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Abstract: This review paper is devoted to optics of inhomogeneous thin films exhibiting defects
consisting in transition layers, overlayers, thickness nonuniformity, boundary roughness and uniaxial
anisotropy. The theoretical approaches enabling the inclusion of these defects into formulae express-
ing the optical quantities of these inhomogeneous thin films are summarized. These approaches are
based on the recursive and matrix formalisms for the transition layers and overlayers, averaging of
the elements of the Mueller matrix using local thickness distribution or polynomial formulation for
the thickness nonuniformity, scalar diffraction theory and Rayleigh-Rice theory or their combination
for boundary roughness and Yeh matrix formalism for uniaxial anisotropy. The theoretical results are
illustrated using selected examples of the optical characterization of the inhomogeneous polymer-
like thin films exhibiting the combination of the transition layers and thickness nonuniformity and
inhomogeneous thin films of nonstoichiometric silicon nitride with the combination of boundary
roughness and uniaxial anisotropy. This characterization is realized by variable angle spectroscopic
ellipsometry and spectroscopic reflectometry. It is shown that using these optical techniques, the
complete optical characterization of the mentioned thin films can be performed. Thus, it is presented
that the values of all the parameters characterizing these films can be determined.

Keywords: optical characterization; ellipsometry; reflectometry inhomogeneous films

1. Introduction

Optics of thin films represents an important field in fundamental and applied studies.
Homogeneous and inhomogeneous thin films occur in both fields. Homogeneous thin
films exhibit an identical complex refractive index within the whole volumes of these
films. A complex refractive index of inhomogeneous thin films changes inside these films.
Most inhomogeneous thin films exhibit profiles of the complex refractive index along the
axis perpendicular to their parallel boundaries. These profiles are mostly represented by
continuous complex functions. Many studies of the optical properties of homogeneous
and inhomogeneous thin films have been performed so far. These studies are realized
using the optical characterization of the films mentioned. An enormous attention has
been devoted to developing methods of the optical characterization of homogeneous thin
films (see e.g., [1–19]). Less attention has been devoted to the optical characterization of
inhomogeneous thin films [20–25]. However, in the three last decades researchers dealt
with the optical characterization of inhomogeneous thin films more intensively. This is
caused by developments in microelectronics, semiconductor industry, solar energetics, etc.
Thin films with complex structures, which are frequently inhomogeneous from the optical
point of view, often occur in these branches. An example of such inhomogeneous thin
films consisting of complex materials are inhomogeneous thin films of nonstoichiometric
silicon nitride (SiNx) that are rich in silicon (see e.g., [26]). Moreover, in the optics industry
layered systems consisting of thin films with different refractive indices are sometimes
replaced by suitable inhomogeneous thin films. This is caused by better optical properties
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of these inhomogeneous thin films in comparison with the corresponding layered systems.
For example, the inhomogeneous thin films with continuous refractive index profiles exhibit
substantially lower light scattering caused by boundary roughness than the layered systems.
The example of such an inhomogeneous thin film replacing the layered systems are rugate
filters (see e.g., [27,28]). Therefore, new efficient methods for the optical characterization
of the inhomogeneous thin films had to be developed. These methods are presented, for
example, in papers [29–34].

