent glass
is simple and cost-effective. The good light transmittance of the substrate is convenient
for cell observation at the same time. Furthermore, MnO2 nanoparticles can be dissolved
by low-concentration oxalic acid, enabling the high activity of the released cells. This
highly transparent and easily dissolved nanoparticles platform provides a new approach
for biological research at the cellular and molecular levels.

2. Materials and Methods
2.1. Fabrication of MnO2 Nanoparticles

We used a two-step synthesis method to obtain MnO2 nanoparticles. Firstly, 0.641 g
BaMnO4 was initially dissolved in 25 mL DI water. Then, 0.67 mL of 4.23 M H2SO4 was
added dropwise to this solution Equation (1) at room temperature. Additionally, the
solution was stirred quickly for 10 min. Subsequently, we centrifuged the solution at 1200 g
for 3 min. The supernatant was taken out to obtain the desired product-permanganic acid.

3BaMnO4 + 3H2SO4→3BaSO4 + MnO2 + 2HMnO4 + 2H2O (1)

Secondly, the FTO glass was put against the wall of a 100 mL beaker. The resultant
permanganic acid was added dropwise to 75 mL of 0.338 g MnSO4 while being rapidly
stirred for 15 min at room temperature Equation (2). MnO2 monolayer thin films were
obtained, consequently.

2HMnO4 + 2H2O + 3MnSO4→5MnO2 + 3H2SO4 (2)

Materials, circulating tumor cell preparation, surface modification, cell capture and re-
lease, cell propagation and culture, blood sample treatment and the three-color fluorescence
method were described in our previous work [43].

2.2. Characterization of MnO2 Substrate

Figure 1a shows that the surface of the MnO2 nanomaterial contains hydroxyl groups,
also facilitating the subsequent modification. The good light transmission was the premise
to observe the cell capture effect using a microscope. The UV-Vis absorption spectroscopy
(UV-2550, Shimadzu, Kyoto, Japan) test results showed that the self-assembled thin layer of
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MnO2 nanoparticles had high light transmittance (Figure 1b). This was also convenient for
using an ultra-low concentration of oxalic acid to dissolve the MnO2 nanoparticles, thereby
releasing the captured cells.
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Figure 1. (a) Infrared spectra of MnO2 nanoparticles. (b) Light transmission of MnO2 nanoparticles
on the FTO substrate.

The surface roughness and particle sizes of MnO2 were characterized by atomic force
microscopy (AFM, Veeco multimode, Amsterdam, The Netherlands). Figure 2 shows the
2D and 3D AFM images of MnO2 substrate (the scan area was 5 × 5 µm2). The root-mean-
square (Sq) roughness of MnO2 is 18.7 nm. The rough interface provides more binding
sites for grafted antibodies and increases the contact area between the cells and substrate,
which is beneficial to improve the capture efficiency of cells.
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At the same time, we observed the morphology of the substrate with a long self-
assemble time. The results are shown in Figure 3. Moreover, the X-ray photoelectron
spectroscopy (XPS) characterization of the material (Figure 3) was performed to confirm
that Mn existed in the form of MnO2.
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3. Results
3.1. Surface Modification

Figure 4 is the modification of MnO2 substrate for the capture and release of circulating
tumor cells. First, we self-assembled a layer of MnO2 nanoparticles on the FTO glass. After
the silane-based reaction and the protein cross-linking reaction, the substrate was attached
to biotin-based streptomycin and antibodies (anti-EpCAM) to complete cell capture. Subse-
quently, the low concentration oxalic acid was used to dissolve the MnO2 nanoparticles
and collected the released cells into the centrifuge tube for single-cell analysis.
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3.2. Capture and Release of CTCs, Activity and Proliferation

Figure 5a displayed the relationship between the capture efficiency of MCF-7 cell lines
and incubation time based on the MnO2 nanoparticle substrate. We cultured the MnO2
substrate under 37 ◦C and 5% of CO2, and it was taken out at intervals. the suspension cells
were washed with PBS. Then, the substrate was placed under a microscope IX71 (Olympus,
Tokyo, Japan) to count the captured cells and calculate the capture efficiency. The result
presented that the capture efficiency was only 25% when the incubation time was 30 min.
Moreover, the capture efficiency gradually increased with the incubation time. When the
incubation time reached the optimum of 120 min, the capture efficiency was up to 83.2%.
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Figure 5. (a) The relationship between capture efficiency of MCF-7 cell lines and incubation time
based on the MnO2 nanoparticle substrate. (b) The release effect of MCF-7 cell lines using 0.2 mM
concentration of oxalic acid to dissolve MnO2 substrates with different times.

