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Abstract: Residual stresses play an essential role in determining the failure mechanisms and life
of an electron beam-physical vapour deposition thermal barrier coating (EB-PVD TBC) system. In
this paper, a new transitional roughness model was proposed and applied to describe the interfacial
roughness profile during thermal cycles. Finite element models were implemented to calculate
residual stresses at specific positions close to the interface of TBCs using temperature process-
dependent model parameters. Combining stresses evaluated at valleys of the topcoat (TC) and
excessive sharp tip roughness profiles, positions where the maximum out-of-plane residual stresses
occur were identified and used to explain possible cracking routes of EB-PVD TBCs as interfacial
roughness evolves during thermal cycling.

Keywords: stress model; FE model; temperature-process dependent parameters; evolution of interfa-
cial roughness; parametric study; transitional roughness approximated model

1. Introduction

The residual stresses that develop close to the interface between layers play a sig-
nificant role in determining the life span of an electron beam-physical vapor deposition
(EB-PVD) thermal barrier coating (TBC) system. Many attempts have been made using
analytical or numerical methods to estimate the stresses generated as a consequence of
thermal expansion mismatch between layers and the growth of the thermally grown oxide
(TGO) [1–7]. With additional factors taken into consideration and integrated into the stress
model, calculated stresses and their distributions are expected to reflect the measured re-
sults, based on either isothermal or thermal cycling exposures. To date, process-dependent
material properties have been shown to be significant in affecting the magnitude of stress
levels, i.e., the variation of elastic modulus and coefficient of thermal expansion versus
temperature, the change of strain rate-dependent creep or strain rate-independent yielding
behaviour. Even a variation of phase components during progressive oxidation of the
bond coat (BC) accompanying the swelling rate throughout the whole thickness of the
TGO layer also greatly affects the stress levels during thermal cycles. A few analyses also
focused on the pattern variation of interfacial roughness profiles, where typical roughness
parameters were measured from the observed microstructures and used to characterize the
roughness profiles versus temperature and exposure duration. The characterized rough-
ness parameters from thermal cyclic experiments are used as input data in the current
study [8]. The cross-sectional images of TBCs were provided at different stages of lifetime
to illustrate the roughness variation under thermal cyclic experiments [9]. The effect of
additional factors on the TBC durability, such as the TC (topcoat) fabrication method, the
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high temperature, the cycle frequency and thermal gradient, were demonstrated with inter-
action of the interfacial roughness [10]. Different failure mechanisms of EB-PVD TBCs were
developed based on the roughness level measured in the thermal cyclic experiments with
the respective energy release rate (ERR) calculated [11]. The effects of a grit-blasting process
on durability of EB-PVD TBCs are described [12]. However, less effort has been made on
how a change in interfacial roughness affects the development of residual stresses [8–10],
both of which could be critical in determining the possible positions where cracks nucleate
at the maximum out-of-plane residual stresses estimated from the stress model. This, in
turn, has a profound effect on determining the failure mechanisms of EB-PVD TBCs [11,12].

In this paper, the relationship between different roughness models and stress be-
haviour at critical positions where maximum stress levels could be obtained is analyzed.
Finite element (FE) models are established by using the commercial finite element code
ABAQUS. The method to characterize the roughness level of imperfections close to the
interfaces is developed based on existing experimental data [13]. The material parameters
of different layers are defined and integrated into the FE analysis. Parametric studies are
conducted to examine the effect of geometrical parameters on the stress levels at specific
positions within different layers including TC, TGO and bond coat (BC). A transitional
model is proposed to illustrate the impact of global distance between imperfections on
stress levels within imperfections. Possible failure modes of EB-PVD are further explained
using both the variation of global interfacial roughness and the stress at a valley of the TC
and ridge of the BC.

2. Compilation of Parameters and Integration into Finite Element (FE) Models Using
Experimental Data under Thermal Cycles

In this section, the model parameters used for FE simulations are introduced. Two
types of data were used; first, material properties for individual layers of TBC; second, geo-
metrical parameters employed to illustrate the roughness profile at the interface between
each layer extracted from experimental observations [13]. It is noted that these parameters
are either temperature-dependent or temperature-process dependent, which indicates that
material properties and roughness of interface vary as a function of temperature and time.
Contrary to past studies that focused on a fixed roughness profile with constant geometri-
cal parameters during geometrical sketching [1,7,14,15], a parametric study is conducted
here, where varied geometrical roughness parameters are integrated into FE models to
evaluate the effect of interfacial roughness on stress distributions. A set of geometrical
parameters used in this parametric study are obtained from the failure time (177 h on
1151 ◦C), while the temperature process-dependent material properties are fully integrated
into FE calculations. It is expected that a more comprehensive understanding based on the
effect of interfacial roughness on stress distribution can be obtained by integrating these
parameters into FE models.

2.1. Elastic Moduli and Coefficients of Thermal Expansion for Different Layers under the Cyclic
Thermal Condition

The elastic moduli and coefficients of thermal expansion (CTE) for three different
layers in EB-PVD TBCs are assumed to be temperature-process dependent and temperature-
dependent, respectively. In high-temperature loading conditions, the effect of annealing
treatment on the protective coating are considered to be significant in determining the
coating materials properties which further affects the stress distribution throughout the
thickness of coating layer [16]. It was experimentally found that the coating experiences
a phase transformation and even crystallization process that would changes the material
properties during the high-temperature annealing period [17]. This effect is also introduced
in the current FE model where the elastic modulus of the TC is significantly affected by the
sintering process during the isothermal exposure period, and also the modulus undergoes
a drastic change during thermal cycles. For EB-PVD TBCs, the columnar structure of the
TC with a large amount of external porosities between each column can be observed from
scanning electron microscopy (SEM) cross-section images. At the same time, small internal
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porosity and vertical segmentation cracks also exist within each column. According to
a sintering study by Busso [1], it is assumed that for sintering of the EB-PVD TC, the
elastic modulus of yttria-stabilized zirconia (YSZ) is only affected by the consolidation of
internal porosities, while the external porosity remains unchanged throughout the high-
temperature exposure. The effect of such consolidation and closure of internal pores on the
elastic moduli of the transversely isotropic material E11 is shown in Figure 1, estimated at
1151 ◦C. For the coordinate system used in this study, all material properties for in-plane
directions are represented by subscript 11 (x) and 33 (z), which are equivalent for most
parameters, as illustrated in Figure 2. Thus, a 2D model is used, and transversely isotropic
YSZ material properties are established.
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The sintering effect on the ceramic TC is represented by an increase in its time-
dependent in-plane elastic modulus E11 given by,

E11(t) =
(

ρ− ρ0

1− ρ0

)
× E22(t) (1)

ρ = 1− (pe + pi) (2)

where E22(t) is the time-dependent out-of-plane elastic modulus; ρ is the temperature-
process-dependent total relative density of material; ρ0 is the initial value of ρ before
sintering. pi and p0 are the internal and external porosities of the YSZ TC.

For the anisotropic property of the TC layer, its time-dependent out-of-plane elastic
modulus E22(t) is calculated by Equation (3), and the results are plotted versus thermal
cycles in Figure 3,

E22(t) =
[

1 +
1.5(1− ρi)(1− υ21)(9 + 5υ21)

7− 5υ21

]−1
E22R (3)

where v21 is Poisson’s ratio in the x-y direction, and E22R is Young’s modulus of fully dense
isotropic zirconia.
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Figure 3. The out-of-plane elastic modulus E22(t) of TC in EB-PVD TBC versus exposure time,
Equation (3).

A ratio of the out-of-plane over the in-plane elastic moduli E22/E11 is shown in
Figure 4. The consolidation and closure of pores within the columnar structures due to the
sintering effect result in a considerable increase of in-plane elastic-modulus compared to
out-of-plane elastic modulus. This explains the drop in the ratio of these two elastic moduli.

Table 1 shows elastic moduli E11 and E22 versus temperature after sintering for 100 h
at 1151 ◦C [7].