Homogeneous and inhomogeneous thin films often exhibit various defects. These de-
fects must be taken into account at their optical characterization. A considerable effort has
been devoted to the optical characterization of homogeneous thin films exhibiting defects.
Methods of the optical characterization of the homogeneous thin films having random
roughness of their boundaries were presented in papers [35–48]. Thickness nonuniformity
is also a defect often exhibited by the homogeneous thin films. Several spectroellipsometric
and spectrophotometric methods enabling the complete optical characterization of the
homogeneous thin films with this defect were presented in the literature [49–57]. Thickness
nonuniformity can also be measured by means of imagining spectroscopic reflectometry
(ISR). Using this technique the maps of spectral dependencies of local reflectance at normal
incidence are measured along surfaces of samples (CCD cameras are detectors of imaging
reflectometers). These local reflectance maps allow for the determination of maps of lo-
cal thicknesses of the nonuniform homogeneous thin films. This technique is especially
efficient if the optical constants of the films characterized are known or determined in-
dependently. The methods of ISR usable for the optical characterization of nonuniform
homogeneous thin films are presented in papers [58–61]. Transition layers at the bound-
aries of thin films also represent one of the defects. These layers are usually very thin and,
sometimes, they are also inhomogeneous. Therefore, it can be difficult to include them in
the optical characterization of thin films. Methods enabling the optical characterization
of some homogeneous thin films containing transition layers are presented, for example,
in [62–64]. It should be noted that the successful optical characterization can be carried
out for the homogeneous thin films exhibiting a combination of defects. For example, the
complete optical characterization of epitaxial ZnSe thin films exhibiting a combination of a
thickness nonuniformity and random roughness of their upper boundaries was performed
in paper [65].

Sufficient attention has not been devoted to the optical characterization of inhomoge-
neous thin films exhibiting defects so far. This is caused by difficult theoretical approaches
needed for realizing the optical characterization of these films. The formulae for opti-
cal quantities of the inhomogeneous thin films with defects are more complicated than
those corresponding to homogeneous thin films exhibiting the same defects. This implies
that a numerical processing of experimental data is also more complicated for these in-
homogeneous thin films because it is necessary to search a larger number of parameters
describing them.

To our knowledge only three papers have been devoted to the complete optical char-
acterization of inhomogeneous thin films exhibiting defects so far. In paper [66] the optical
characterization of inhomogeneous thin films of SiNx and SiOxCyHz containing transition
layers at their lower boundaries is performed. In paper [67] inhomogeneous thin films of
SiNx with random roughness of the upper boundaries and unwanted uniaxial anisotropy
are characterized. In paper [68] the complete optical characterization of SiOxCyHz thin
films exhibiting transition layers at the lower boundaries and wedge–shaped thickness
nonuniformity is carried out.

In this paper a review of new theoretical and experimental results concerning optics
and the optical characterization of inhomogeneous thin films exhibiting defects consist-
ing in thickness nonuniformity, boundary roughness, transition layers, overlayers and
unwanted artificial uniaxial anisotropy achieved during the several last years will be
presented. This means that the formulae for optical quantities of inhomogeneous thin
films with the mentioned defects describing their optical properties will be presented. Two
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examples of the optical characterization of selected inhomogeneous thin films with defects
will be introduced as well. Our attention will be devoted to light reflected from these films.

The organization of our paper is as follows: The paper is divided into four basic
sections, i.e., Introduction, Theory, Examples of optical characterization and Conclusion.

The theory section is divided into two parts. The first part contains the description of
approximate theoretical approaches usable for the derivation of formulae for the optical
quantities of inhomogeneous thin films without defects. The second part of this section de-
scribes the theoretical approaches by means of which the formulae for the optical quantities
of the inhomogeneous thin films exhibiting defects are calculated. The following defects
are taken into account: transition layers, overlayers, thickness nonuniformity, random
roughness of boundaries and artificial uniaxial anisotropy.

Section Examples of optical characterization comprises the results obtained within
the optical characterization of the inhomogeneous polymer-like thin film exhibiting the
combination of two defects, i.e., transition layer at the lower boundary of this film and
complicated thickness nonuniformity. Moreover, this section contains the results of the
optical characterization of three inhomogeneous thin films of nonstoichiometric silicon
nitride with the combination of random roughness of the upper boundaries of these films
and artificial uniaxial anisotropy.

In the conclusion, the theoretical and experimental results presented in this review
paper are summarized and discussed.

2. Theory
2.1. Inhomogeneous thin Films without Defects

Exact solutions of an interaction of light with ideal homogeneous thin films, i.e.,
films without defects, are known only for several types of refractive index profiles. These
profiles are presented in [69,70]. Concrete solutions corresponding to them, i.e., formulae
for the optical quantities, are published in [69,71]. It should be noted that the use of these
exact solutions is rather limited in practice since most real inhomogeneous thin films
exhibit the profiles of the refractive index differing from those with the exact solutions.
Therefore, approximate methods are mostly utilized for calculating the optical quantities
of these inhomogeneous thin films. These approximate methods will be briefly described
in this section.