Our previous work [44] indicated that the release efficiency reached up to 89.9% when
the concentration of oxalic acid was 2 × 10−3 M. In this experiment, we still used the same
concentration of oxalic acid to dissolve the MnO2 substrate (Figure 5b). It can be observed
that the release efficiency was just 25% with an action time of 30 s. When the action time
was extended to 60 s, the release efficiency reached up to 91.46%, Further extending the
action time of oxalic acid and substrate did not improve the release efficiency. At the
same time, the change in the particles’ morphologies on the surface of the substrate can be
observed in the FE-SEM images (Figure 6). From this point of view, the release efficiency
of the substrate is not only dependent on the concentration of oxalic acid, but also on the
action time of oxalic acid and the substrate.

Next, we investigated the effects of nanomaterials on cell capture efficiency. The
antibodies on the FTO substrate and MnO2/FTO substrate were modified, respectively.
Additionally, the same number of cells (1000 MCF-7 cells) labeled with the FDA were
added. The cell capture effect can be viewed directly through a fluorescence microscope.
On the MnO2/FTO substrate (Figure 7b), the cell capture efficiency is much higher than
that of cells on the FTO substrate (Figure 7a). FE-SEM results showed that the cells on the
FTO substrate (Figure 7c) have a spherical shape with a very small amount of outstretched
filopodia (Figure 7c), while a large number of outstretched filopodia were extended on
the MnO2/FTO substrate (Figure 7d). Combined with the AFM and FE-SEM images
of MnO2 nanoparticles, it demonstrated that the nanomaterial increased the roughness
of the substrates and the contact areas between the substrates and cells. These results
were beneficial to cell creep and migration, thus increasing the capture efficiency. Then,
the released cells were collected and cultured for 0 h and 24 h, respectively, in the same
environment of 37 ◦C and 5% CO2. Subsequently, the suspended cells were washed with
PBS. As shown in Figure 7e–f, the released cells from the substrate were highly active.
After being cultured for 6 h, they grew attached to the plate and their number increased
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exponentially. When the incubation time was extended to 24 h, the cell spread more
filopodia and covered the entire field of vision. Additionally, it can be observed that the
released cells, with a concentration of 2 × 10−3 M, have a strong proliferation capacity.
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The proliferation ability of released cells from the MnO2 nanosubstrate using 0.2 mM concentration
of oxalic acid after being cultured at different times: (e) 0 h and (f) 24 h (Scale bar: 50 µm).

3.3. Identification of Captured Cells from Breast Cancer Patient Blood Samples

Under the optimal experimental conditions, we were able to isolate CTCs from nine
cases of breast cancer patient peripheral blood samples. FITC-labeled anti-CD45, PE-labeled
anti-cytokeratin and DAPI-labeled cell nuclei were used in our experiments (Figure 8a).
The CTCs that had nonspecific adsorption of white blood cells were identified if the
cell was presented as CK+/CD45−/DAPI+. On the basis of this principle, we counted
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CTCs captured from the peripheral blood of nine cases of breast cancer patients, the
sample numbers are ranged from#1 to #9. The number of captured cells ranged from 1 to
12 cells/mL (Figure 8b). This manifested that our MnO2 nanomaterial substrate was an
efficient capture and non-destructive release platform for CTC testing in clinical samples
with promising applications in the early diagnosis and treatment of cancer patients.
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4. Conclusions

We successfully prepared an ultra-convenient MnO2 nanomaterial substrate and
applied it to the capture and release of tumor cells. The rough nanomaterial substrate
provided more binding sites for antibody grafting, which was more conducive to cell
climbing, thus achieving a higher capture effect. The XRD results showed the very good
crystallinity of the nanoparticles and the particles grow in the crystal direction (310), (400),
(211), (411), (521) and (002). The FE-SEM and AFM characterization revealed that the
nanoparticles were uniform in size and distributed in the range of 150~180 nm. In addition,
XPS confirmed the existence of MnO2 nanoparticles on the sample surface. When the
incubation time of 120 min, the best capture efficiency is 83.2%. Then, the effects of action
time of oxalic acid on the release efficiency and cell activity after release were studied.
Finally, the tumor cell sorting in the peripheral blood of patients with breast cancer proved
the feasibility of our nanomaterial substrates.

Author Contributions: R.L. designed the experiments and carried out cell capture and release
experiments. Y.W. and T.L. contributed to experimental data and analysis. The manuscript was
written through the contributions of all authors. All authors have read and agreed to the published
version of the manuscript.
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tonomous Region of China (Grant No. 2021D01C112), the Doctoral Program of Tian Chi Foundation
of Xinjiang Uygur Autonomous Region of China (Grant No. TCBS202042), the Doctoral Program
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Program of Xinjiang Uygur Autonomous Region (Grand No. 2020D14038).
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