It is difficult to measure the variation of elastic modulus during thermal cycles. To
simulate temperature-dependent elastic modulus under thermal cycling, it is assumed
that the increase in elastic modulus as temperature drops follows the same pattern as
the decrease as temperature increases. Within a thermal cycle dwell duration, the elastic
modulus is affected mainly by sintering; during the heating and cooling processes, the
sintering effect can be ignored.
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Table 1. The elastic moduli variation versus temperature [7].

T (K) 293 473 773 973 1173 1373 1473

E11(Gpa) 67 64 61 59 58 56 56

E22(Gpa) 205 196 188 182 178 174 173Coatings 2021, 11, x FOR PEER REVIEW 5 of 42 
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In order to model the pattern of elastic modulus variation versus temperature, the
elastic moduli from Table 1 are approximated by,

E22(T) = γ2 exp
(

ζ2

T + v2

)
+ E20(t) (4)

E11(T) = γ1 exp
(

ζ1

T + v1

)
+ E10(t) (5)

where γi, ζi and vi are fitting parameters. Ei0(t) are also time-dependent moduli of the TC
during the dwell period within a cycle calculated at the end of the previous thermal cycle
by Equations (1) and (3).

The cyclic temperature profile (◦C) for heating (0 < t < t1), dwell duration (t1 < t < t2),
and cooling period (t2 < t < t3) can be described by:

T(t) =


112.6× t + 20 (0 ≤ t < t1)

1151 (t1 ≤ t < t2)

−112.6× t + 6761 (t2 ≤ t < t3)

(6)

In Equation (6), ti (i = 1,2,3) denotes the different moments during the history of
thermal cycling, i.e., the heating time, holding dwell time and cooling time, respectively.
The cyclic behavior of the in-plane and out-of-plane elastic moduli can be obtained by
combining the time-dependent elastic modulus calculated from Equations (1)–(3) as well
as temperature-dependent elastic modulus calculated by substituting Equation (6) into
Equations (4) and (5). The temperature fluctuation, as well as the variation of in-plane and
out-of-plane elastic moduli within 300 min, are shown in Figures 5–7.
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Moreover, the in- and out-of-plane elastic modulus of the TC for full lifetime at 1151 ◦C
is depicted in Figure 8.

1 

 

 

Figure 8 Figure 8. The general trend for elastic modulus as a function of time under cyclic thermal condition
(10,000 min) (a) in-plane Equations (1), (2), (5) and (6) (b) out-of-plane Equations (3), (5) and (6).

In contrast to the TC, there is no sintering effect on the elastic moduli of both TGO and
BC layers; their elastic moduli EBC(T) and ETGO(T) are temperature-dependent only [7],
as given by:

ETGO(T) = −0.07506× T + 448(Gpa) (7)

EBC(T) = −0.02329× T + 123.9(Gpa) (8)

The temperature dependence of their coefficient of thermal expansion are [7] given by:

αTBC(T) = (0.0003636× T + 9.615)× 10−6 (9)

αTGO(T) = (0.001388× T + 7.532)× 10−6 (10)

αBC(T) = (0.005021× T + 10.83)× 10−6 (11)
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where αTBC(T), αTGO(T) and αBC(T) represent the temperature-dependent coefficients of
thermal expansion for the TC, TGO and BC, respectively.

2.2. Creep, Swelling and Inelastic Behaviour of the Bond Coat/Thermally Grown Oxide
(BC/TGO) Layers

The inelastic behaviour of BC/TGO layers is described by creep formulae [7], which
are incorporated into the FE calculations. The creep strain rate of the BC is evaluated
in terms of the equivalent von Mises stress σV , elastic modulus EBC and temperature T,
Equation (12). For the creep formulae of the TGO, no elastic modulus of TGO is involved
in the creep rate evaluation. These two creep rates are represented by,

.
ε

cr
BC = 6.3× 1013

(
σV

BC
EBC

)4

exp
(
−125, 000

8.314T

)
(12)

.
ε

cr
TGO = 6.8× 103

(
σV

TGO

)2.3
exp

(
−424, 000

8.314T

)
(13)

Specifically, Equation (12) is used to describe the creep property for Pt-NiAl BC, while
Equation (13) is used to describe the creep behaviour of alpha-alumina TGO. Both of those
materials are modelled as being isotropic and homogeneous.

The inelastic behaviour describing the strain rate generated due to oxidation from the
Pt-NiAl BC to alpha-alumina TGO is taken from Busso et al. [14] as:

.
ε

SW
TGO = f ini

2

.
f (Ni,Pt)Al

(√
3
2

P
T′

S̃
+ eT

V1

)
(14)

where the inelastic stretching tensor
.
ε

SW
TGO represents the non-recoverable deformation rate

induced by oxidation of the metallic phase, f int
2 is the initial volume fraction of metallic

phase, which has not been oxidized, f ini
2 = 0.38 according to [7]. P is a coefficient depending

on the shape of the oxide particles. S̃ and T′ are the norm and deviatoric components of the
aggregate stress tensor, respectively. eT

V is the mean local dilatational strain induced by the

transformation of the initial metallic phase.
.
f (Ni,Pt)Al indicates the evolution of the internal

variable f(Ni,Pt)Al , which is defined as the normalized fraction of the oxidizing phase which
has chemically reacted with O2, varying in a value from 0, before the oxidation begins, to 1
when primary oxidation is completed. Parabolic formulae are used to describe the TGO
growth from the Pt-NiAl BC oxidation. The internal variables f(Ni,Pt)Al are defined as:

f(Ni,Pt)Al =
ATGOe−

QTGO
κBT tPTGO

dtot
TGO

(15)

where dtot
TGO is the total thickness of the oxidized layer within a specific life span. ATGO,

QTGO and pTGO are the coefficient of TGO growth rate, TGO growth activation energy and
TGO growth exponent, respectively. Further, t is an exposure holding duration and kB is
the Boltzmann constant. It is noted [14] that Equation (15) is only valid when the local
oxygen concentration CO > C0Cr, where CO is oxygen concentration and C0Cr is the critical
oxygen concentration which defines the onset of oxidation. In addition, it is noted that the
TGO growth strains do not develop isotropically, i.e., the normal and parallel strains due
to BC oxidation to form TGO behave differently, their ratio is taken as approximately 87 [1]
and was applied into the current FE model.

The temperature-dependent yield strengths of both BC and TGO [15,19] shown in
Figures 9 and 10, are incorporated into the FE calculations. For the current study, the
inelastic behaviour of both BC and TGO layers is partially determined by their strain
rate-independent yield strengths. Specifically, when the creep rates are very small at
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low temperatures, the relative large CTE mismatch strain is accommodated by inelastic
deformation, which is likely to be controlled by rate independent plasticity.
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2.3. Temperature-Process Dependent Geometrical Parameters

According to Wen et al. [13], the geometrical parameters used to characterize the
interfacial roughness profile vary as a function of thermal cycles. It is reasonable to
assume that different stress levels will be obtained by the inclusion of different roughness
profiles into the FE model, where those roughness profiles are characterized by geometrical
parameters measured at different stages of cyclic thermal experiments.

A key feature of our model is the assumption of similarity in the roughness profile
between the TC/TGO interface and TGO/BC interface since the thickness of the TGO layer
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is relatively small compared to the entire TBC. This approximation avoids duplicating the
measurement and characterization of roughness parameters at the TC/TGO interface for
different thermal cycles. For previous analytical and numerical models, the local roughness
of the BC surface was mostly characterized by using amplitude and horizontal length of lo-
calized imperfections (so-called wavelength) for both atmospheric plasma-sprayed thermal
barrier coating systems (APS-TBCs) [10,20–22] and EB-PVD TBCs [2,11–13]. However, the
method to evaluate the roughness profile for EB-PVD TBCs should be significantly different
from that of APS-TBCs [13]. Hence, a new method to characterize the local roughness of
BC surface for EB-PVD is proposed in this section.