2.1.1. Wentzel–Kramers–Brillouin–Jeffreys (WKBJ) Method

This approximation can be used for the optical characterization of the inhomogeneous
thin films whose gradients of the refractive index profiles are very small. In this case,
the reflections occurring inside the inhomogeneous thin films can be neglected and the
optical quantities of these films depend only on the refractive indices at the upper and
lower boundaries and the optical path lengths. The reflection coefficients r0 are expressed
as follows [69,70]:

r0 =
rU + rLeixd

1 + rUrLeixd
, (1)

where

rU =
YA −YU

YA + YU
, rL =

YL −YS

YL + YS
, xd =

4π

λ

d∫
0

√
n2(z)− n2

A sin2 ϕAdz. (2)

Symbols d, nA, ϕA and λ represent the thickness, refractive index of the ambient, inci-
dence angle of light on the upper boundary and wavelength of incident light, respectively.
These quantities are always real. The other quantities are complex in general. Symbols r0,
rU and rL are the reflection coefficients of the film, upper boundary and lower boundary for
both the polarization q = p, s, where p and s denote the p-polarization and s-polarization,
respectively. In order to make the formulae shorter, the indices q, p and s will be omitted
wherever possible. They will be used only in formulae where their omission is not possible,
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or if their omission could cause confusion. Symbol n(z) denotes a function describing
refractive index profile of the inhomogeneous thin film (the coordinate z corresponds to the
axis perpendicular to the parallel boundaries or the parallel mean planes of these bound-
aries). Symbols YA, YU, YL and YS represent the optical admittances of the ambient, at the
upper boundary, at the lower boundary and of the substrate for both the polarizations,
respectively. The following equations are valid for the admittances corresponding to the
p-polarization and s-polarization:

Yi,p =
ni

cos ϕi
, Yi,s = ni cos ϕi, (3)

where index i = A, U, L, S. Symbols ϕU, ϕL and ϕS denote the refraction angles at the upper
boundary, lower boundary and substrate, respectively. These angles together with the
angle of incidence fulfill the Snell’s law. The reflection coefficients r0 enable us to calculate
the reflectance and ellipsometric quantities of the films.

2.1.2. Approximate Method Based on Using Multilayer Systems

This approximation can be used to calculate the optical quantities of the inhomoge-
neous thin films having larger gradients of the refractive index profiles, i.e., when the
WKBJ approximation is not usable. This method is based on replacing the inhomogeneous
thin films by multilayer systems consisting of a large number of homogeneous layers
exhibiting very small thicknesses and very small differences in refractive indices of the
adjacent layers. The reflection coefficients r of such the inhomogeneous thin films are given
by the following recursive formulae (see e.g., [72,73]):

r =
r1 + r2eix1

1 + r1r2eix1
, r2 =

r2 + r3eix2

1 + r2r3eix2
, · · · rN =

rN + rN+1eixN

1 + r2rN+1eixN
, (4)

where

r1 =
YA −Y1

YA + Y1
, r2 =

Y1 −Y2

Y1 + Y2
, · · · rN =

YN−1 −YN
YN−1 + YN

, rN+1 =
YN −YS

YN + YS
, (5)

xj =
4πdj

λ

√
n2

j − n2
A sin2 ϕA,

where symbols dj, nj and Yj represent thickness, refractive index and admittances of the
individual layers, respectively (j = 1, 2, . . . , N). Symbol r denotes the effective reflection
coefficients corresponding to the system consisting of (N − j) layers on top of the sub-
strate [72–74]. It should be noted that the reflection coefficients of this multilayer system
can also be efficiently calculated using the matrix formalism (see e.g., [73]). Note that in
paper [33] an improvement of the presented method is carried out. The exact results for the
inhomogeneous thin film correspond to the limit in which the number N of approximating
layers goes to infinity, i.e., thicknesses of the individual layers go to zero. The improvement
presented in [33] consists in using the Richardson extrapolation to increase the convergence
to the exact result. If the Richardson extrapolation is utilized the error falls approximately
as N− log2 N . However, it is necessary to point out that the faster convergence is achieved
only if the number of the approximating layers is very large (for details see [33]).

2.1.3. Approximate Method Based on Modification of Recursive Formulae of
Multilayer Systems

In paper [75], the efficient approximate method for expressing the formulae describing
the optical quantities of the inhomogeneous thin films is presented. This method is based
on the modification of the recursive formalism for the reflection coefficients of multilayer
systems. In the derivation of the formulae for the reflection coefficients, the four-layer
system is utilized. This system is subdivided in more and more sublayers. Then the limit
for infinite number of the sublayers enables one to write the formulae for the reflection
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coefficients of the inhomogeneous thin films with any profiles of the refractive indices.
In the derived formulae, the multiple integrals occur. The multiplicity of the integrals
correspond to numbers of internal reflections inside the inhomogeneous thin film. If the
single reflections inside the film are sufficient then the single integrals are taken into account.
In this case the following formulae for the reflection coefficients of the inhomogeneous thin
films is valid:

r =
rU + B1 + rUrLB2eixd + rLeixd

1 + rUB1 + rLB2eixd + rUrLeixd
, (6)

where

B1 =

d∫
0

f (z1)eix(z1)dz1, B2 =

d∫
0

f (z1)e−ix(z1)dz1, (7)

x(z1) =
4π

λ

z1∫
0

√
n2(z)− n2

A sin2 ϕAdz, f (z1) =
1

2Y(z1)

dY(z1)

dz1
.

In paper [75], the formulae for the reflection coefficients of the film corresponding to
double and triple integrals are introduced. The formulae presented in [75] can be used to
calculate the reflectance and ellipsometric parameters of the inhomogeneous thin films with
larger gradients of refractive indices in a reliable way. Moreover, the matrix formalism for
expressing the reflection coefficients of the considered films are also presented in this paper.

2.1.4. Approximate Method Based on Multiple-Beam Interference Model

Within this method the derivation of the formula for the reflection coefficients of the
inhomogeneous thin films is based on calculations of corrections to the WKBJ formula
corresponding to multiple reflections inside these films. The corrections contain multiple
integrals similar to those presented in [75]. A multiplicity of the integrals again corresponds
to the number of the internal reflection inside the films. After employing the mathematical
approach presented in paper [76], one obtains the following formula for the reflection
coefficients of the films considered:

r = r0 +
M

∑
n=1

∆rn, (8)

where

∆rn =
3n−1

∑
l=1

(
I(l)n + I(l)n

)
. (9)

Symbols ∆rn, I(l)n , I(l)n and M denote the total correction of the n-th order, partial
corrections of the n-th order and maximum order, respectively. The partial corrections of
the first order are expressed as follows:

I(1)1 = C(1)
1 j(1)1 , I(1)1 = C(1)

1 j(1)1 , (10)

where

C(1)
1 =

τeixd

(1− $)2 , j(1)1 =

d∫
0

f (z1)e−ix(z1)dz1, (11)

C(1)
1 = − τrLZ

(1− $)2 , j(1)1 =

d∫
0

f (z1)eix(z1)dz1,

Z = rLeixd , $ = −rUrLeixd , τ = tUt′U.
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The transmission coefficients tU and t′U are given as

tU =
2YA

YA + YU
, t′U =

2YU

YA + YU
, (12)

for the s polarization and

tU =
cos ϕA

cos ϕU

2YA

YA + YU
, t′U =

cos ϕU

cos ϕA

2YU

YA + YU
, (13)

for the p polarization.
The partial corrections of the n-th order are given as

I(l)n = C(l)
n j(l)n , I(l)n = C(l)

n j(l)n , (14)

where the quantities j(l)n and j(l)n are given by n-dimensional integrals and the quantities