Contrary to APS-TBCs where time-independent interfacial roughness parameters are
used, the evolution of interfacial roughness in EB-PVD TBCs is significant as the thermal
cycle proceeds. Several methods have been proposed to characterize the variation of
interfacial roughness as a function of both temperature and thermal cycles, such as the
RMS (root mean square) and tortuosity (L/L0). L and L0 for tortuosity are defined as the
length of a surface roughness curve and the measured linear distance from beginning
to end of the specific defined interfacial roughness profile at a specific number of cycles,
respectively [13]. The interfacial roughness profiles for bond-coated-only and YSZ-coated
interfaces were measured experimentally [13]. As mentioned in the previous section, a set
of geometrical parameters used for the parametric study are obtained from the interfacial
roughness profile at the failure stage of a life cycle. Specifically, using the parameters (a)
amplitude of interfacial roughness; (b)width of interfacial roughness; combined with (c)
TGO thickness, the geometry of the interfacial roughness between TGO/BC can be fully
described. Subsequently, (d) positions where residual stresses are calculated are chosen.
Each of the parameters (a) to (d) are discussed below.

2.3.1. Amplitude

It is obvious that experimentally determined amplitude and tortuosity of interfacial
roughness vary as the thermal cycle proceeds [13]. This variation of interfacial roughness
is temperature-process dependent, which is different from APS-TBCs. The amplitude
of interfacial roughness A is expressed as the root mean square of roughness parameter
(RMS) by:

A =
√

2RMS (16)

The resulting mean amplitude is plotted in Figure 11.
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2.3.2. Width

A specific method to characterize the horizontal width of the interfacial roughness
is necessary in order to evaluate the stress in EB-PVD TBCs. Consider the tortuosity of
the interfacial roughness; the physical implication behind it can be understood as the ratio
of the length of a rough surface over a defined flat surface. The random distribution of
roughness is reflected by irregular heights over each individual protuberate. This can
be treated as a uniformly distributed rumpling profile either in the form of an isosceles
triangle or ellipse, Figure 12. Considering the triangular-roughness approximation, the
hypotenuse of the triangle in each uniform roughness profile is given by L/L0 ×W/2,
where W/2 is the half-length of the bottom side, Figure 13.
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Figure 13. Schematic diagram of interfacial roughness profile approximated in the form of a triangle.

It is assumed that an individual interfacial roughness curve with a flat base forms
an isosceles triangle, Figure 13. The horizontal width of the interfacial roughness can be
represented by the length of the base W. The total length of two hypotenuses, indicating
the length of each uniform roughness profile, is described via the product of tortuosity and
width TL ×W, which increases as a function of temperature. The height of an isosceles
triangle is represented by an average amplitude of roughness A. Therefore, the length of
the hypotenuse b, as well as the length of the base, W can be determined by combining the
amplitude (height) and the tortuosity (the ratio of the length of two hypotenuses over the
base-side) as:

b = TL ×
W
2

(17)
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W =
2× A√
T2

L − 1
(18)

where TL is tortuosity as defined in [13], TL = L/L0. The resulting width of roughness,
which is defined as W, can be obtained by integrating tortuosity and amplitude as functions
of the number of cycles and temperature, Figure 14.
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Figure 14. The width of the bottom-side approximated by an isosceles triangle as a function of
thermal cycles and temperature, Equation (18).

2.3.3. TGO Thickness

As a by-product of progressive oxidation of the BC, the thickness of the TGO between
TC and BC has a large effect on the stress distribution within TBCs. The thickness of TGO
scale was measured during thermal cycling in [13] at 1151 ◦C. In this paper, the TGO
growth model is fitted to these measured data and described using a parabolic law as

dTGO = ATGOe−
QTGO

κBT tPTGO (19)

where ATGO, QTGO and pTGO are the same as in Equation (15). The fitting curve, together
with experimentally measured TGO thickness, is shown in Figure 15.
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2.3.4. Positions for Residual Stress Evaluations

Compared to prior work that focused on specific positions close to the interface where
only the maximum residual stress was identified [22], the current work calculates residual
stresses as a function of position. Therefore, by examining different locations in the FE
analysis, it is possible to find the maximum stress level at which the crack nucleates.
Meanwhile, the relationship between the resulting stress and position is established, which,
in turn, provides valuable information for establishing analytical stress models. The relative
distance between the TC/TGO interface to the positions (y) are shown in Figure 16, at
which the stresses will be evaluated specifically.
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3. Finite Element (FE) Model
3.1. Thermal Barrier Coating (TBC) Morphology

The goal of FE modelling in this work is to determine the effect of roughness profile
on stress levels. The temperature-process dependent model parameters are incorporated
into FE calculations. The typical geometrical parameters applied to modelling layers of the
TBC system are obtained using Equations (16), (18) and (19) at failure time during thermal
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cycling. After a close inspection of representative sections of the TGO–ceramic interface,
its morphology was idealized as a periodic array of saw-type segments, as indicated by
Figure 12. The corresponding periodic unit cell in the FE model is shown in Figure 17, and
details about interfacial morphology are examined closely in Figure 18.
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Figure 18. Details of the interfacial morphology simulated at 177 cycles from cyclic thermal experi-
ments; the roughness profile is characterized in the form of triangles.

Here, the amplitude of the interface, denoted A in Figure 13, is approximately 4.12 µm,
and the length of the bottom side, denoted, W is approximately 13.76 µm. Thus, interface
morphologies with A/W ' 0.3 aspect ratios will be used at the failure cycle (177 h under
1151 ◦C). The FE meshes consist of 39,572 quadratic generalized plane strain elements with
full integration.
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3.2. Transversely Isotropic Yttria-Stabilized Zirconia (YSZ) Materials for Topcoat (TC)

For simplification, the current 2D model is established where the thickness of TBC
in the z-direction is not considered in the current stress analysis, since the elastic strain is
only defined in the 2D cross-sectional plane. The transversely isotropic elastic properties
of materials are applied to the general plane strain cross-section defined for a TC layer
since it is anisotropic between the in-plane and out-of-plane directions. Thus, the resulting
fourth-order elastic compliance tensor, S, becomes:

S =



1/E1 −υ21/E2 −υ13/E1 0 0 0
−υ12/E1 1/E2 −υ12/E1 0 0 0
−υ13/E1 −υ21/E2 1/E1 0 0 0

0 0 0 1/G2 0 0
0 0 0 0 1/G1 0
0 0 0 0 0 1/G2

 (20)

According to the designation of the axes from the coordinate system, Figure 2, υ21 and
υ12 are defined as Poisson’s ratio in the x-y direction, and υ13 is the in-plane Poisson’s ratio
in the x-z direction. ν23 is Poisson’s ratio in the y-z direction, which is equivalent to υ21
based on the application of orthotropic elasticity within the TC layer. The shear moduli
with the same subscripts are also defined, that is G12 and G23 represent the shear moduli in
the x-y and y-z directions, respectively, where G13 is defined as the in-plane shear modulus
in the x-z direction.

The definition of orthotropic elasticity by specifying the engineering constants, the
relative elastic modulus, shear modulus as well as Poisson’s ratio in terms of different
directions of TC materials are given in Table 2, where x, y, z in the FE calculation indicate
the directions of 1, 2, 3, respectively.

Table 2. The definition of orthotropic elasticity by specifying the engineering constants.

Parameters Definition Conversion to Transversely Isotropic
Elastic Properties

E11
In-plane elastic modulus in the

x-direction E11 estimated by Equations (1) and (5).