C(l)
n and C(l)

n represent factors given by some commbination of the Fresnel coefficients
at the boundaries and the term eixd . The concrete form of the partial corrections can be
determined using the recursive procedure derived in [76]. Within this procedure, each
partial correction I(l)n of n-th order gives three partial corrections I(3l−2)

n+1 , I(3l−1)
n+1 , I(3l)

n+1 of
(n + 1)-th order. It is necessary to distinguish two cases. The first case corresponds to the
partial correction of the n-th order given by the integral j(l)n in the following form

j(l)n =

d∫
0

· · ·
β∫

α

[
n

∏
v=1

f (zv)

]
e−ix(z1) · · · e−ix(zn)dzn · · ·dz1, (15)

where α = 0, β = d or α = 0, β = zn−1. The important criterion is that the last term in
the integral is e−ix(zn), which distinguishes it from the other case with eix(zn). The partial
corrections of the (n + 1)-th order are then defined by the following formulae

C(3l−2)
n+1 = − rUeixd

1− $
C(l)

n , (16)

j(3l−2)
n+1 =

d∫
0

· · ·
β∫

α

d∫
0

[
n+1

∏
v=1

f (zv)

]
e−ix(z1) · · · e−ix(zn)e−ix(zn+1)dzn+1 · · ·dz1,

C(3l−1)
n+1 = −rLC(l)

n ,

j(3l−1)
n+1 =

d∫
0

· · ·
β∫

α

d∫
zn

[
n+1

∏
v=1

f (zv)

]
e−ix(z1) · · · e−ix(zn)eix(zn+1)dzn+1 · · ·dz1,

C(3l)
n+1 = − rL$

1− $
C(l)

n ,

j(3l)
n+1 =

d∫
0

· · ·
β∫

α

d∫
0

[
n+1

∏
v=1

f (zv)

]
e−ix(z1) · · · e−ix(zn)eix(zn+1)dzn+1 · · ·dz1,

The second case corresponds to the integral j(l)n given in the following form

j(l)n =

d∫
0

· · ·
β∫

α

[
n

∏
v=1

f (zv)

]
e−ix(z1) · · · eix(zn)dzn · · ·dz1, (17)
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where α = 0, β = d or α = zn−1, β = d. The partial corrections of the (n + 1)-th order are
defined by the following formulae

C(3l−2)
n+1 =

1
rL

C(l)
n , (18)

j(3l−2)
n+1 =

d∫
0

· · ·
β∫

α

zn∫
0

[
n+1

∏
v=1

f (zv)

]
e−ix(z1) · · · eix(zn)e−ix(zn+1)dzn+1 · · ·dz1,

C(3l−1)
n+1 = − rUeixd

1− $
C(l)

n ,

j(3l−1)
n+1 =

d∫
0

· · ·
β∫

α

d∫
0

[
n+1

∏
v=1

f (zv)

]
e−ix(z1) · · · eix(zn)e−ix(zn+1)dzn+1 · · ·dz1,

C(3l)
n+1 = − rL

1− $
C(l)

n ,

j(3l)
n+1 =

d∫
0

· · ·
β∫

α

d∫
0

[
n+1

∏
v=1

f (zv)

]
e−ix(z1) · · · eix(zn)eix(zn+1)dzn+1 · · ·dz1,

The foregoing equations represent recursive formulae enabling to derive the formulae
for the partial corrections of an arbitrary order. The same recursive formulae are valid

for partial corrections I(l)n . However, in these recursive formulae the exponential factor
e−ix(z1) must be systematically replaced by the exponential factor eix(z1) . Moreover, the

coefficients C(l)
n must be generated from the coefficient C(1)

1 . The integrals occurring in the
foregoing equations can be calculated using the numerical method based on the Chebysev
interpolation in an efficient way [76]. In principle this approach can be used to calculate the
optical quantities of the inhomogeneous thin films with arbitrary refractive index profiles.