E22
Out-of-plane elastic modulus in

the y-direction E22 estimated by Equations (3) and (4)

E33
Out-of-plane elastic modulus in

the z-direction E33 = E11

υ12 Poisson’s ratio in the x-y direction ν21 = 0.2, ν12 = ν21 × E11
E22

υ13 In-plane Poisson’s ratio ν13 = 0.12 [7]

υ23 Poisson’s ratio in y-z direction ν21 = ν23 = 0.2

G12
Shear modulus in the x-y

direction G12 = G2 = E22/E11 × G1

G13 In-plane Shear modulus G13= G1 = E11/2(1 + ν13)

G23
Shear modulus in the y-z

direction G23 = G2 = E22/E11 × G1

The temperature in TBC was assumed to be spatially homogeneous and to vary cycli-
cally with time, as illustrated in Figure 5. The peak cycle temperature of 1151 ◦C was
identified as a typical TBC metal/ceramic interface temperature. The residual stresses
will be calculated only at a temperature below 20 ◦C. In addition, the TBCs are consid-
ered to be stress-free (or with a small compressive state) during the high temperature
dwell period at 1151 ◦C, where the stress is relaxed by the creep deformation according to
Equations (12) and (13). The surface of the TBC is assumed to be traction free and symmet-
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ric, and periodic boundary conditions are assumed on the bottom plane of the BC y = 0,
indicating no vertical downward movement through the y-direction due to support by the
BC/substrate layer.

3.3. Phase Transformation and Oxidation Model

There are two effects to consider when simulating the oxidation from metallic BC to
oxide (TGO), as this process involves a gradual change of mechanical properties and creep
effects from the BC to the TGO, and initiation of the swelling effect since TGO starts to
form. In this study, it is assumed that the progressive oxidation is dominated by internal
oxidation, in which a new oxide layer forms at the interface between the BC and existing
TGO layer. The FE model starts with two layers, i.e., the TC and BC.

To implement a progressive oxidation of the metallic BC to form oxide TGO in FE
models, the maximum thickness of TGO, dtot

max, was initially selected at the failure cycle
of TBCs at specific exposure temperatures from testing samples. This transitional layer
dtot

max was then used to simulate TGO formation in FE models. According to this scheme,
the initial BC thickness dint

BC is partitioned into two regions, i.e.,dtot
max and drev

BC, and follows
dint

BC = dtot
max + drev

BC, where the thickness drev
BC is never oxidized during the entire thermal

exposure period, and dtot
max � dint

BC. Before the BC starts oxidation, the entire dint
BC behaves as

pure metallic properties. As BC oxidation proceeds, a portion dt
OX of the BC is converted

into the TGO scale progressively. Therefore, the oxide fraction within this dtot
max region is

f(Ni,Pt)Al = di
OX/dtot

max. It is assumed that the mechanical properties for this transition dtot
max

layer can be estimated from mechanical properties BC and TGO by

Etr = ETGO × f(Ni,Pt)Al + EBC × (1− f(Ni,Pt)Al) (21)

where the definitions of EBC, ETGO and f(Ni,Pt)Al can be found in preceding sections.
Equation (21) describes the mechanical properties of the “TGO” layer that undergoes
phase transformation. Similarly, the temperature dependence of the coefficient of thermal
expansion and inelastic creep strain rate for the TGO layer can be estimated from:

αtr = αTGO × f(Ni,Pt)Al + αBC × (1− f(Ni,Pt)Al) (22)

.
ε

cr
tr =

.
ε

cr
TGO × f(Ni,Pt)Al +

.
ε

cr
BC × (1− f(Ni,Pt)Al) (23)

To implement TGO swelling during the phase transformation process, it is necessary
to obtain the time to initiate the phase transformation from the top to the bottom of the
TGO layer. However, it is obvious that the TGO growth rate decreases as oxidation occurs
at deeper positions, Figure 15. This is because the formation of the relatively dense alpha-
alumina as a newly formed TGO layer, to some degree, prevents the BC surface from further
oxidation. Accordingly, in order to integrate the effect of gradually-decreased oxidizing
rate from the surface to the bottom of a pre-defined TGO layer, several sublayers are further
partitioned with an identical thickness within the TGO section, as shown in Figure 18.
Obviously, it takes longer for oxidation completion at the sublayer close to the bottom of
the TGO compared to that near the surface of the TGO. Thus, for each sublayer within the
TGO, the time for oxidation completion can be derived by rewriting Equation (19) as

tF
n =

 n× dsub
TGO

ATGOe−
ETGO
κBT

 1
PTGO

(24)

Here, tF
n is the time for oxidation completion for each sublayer, where n indicates the

number of sublayers counting from top to bottom, dsub
TGO is the thickness of the sublayer,

which is defined according to the total number of sublayers within the TGO section.
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To achieve the desired TGO thickness versus oxidation history for each sublayer, the
coefficient of TGO growth rate ATGO needs to be re-calculated using Equations (19) and (24) as

ATGOi =



dsub
TGO

e
− QTGO

κBT (tF
i )

PTGO

f or n = 1

dsub
TGO

e
− QTGO

κBT (tF
i −tF

i−1)
PTGO

f or n > 1

(25)

where ATGOi is the coefficient of the TGO growth rate for sublayer i (i = 1 to n) within the
TGO section. Accordingly, the evolution of the internal variable f(Ni,Pt)Al for each sublayer
can be rewritten as,

f(Ni,Pt)Al−i =


ATGOie

− QTGO
κBT tPTGO

dsub
TGO

f or n = 1

ATGOie
− QTGO

κBT (t−tF
i−1)

PTGO

dsub
TGO

f or n > 1

f(Ni,Pt)Al−i =

{
0 i f f(Ni,Pt)Al−i ≤ 0
1 i f f(Ni,Pt)Al−i ≥ 1

(26)

where f(Ni,Pt)Al−i is the evolution of the internal variable for each sublayer. Subsequently,
the mechanical, thermal properties and creep behaviour of the sublayers can be obtained by
substituting Equation (26) into Equations (21)–(23). The FE model of EB-PVD TBCs can now
be defined based on the previously described constitutive material models. These are im-
plemented numerically as a user-defined subroutine in commercial FE code ABAQUS [23].

4. Results and Discussion
4.1. Parametric Study of the Effect of Local Geometrical Parameters on Stress Distribution of TBC

The magnitude of residual stress at a valley of the TBC/TGO interface is governed
by not only temperature-dependent material properties such as sintering of the TC and
inelastic behaviour of the TGO and BC, but also by the interface roughness between each
layer [10,24,25] characterized using temperature-process dependent localized geometrical
parameters. To analyze the effect of those parameters on residual stresses, a parametric
study is conducted where an isosceles triangle is used to approximate the interfacial
roughness profile. Three parameters are incorporated into the FE model: (i) A is amplitude
and indicates the height of a triangle, (ii) W is the width and indicates the length of the
bottom side of triangle applied to defining the shape of triangular imperfection, and (iii) the
position y is used to describe the locations (yTC, yTGO, yBC) where the stresses are evaluated,
Figure 19.

To characterize the effect of each parameter on stress, a parametric study using the
controlled variants is applied to the FE analysis (FEA). At position y, residual stresses
are calculated while allowing variations of amplitude A and width W. Also, for a given
amplitude A and width W, stresses are calculated at various positions y. A reference set
of parameters used to characterize the roughness profile are selected from experimental
results at the failure cycle of 177 h of TBC exposed at 1151 ◦C. The geometrical parameters
used in the FEA model are presented in Table 3.



Coatings 2021, 11, 341 18 of 39

Coatings 2021, 11, x FOR PEER REVIEW 19 of 42 
 

 

study is conducted where an isosceles triangle is used to approximate the interfacial 

roughness profile. Three parameters are incorporated into the FE model: (i) A  is ampli-

tude and indicates the height of a triangle, (ii) W  is the width and indicates the length 

of the bottom side of triangle applied to defining the shape of triangular imperfection, and 

(iii) the position y  is used to describe the locations ( , ,TC TGO BCy y y ) where the stresses 

are evaluated, Figure 19. 

  

(a) (b) 

 

(c) 

Figure 19. Schematic diagram of individual interfacial roughness profile used for a parametric study where amplitude, 

width, TGO thickness as well as positions are illustrated for different layers. (a) TC layer, (b)TGO layer, and (c) BC layer. 

To characterize the effect of each parameter on stress, a parametric study using the 

controlled variants is applied to the FE analysis (FEA). At position y , residual stresses 

are calculated while allowing variations of amplitude A  and width W . Also, for a given 

amplitude A and width W, stresses are calculated at various positions y . A reference set 

of parameters used to characterize the roughness profile are selected from experimental 

results at the failure cycle of 177 h of TBC exposed at 1151 °C. The geometrical parameters 

used in the FEA model are presented in Table 3.  

Figure 19. Schematic diagram of individual interfacial roughness profile used for a parametric study where amplitude,
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Table 3. Reference set of roughness parameters used in the FE model at N = 177 h at 1151 ◦C [13].

Properties Value Unit

Amplitude A 4.12 µm

Width W 13.76 µm

Total TGO thickness dTGO 4.92 µm

Relative position yTC or yBC 1.27 (TC) or 0.43 (BC) µm

4.1.1. The Effect of Roughness Amplitude on Stress at the Valley of TC and Ridge of BC

The effect of roughness amplitude on residual stress is analyzed for both the TC
and BC layer. In addition to the amplitude A for the reference group, 0.5 A and 1.5 A
of the amplitudes are also used for FE calculations. The resulting stresses, together with
those from the reference group, are used to assess a correlation of out-of-plane residual
stresses versus amplitude. The models depicting the geometric roughness are presented in
Figure 20.
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Figure 20. Amplitude variation of (a) 0.5 A, (b) A and (c) 1.5 A listed from left to right where the rest
of the parameters are kept constant.

The stresses from the valley of the TC are calculated and plotted in Figure 21 as a
function of time.
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Figure 21. Out-of-plane residual stresses at the valley of TC with different roughness amplitude as
thermal cycle proceeds.

It was suggested in [7] that increasing the amplitude of imperfection roughness
would increase the stress close to the interface, since the stress concentration is boosted by
increasing sharpness at the tip of roughness. However, the red curve in Figure 21 shows
an opposite effect on stresses in a large roughness amplitude. Because the positions with
respect to the interface are identical for these three cases in the FE model, the deeper the
amplitude used in interfacial roughness mapping, the narrower the tip at the valley of the
TC. It seems that there is a prohibitive effect on the stress estimated at the tip of the TC
as the sharpness of the geometrical roughness reaches a critical value. This is reflected
by a lower stress obtained from the valley of the TC when 1.5 A amplitude is used in
the FE model. For the stress obtained from the peak of the BC, the effect of different
amplitudes exerts a profound effect on stress level according to the FE results, as can be
seen in Figure 22.

It is observed that most of the roughness develops during the rumpling of the BC
as a consequence of creep during high-temperature exposure. The creep proceeds to
accommodate large mismatch stress during a fast heating period. The amplitude of the
roughness of the BC surface is directly affected by the rumpling kinetics, resulting in a
further increase of stress and delamination crack nucleation at the TGO/BC interface.
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However, for the stresses distributed within the TC, according to the failure analysis
in [4,17], it is at the middle stage of thermal cycling that delamination cracks are generated
by coalescence of voids located at the valley of the TC. This may indicate that as the thermal
cycle proceeds, the increase of roughness amplitude facilitates the development of out-of-
plane residual stress at the valley of the TC, while the out-of-plane stress developed at the
early stage of thermal cycles with initial large roughness amplitude is not large enough to
initiate crack nucleation. This avoids early crack generation within the TC layer.
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Figure 22. Out-of-plane residual stresses at peak of BC with different roughness amplitudes as
thermal cycle proceeds.

4.1.2. Effect of Roughness Width on Stress at the Valley of TC and Ridge of BC

Similar to the analysis in the preceding section, the effect of roughness width W on
residual stress is analyzed for both TC and BC layers. In addition to the width W from
the reference group, two other cases of 0.5 W and 1.5 W widths were studied. The models
depicting the geometric roughness are presented in Figure 23.

The stresses at the valley of the TC versus exposure duration are plotted in Figure 24.
Based on Figure 24, it appears that the narrowing width W has a similar effect as

increasing the amplitude A on stress distributions. That is, higher stresses are expected
for rougher interfacial roughness, characterized either by a higher amplitude (the blue
curve in Figure 21) or by a narrower width at the middle stage of thermal cycles (the green
curve in Figure 24). However, it should be noted that with an invariant width of the overall
TBC FE model, the amount of roughness varies as a function of the individual width
of imperfections, Figure 23. It is obvious that more imperfections will be incorporated
into FE calculations as the width of individual imperfections is assumed to be narrower.
Although there is a rapid growth in residual stress calculated from narrower roughness
profiles (the green curve in Figure 24), a lower stress state is obtained initially. This
phenomenon can be explained in two ways. On the one hand, the narrower roughness
profiles boost the stress concentration at the valley of the TC, which in turn raises the
stress on individual imperfections; this can be seen for the calculated stresses at the peak
of the BC, Figure 25. On the other hand, the intensive interaction between relatively close
neighbouring imperfections impedes the development of out-of-plane tensile stresses
within the TC.
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Figure 25. Out-of-plane residual stress at the peak of BC with different roughness width as thermal
cycle proceeds.

4.1.3. Correlation between Positions and Stresses at the Valley of TC and Ridge of BC

The residual stresses were calculated under different amplitudes and widths. Mean-
while, the calculated stresses are different at selected positions at the bottom of the TC and
ridge of the BC. Five relative positions with different “y” in Figure 16 are selected at the val-
ley of the TC and ridge of the BC close to the interface, where a total of 10 residual stresses
are calculated, respectively. The geometry of interfacial roughness is characterized using
roughness parameters measured at 177 cycles based on amplitude and width experimental
data, Table 3. The maximum out-of-plane cooling stresses calculated at different positions
away from the valley of the TC are plotted versus time in Figure 26, with different yTC as
shown in Figure 19a. 

2 

 

Figure 26 
Figure 26. Out-of-plane tensile stresses calculated at the valley of the TC as a function of time at
various positions.
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It is expected that a higher level of stresses close to the interface is due to larger strains
from either coefficient of thermal expansion mismatch (CTE mismatch) between different
layers or volumetric expansion due to oxidation of the BC layer. It can also be seen that
stresses away from the interface increase uniformly compared to those close to the interface.
Concerning the complexity of multi-layers in TBC, there exists a relatively large fluctuation
of residual stresses close to the interface within the TC. Moreover, it should be mentioned
that residual stresses are calculated for the roughness profile with an amplitude equal to
4.12 µm. The cyan curve of stresses illustrated in Figure 26 is at the position of 5.16 µm
away from the valley of the BC, a position that is located outside of the valley of TC. The
general trend of all curves, including the cyan curve, suggests that the out-of-plane residual
stress decreases when moving away from the valley of the TC.

It can be expected that the possible region of cracks where the maximum out-of-plane
stress occurs is close to the interface within the valley of the TC. However, it was observed
that the positions where the maximum stress occurs are shifted away from the bottom of
the TC valley, as previously mentioned. This is possible for some interfacial roughness
observed from the experimental cross-sectional area; for example, the interfacial roughness
with a very sharp tip where the ratio of amplitude over width exceeds a critical value.

The higher maximum out-of-plane cooling stress is also obtained close to the interface
at the ridge of the BC, as seen in Figure 27 with different yBC as shown in Figure 19c.
Similar to the residual stresses at the valley of the TC, there is a high possibility for crack
nucleation at the peak of the BC close to the interface where the highest out-of-plane
residual stress occurs.
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4.2. Generalized Imperfection Model and the Impact of Distance between Imperfections on Stress
Distributions

One of the geometrical parameters used to model the roughness profile, the width of
the bottom side of the imperfection, is derived using experimentally measured tortuosity.
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According to the schematic diagram of triangular approximated roughness in Figure 13,
the tortuosity can be expressed as,

TL =
2× b

W
(27)

For a single imperfection described in the form of a triangle, the larger the tortuosity,
the sharper the angle of the valley. As can be seen in Figure 28, for those two triangular-
shaped imperfections, assuming the amplitudes are identical (A = A′), the imperfection
shown in Figure 28b has higher tortuosity than that in Figure 28a (TL

′ > TL). According to
Equation (18), the one with higher tortuosity has a narrower width, which is shown for a
single imperfection model in Figure 28.
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Figure 28. Schematic diagram describing the relationship between tortuosity and width of interfacial
roughness imperfection for a single imperfection. The interface roughness profile with (a) lower
tortuosity and wider width, (b) higher tortuosity and narrower width.

However, for multiple imperfections closely located at the interface, it becomes more
complicated to estimate the tortuosity for a defined length of the roughness profile. As
can be seen in Figure 29, it is still assumed that the amplitudes are identical for triangular
approximated imperfection (A = A′). This indicates that the tortuosity is higher for the
individual “narrower” imperfection in Figure 29b than the “wider” one in Figure 29a. How-
ever, this discrepancy can be supplemented by adding additional “wider” imperfections
within a defined length. The tortuosity for two sets of connected imperfections, according
to Figure 29, might be identical (TL

′ ' TL).
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However, it is obvious that the width of an individual imperfection is not the same
in the roughness profile of Figure 29b as the one in Figure 29a. This indicates that
Equation (18), which is used to estimate the width of the bottom side for interfacial rough-
ness for connected imperfections, is not able to describe the roughness profile when there
is the spacing between two imperfections.

The results from the preceding analysis provide a different way to understand the
physical implication of tortuosity such that a transitional roughness model is introduced.
This transitional model becomes the intermediate between the most simplified continuous
roughness model and the generalized model observed from cross-sectional SEM images,
Figure 30.

According to the profiles of the metal/oxide interface at various stages of thermal
cycling in Figure 31, it is appropriate to consider the most simplified continuous roughness
model of Figure 30a to represent the roughness profile at the initial stage of thermal cycling,
where small connected saw-like imperfections dominate. It can also be treated as the
intermediate section between two large imperfections at a post-failure stage, where similar
roughness profiles can be identified as described above.

The transitional roughness model described in Figure 30b is proposed to simulate
the roughness at a post-failure stage, Figure 31. The imperfections shown in Figure 30b
indicate two large imperfections, as highlighted in the circle in Figure 31, where relatively
high-stress levels could be localized somewhere at the bottom of the imperfections. The
straight line between two imperfections in Figure 30b represents the small imperfections in
the roughness at a post-failure stage in Figure 31, which will not have a large impact on the
stress within the large imperfections. It should be noted that in reality, either the distance
between two imperfections or the amplitude of roughness could be varied as a function of
temperature and number of cycles, Figure 30c. These parameters are taken as their mean
values (constant) for the parametric study described below.

Knowing that distance between imperfections is a global factor compared to the geo-
metrical parameters that are used to characterize the geometry of localized imperfections,
it is necessary to conduct another parametric study to evaluate the possible effect of the
spacing parameter (D) on the stress level, Figure 29. The spacing parameter (D) is incorpo-
rated into the FE models, and other factors, such as the size of the imperfection itself (the
amplitude and width), are held constant. The parametric study in the current section only
deals with the effect of the global parameters on the stress levels at the valley of TC.
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Figure 30. Different models used to describe the interfacial roughness profile: (a) continuous
roughness model, (b) transitional roughness model, (c) generalized roughness model.

Accordingly, an equation describing the new width of local imperfections is required
when spacing is used in the FE model. The spacing incorporated via the tortuosity becomes:

TL =
2b′N + (N − 1)D

L0
(28)

where b′ is the new length of the hypotenuse of the isosceles of triangular-approximated
roughness profile after the spacing parameter is included in the FE model. Furthermore, N
is the number of imperfections at the interface of the current FE model, D is the spacing
parameter and L0 is the total width of the roughness profile described in the FE model,
Figure 29. Based on the definition of an isosceles triangle, the new width of the isosceles in
triangular-approximated roughness is defined as:

WL = 2
√

b′2 − A2 (29)

where WL defines the local width of the isosceles in triangular-approximated roughness.
Substituting Equation (29) into Equation (28), the new width of the isosceles in triangular-
approximated roughness with a defined number of imperfections N can be obtained from:

WL = 2

√[
TLL0 − (N − 1)D

2N

]2
− A2 (30)
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Equation (30) only works once Equation (28) is satisfied. That is,

WL × N + (N − 1)× D = L0 (31)

In other words, the spacing parameter has to be determined once the number of
imperfections is defined. The spacing could be obtained by substituting Equation (30) into
Equation (31) to yield,

D =
L0

2(TL
2 − 1

)
− 4N2 A2

2L0(N − 1)(TL − 1)
(32)
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Figure 31. Profiles of the metal/oxide interface extracted from cross-sectional images at various
stages of thermal cycling, illustrating the continuous evolution of interface morphology during
cyclic exposure.

In this study, the amplitude A and tortuosity TL of roughness are characterized from a
reference group, Table 3, as the transitional roughness model simulates the roughness at a
post-failure stage. The total width of the roughness profile L0 was selected as 300 µm since it
is wide enough to incorporate roughness with spacing integrated into the model. The global
spacing parameter D and local width WL of imperfections are described as a function of the
number of imperfections in the FE model, Figure 32. It is noted that Equations (30)–(32) are
validated, as there is no spacing between imperfections where the maximum width of local
imperfections equals approximately 13.76 µm when most imperfections are incorporated
into the FE model, Table 3. Importantly, even if the tortuosity and average amplitude
are predetermined for a specific number of cycles, it can be seen from Figure 32 that the
interfacial roughness profile still needs to be determined from the number of noticeable
imperfections N within a defined length of interfacial roughness. Figure 33 illustrates
different roughness profiles with the same combination of tortuosity and amplitude but
different local widths and spacing parameters. Details are given in Table 4.
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Figure 32. Global spacing parameter D and local width of imperfection WL as a function of the
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Table 4. Parameters used in FE analysis in terms of the global spacing parameters.

No# of FE Model D (µm) WL (µm) No# of Imperfections

a 33.68 3.391 9

b 17.44 6.977 13

c 7.95 10.16 17

d 1.164 13.18 21

For all FE cases

A (µm) 4.12

dTGO (µm) 4.92

In other words, all four roughness profiles illustrated in Figure 33 are possible interfa-
cial roughness profiles for the post-failure stage when the number of noticeable imperfec-
tions N is selected based on Figure 32. The results of the maximum cooling stresses within
5000 min calculated from the valley of the TC are plotted in Figure 34.

Combining the observation based on the profiles of metal/oxide interface extracted
from cross-sectional images at various stages of thermal cycling in Figure 31, it is expected
that at the beginning of thermal cycles (thermal cycles < 1500 cycles), the increasing stress is
facilitated for roughness profiles with a wider local length and narrower spacing between
neighbouring imperfections that can be treated as a plateau between neighbouring imper-
fections. Nevertheless, the resulting current stress from different transitional roughness
models only indicates the variation of stress level at a post-failure stage of lifetime, since
the amplitude and tortuosity parameters used in Equations (30) and (32) are obtained at
177 cycles from cyclic experimental data and fitted into FE models. There exists a potential
to describe the geometrical variation for transitional roughness models throughout the life
span since the amplitude and tortuosity in Equations (30) and (32) have been recorded as
a function of thermal cycles [13]. The challenge is to determine the number of noticeable
imperfections N as a function of thermal cycles, Equation (32), and therefore it is difficult
to define the spacing D as a function of time.
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However, it was suggested that the roughness level increases as the thermal cycle
proceeds [12,13,26]. This indicates that the number of noticeable imperfections N should
increase as the time approaches the failure time. Incorporating the trend of increasing N
into Equations (30) and (32), it can be qualitatively confirmed that the spacing between
neighbouring imperfections decreases and the local width increases as a function of time,
which demonstrates that the evolution of interfacial roughness might follow the sequence
(a) to (d) in Figure 33.

The stresses described in the preceding sections are the maximum out-of-plane resid-
ual stresses upon cooling during thermal cycles. For cases of extreme roughness profile in
the current study, e.g., the case (a), the ratio of amplitude over local width is greater than
unity. It is not surprising that the black curve has the highest rate of increasing stress among
all curves in Figure 34 since it has the narrowest width that boosts the stress concentration.
It is also not surprising that there exists a stress inversion as the thermal cycle proceeds.
It occurs due to a lack of relatively close neighbouring imperfections, as mentioned in
Section 4.1.2. This phenomenon is position-dependent as the current position is located
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at approximately 1.27 µm away from the bottom of the TC, Table 3. There is a relatively
large variation of stresses as a function of time as the position shifts up or down, towards
or away from the interface.
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spacing between imperfections.

The introduction of the transitional roughness model gives a proper explanation of the
geometrical implication of tortuosity considering global factors. At the same time, it helps
the FE model approach the actual cross-section in experimental observation. Theoretically,
the experimentally-measured interfacial roughness parameters, characterized by either
amplitude, tortuosity or growth of TGO thickness, are statistically mean values within a
defined length of interfacial roughness profile during a defined period of the thermal cycle.
In reality, the measured value of amplitude, local width for each individual imperfection, as
well as spacing between neighbouring imperfections are randomly distributed, as indicated
by Figures 30c and 31. To simulate this, a generalized roughness model is established with
randomly distributed roughness parameters and integrated into the FE model and shown
in Figure 35. For the case of an interface with a randomly distributed roughness profile,
the calculated stress becomes more complicated at the valley of the TC, where excessively
sharp tip roughness-imperfections are identified.
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4.3. The Effect of Stress Distribution on Positions of Cracks within TC and TGO Layers

As described in the preceding section, the width of the bottom side estimated by
Equation (18) fails to characterize the roughness profile when there is spacing between two
imperfections. To characterize the interfacial roughness profile at a post-failure stage, a
transitional roughness model is proposed where the effect of spacing between imperfections
is described by adding parameters into the FE model, Equation (32). Generally speaking,
the concept of width of imperfection is redefined as the local width of imperfections
WL, which is no longer limited to the description of the length of the bottom side of the
triangular-shaped imperfection, Figure 28. On the other hand, the amplitude measured
from experimental data takes the average value according to

A =
√

2RMS =

√√√√ 2
N

N

∑
i=1

yi
2 (33)

The parameters measured experimentally are all average values and provide a general
trend as a function of the number of cycles and temperature. In “true” roughness profiles
described by the schematic diagram in Figure 30c, the magnitude of amplitude, as well
as the width of imperfections, are randomly distributed for individual imperfections.
Compared with the true roughness profile from cross-sectional images extracted from the
SEM [12], it is possible that the roughness profile model established by using average
geometrical parameters from experimental data fails to reflect the “true” roughness profile
at the interface where deep, sharp imperfections could possibly exist at the post-failure
stage, as indicated by the highlighted circles in Figure 31.

Deep, sharp imperfections simulated using triangular-shaped roughness profiles
imply a relatively high ratio of A/W, as illustrated by Figure 28. This will lead to a stress
singularity at the valley of the TC close to the interface. In order to examine the effect
of sharpness on the stress distribution, imperfections with a high ratio of A/W in the
continuous roughness model with 1.5 times amplitude are selected, Figure 20c. Out-of-
plane residual stresses are then calculated at different positions away from the valley
within the TC. In order to compare the difference of residual stresses at the valley of the TC
estimated from the FE model, the positions where stress is calculated are selected close to
the ones in Figure 26, where original amplitudes were used in the FE modelling process.

The resulting out-of-plane residual stresses are shown in Figure 36 and are compared
with the stresses obtained by using the regular roughness-amplitude FE model, Figure 26.

It is confirmed again that out-of-plane residual stresses are impeded by the excessive
increase in amplitude where a relatively large ratio A/W is expected, especially for stresses
close to the interface. This can be seen from the difference in stress magnitude at shallow
positions of the bottom of the TC, indicated by the black curve in both Figures 26 and 36.
A rapid reduction of stress is identified at initial cycles in varying degrees at different
positions. However, all curves remain uniformly increasing throughout the entire cal-
culating time. The cyan curve, similar to the preceding section, indicates the residual
stresses outside the valley of the TC. Except for the difference in stress level, there is no
discrepancy for stress outside the valley compared to those within the valley, with respect
to a general trend of increasing stress. There are no significant differences between the
two cyan curves in Figures 26 and 36, yet we obtained stress singularity for a large ratio of
A/W in the transitional model in Figure 34. Hence, it is strongly suspected that the lack
of difference related to the general trend of stresses between the two FE results is due to
the excessively close neighbouring imperfections simulated from a continuous roughness
model that inhibits the variation of residual stresses, as described in Section 4.1.2.

Stress in the transitional roughness model Figure 33a is determined at different posi-
tions away from the valley of the TC and shown in Figure 37. It is obvious that there are
large discrepancies between the stresses obtained at different positions compared to the
stresses obtained through the continuous roughness model. These discrepancies can be
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explained by the smaller interaction on the individual stress level, as there is larger spacing
between neighbouring imperfections for the transitional roughness model.
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In contrast to Figure 36, the out-of-plane residual stresses close to the valley of the
TC (0.31 µm away), indicated by the black curve in Figure 37, are in compression within
the entire 5000 min thermal cycles. This is considered to impede the nucleation and
propagation of cracks parallel to the interface. A rapid stress increase is found for stresses
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just a little above the first position, represented by the red and green curves, respectively,
accompanied by a stress inversion, which occurs as a function of position and time. With
the positions moving into the shallower portion of the TC, there is an obvious decrease
in stress level calculated at 4.17 µm and 5.23 µm away from the bottom of the valley in
the TC in later thermal cycles. Similar to the analysis in the preceding section, the cyan
curve describes the general trend of residual stresses outside the valley of imperfections.
Considering the possible positions where the maximum out-of-plane stress occurs, it is
reasonable to expect that a crack might develop somewhere around intermediate positions
(positions between 1.33 µm and 2.75 µm away from the bottom of the TC as indicated in
Figure 37) as the total roughness amplitude is assumed to be about 4.12 µm.

It is observed that the onset of stress inversion varies as a function of position. It could
be expected that the red curve, which has the most rapid growth rate, reaches the critical
stress level that triggers the initiation of a horizontal crack. However, it is noted that the
time for stress inversion for the red curve occurs relatively late in the thermal cycle. This
might indicate that the initiation of a horizontal crack as residual stresses reach critical
value could be delayed, which is in agreement with experimental observations [11].

According to the stress analysis above, it can be concluded that the onset of residual
stress inversion occurs earlier (black-red-green) as the calculated positions move perpendic-
ularly away from the bottom of the TC/TGO interface. This implies that stress at shallower
positions might reach the critical level that initiates a horizontal crack at an earlier stage
of thermal cycle. However, current FE models are established where residual stresses are
calculated without consideration of interfacial roughness evolution as a function of time.
We note that the interfacial roughness grows as a function of the thermal cycle, which
implies the shortening of spacing between neighbouring imperfections and the widening
of local width for individual imperfections. This, in turn, implies that the positions where
the possible maximum residual stress occurs could also move close to the bottom of the
valley within the TC, as indicated by positions where the maximum stress is identified in
Figure 36. Combining the schematic diagram in Figure 38 and failure mechanism summa-
rized in [18], and assuming that the shape of the roughness of an individual imperfection
becomes sharper as the thermal cycle proceeds, the stress conditions at the valley of the TC
may change.

In order to describe the relationship between positions of maximum stress and possible
crack initiation, several stages need to be examined for the entire lifetime with respect
to the roughness profile. For Stage “0”, the interfacial roughness at the beginning of the
thermal cycle is described in Figure 31 “0 cycles”, where relatively small and uniformly
distributed roughness imperfections are identified close to the interface between the TC
and the BC, and where the thickness of any pre-existing TGO layer is neglected. The
interfacial roughness can be profiled using the continuous roughness model and average
roughness amplitude parameters from the initial stage of the thermal cyclic experimental
results. The maximum residual stress at stage “0” at the initial thermal cycle can be found
close to the valley of the TC, although the magnitude of the residual stress is too small to
initiate horizontal crack nucleation.

For stage I, as indicated in Figure 38a, the growth of a few small imperfections could
be expected and described as the transitional roughness model with relatively large spacing
and short local widths, Figure 33a. Since there is little interaction between neighbouring
imperfections, the rapid growth of valley stress could be expected. It is noted that as the
increase in amplitude raises the sharpness of the imperfections, it also facilitates the growth
of out-of-plane residual stress to a certain degree. There might be an initiation of horizontal
cracks somewhere at intermediate positions where stress inversion takes place within a
short period of time (Figure 37, positions between the red and green curve). This rapidly
increasing stress is balanced by the creep effect of the BC, especially for the area close
to the interface where massive stress relaxation takes place during the high temperature
holding time. The creep effect is also reflected by the increase of roughness level, where
more imperfections are formed due to inelastic deformation as the thermal cycle proceeds.
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The resulting shortening of spacing parameter and widening of local width, as well as the
growth of roughness amplitude (represented by stage II in Figure 38b and 34% to 76% of
life cycles in Figure 31), facilitates interaction between neighbouring imperfections and
thus inhibits the growth of residual stresses.
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Figure 38. Failure of an EB-PVD TBC system driven by a cyclic instability in the thermally grown
oxide layer [18]. (a) Interfacial roughening at stage of as-deposited (b) Crack initiation as TGO
grwoth (c) The propagation of interfacial cracks.

Stage II in Figure 38b can be described in Figure 33b,c for FE mapping. According to
the results from the preceding analysis, the positions of the maximum residual stress start
to move back to the valley of the TC. Since the horizontal crack propagates already at a
relatively shallow position during stage I, the positions of maximum residual stress might
shift the possible cracking positions down, or alternatively, might cause the downward
extension of the crack accompanied by an expansion of the crack size perpendicular to the
interface within the valley of the TC, as indicated in Figure 38c.

As the thermal cycle approaches the post-failure indicated by stage III in Figure 38c,
the appropriate FE model is described by either Figure 33d or the continuous roughness
model where geometrical roughness parameters are taken from experimental data of the
post-failure stage thermal cycle. According to the stress analysis in the preceding section,
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the maximum residual stresses are identified at the bottom of the valley within the TC in
Figure 26, where the crack is expected to propagate along with the interface.

The generalized roughness model is introduced with a relatively large roughness level
at the interface to attempt to profile the randomly distributed peaks and valleys formed
at post-failure stages during cyclic thermal simulation, Figure 31. For stress calculated
at a shallow valley with low roughness amplitude, the general trend for out-of-plane
residual stresses is the same as that obtained in the continuous roughness model, i.e., the
residual stress is tensile and decreases as the positions move perpendicularly away from
the bottom of the TC. However, for stress at a deep valley with high roughness amplitude,
the maximum out-of-plane residual stress has unrealistic values and is concentrated at the
tip of the bottom of the valley of the TC, as indicated in Figure 39.
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Figure 39. Valley stress at the tip of the bottom at the valley of the TC obtained. from the generalized
roughness approximated model.

As the results are obtained from the perfect non-cracking FE model, it is reasonable to
consider that the magnitude of the stress is large enough to facilitate the crack propagation
along the interface between the TC/TGO layer.

It can also be seen that the general trend for residual stresses in Figure 39 is similar to
the red curve in Figure 21, where the residual stresses are from closely located imperfections
using the continuous roughness model. There also exists a stress singularity within the TGO
layer, in particular at imperfections with relatively large roughness. For imperfections with
small roughness levels, the variation of residual stress within the TGO layer is illustrated
in Figure 40. It shows the stresses at two randomly selected cycles through FE results.

It is concluded that the magnitude of compressive residual stress increases to the
maximum level upon cooling and decreases within about 10 min during the reheating
period. The overgrowth tensile stress upon the heating process is rapidly relaxed due to
the creep effect at high temperatures, resulting in a stress-free state during the holding
period. The magnitude of out-of-plane compressive residual stresses within the TGO layer
decreases as the thermal cycle proceeds [11,13,26,27]. Specifically, there exists a tensile state
for TGO residual stress calculated close to the TC/TGO interface with a relatively large
roughness profile, as can be seen in Figure 41.
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Figure 41. The maximum residual stress calculated within the TGO close to the TC/TGO interface.

It should be noted that the “holding stress” is different from the stress obtained in
Figure 40, and increases as a function of thermal cycles. This stable increase of holding
stress is a consequence of the geometrical discontinuity at the tip of roughness, where
the excessive geometrical sharpness results in significant pressure on the TGO material
concentrated in that area. This leads to the failure of stress relaxation. Since stress relaxation
is limited during high temperatures, there exists a tensile stress state at the end of the
heating process during thermal cycles. This holding stress remains tensile, and its magni-
tude increases as the thermal cycle proceeds, which leads to a relatively large magnitude
of out-of-plane tensile stress at the interface close to the TC/TGO layer. Therefore, it is
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plausible to expect that the penetration of the horizontal crack occurs at a valley of the
TGO layer close to the TC/TGO interface by the convergence of separated cracks within
the TC and BC.

Compared to TGO residual stress close to the TC/TGO interface, the stress near the
TGO/BC interface is close to the regular stress state of the TGO layer, Figure 42. The cooling
stress shows an initial increase of tensile stress and a rapid decrease until reaching the large
magnitude of compressive stress. The initial increase of stress indicates the stress from
untransformed metallic BC, and then a rapid decrease suggests the material is undergoing
phase transformation. The remaining portion of compressively decreasing out-of-plane
stress indicates a typical stress behaviour of fully transformed TGO layer at later thermal
cycles, the blue curve in Figure 42 shows the general trend of cooling stress of a TGO
layer that undergoes phase transformation from a metallic platinum-modified aluminum
layer (Pt-Al) to a predominant alpha-alumina layer [3,27]. Although it has a similar sharp
roughness with a high ratio of A/W, it is found that the significant creep behaviour of
BC reflected by the large creep prefactor shown in Equation (12) would rapidly relax the
stress close to the interface of BC/TGO layer, which explains that the stress singularity
calculated within the TGO close to the TC/TGO interface (Figure 41) would be hardly
observed within TGO close to the BC/TGO interface (Figure 42).
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5. Conclusions

In this paper, FE models that use temperature-process dependent model parameters
were developed, and the out-of-plane residual stresses are calculated for EB-PVD TBCs at
maximum cooling point under thermal cyclic conditions. The interfacial roughness was
characterized based on cross-sectional images from SEM, where the roughness amplitude
and width of the bottom side of imperfections are defined to describe the continuous saw-
like interfacial roughness profile. The FE models were implemented by using transversely
isotropic elastic properties, and a parametric study was conducted to determine the effect
of different roughness levels on stress distributions on different layers. Based on a different
way to comprehend the physical implication of tortuosity, a transitional roughness model
was developed to characterize the spacing between imperfections with a redefinition of
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the local width of triangular-approximated roughness. The transitional roughness model
provides a good approximation to simulate roughness between mid-stage to post-failure
stages. These developments permit the cracking position to be described as a function
of time with the evolution of interfacial roughness and shifting of identified positions
of maximum stress. The stress singularities can also be identified at extremely sharp
imperfections using either the transitional roughness model or generalized roughness
model. Specifically, by calculating stress at different positions within both the TC and TGO
layer, the influence of which on possible positions where the crack from different layers
coalescence is revealed.
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