Note that the recursive formulae for the partial corrections written in (15) and (17)
are somewhat formally different from those presented in paper [76] because they use the
opposite orientation of the axis z.

2.2. Inhomogeneous Thin Films with Defects

In this section, the methods for including the influence of the individual defects men-
tioned above on the reflection coefficients of the inhomogeneous thin films are formulated.

2.2.1. Transition Layers and Overlayers

Transition layers mostly occur at the lower boundaries of the inhomogeneous thin
films, i.e., at boundaries between the substrates and these films. If it is assumed that the
transition layers are homogeneous, then the reflection coefficients of the lower bound-
aries rL occurring in the formulae presented above (see e.g., Equation (10)) are expressed
as follows:

rL =
rL,T + rT,SeixT

1 + rL,TrT,SeixT
, (19)

where

rL,T =
YL −YT

YL + YT
, rT,S =

YT −YS

YT + YS
, xT =

4π

λ
nTdT cos ϕT. (20)

Symbols YT, dT and nT denote the admittance, thickness and refractive index of the
transition layer, respectively.
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The reflection coefficients r of the inhomogeneous thin films having the overlayers
obey the following equation:

r =
rA,V + reixV

1 + rA,VreixV
, (21)

where

rA,V =
YA −YV

YA + YV
, xV =

4π

λ
nVdV cos ϕV. (22)

Symbols YV, dV and nV represent the admittance, thickness and refractive index of the
overlayer, respectively. Symbol r denotes the reflection coefficient of the inhomogeneous
thin film calculated by Equation (8) taking into account that nA = nV.

2.2.2. Thickness Nonuniformity

The thickness nonuniformity represents defect frequently occurring in practice. The
upper boundaries of thin films exhibiting nonuniformity in thickness are formed by sur-
faces differing from the planes parallel with the planes of the lower boundaries. Thus, local
thicknesses d(x, y) are different along the lower boundary. It is possible to distinguish two
basic cases of this nonuniformity in principle. First, the upper boundaries are represented
by simple surfaces from the geometrical point of view. A wedge-shaped thickness nonuni-
formity is the example of such the nonuniformity. Second, the thickness nonuniformity has
a complicated form, i.e., the surfaces of the upper boundaries differ from the wedge-shaped
nonuniformity or similar simple nonuniformities.

If the wedge-shaped thickness nonuniformity and the circular cross-section of the
ellipsometer beam is considered, the following approach based on the local thickness
distribution density $(d) can be utilized. Using the reflection coefficients r given by
Equation (8) one can calculate the reflectance of the inhomogeneous nonuniform thin films
for the p-polarization Rp and s-polarization Rs at an oblique incidence. However, the
constant thickness d must be replaced by the function d(x, y) in the upper bounds of the
integrals occurring in Section 2.1.4. For example, it is necessary to write

xd =
4π

λ

d(x,y)∫
0

√
n2(z)− n2

A sin2 ϕAdz, j(1)1 =
∫ d(x,y)

0
f (z1)e−ix(z1)dz1, (23)

etc. Function d(x, y) describes the local thicknesses along illuminated spot (x and y are
coordinates in the plane of the lower boundary). Measured reflectances Rp and Rs for the
p-polarization and s-polarization, respectively, correspond to the mean values of these
quantities, i.e., 〈Rp〉 and 〈Rs〉. These mean values are given as follows:

〈Rq〉 =
∫
|rq(d)|2$(d)dd, (24)

where d ≡ d(x, y), symbol rq(d) denotes the reflection coefficients of the inhomogeneous
films given by Equation (8) containing local thicknesses d(x, y) in the upper bounds of the
integrals and $(d) is the distribution function of the elliptic illuminated spot given in this
way (see e.g., [52,70]:

$(d) =
1

2πσ2(ϕA)

[
4σ2(ϕA)− (d− d)2

]1/2
(25)

where

σ2(ϕA) = σ2
0

(
cos2 α

cos2 ϕA
+ sin2 α

)
, (26)

where d is the mean thickness of the film, σ0 denotes the rms value of the local thicknesses
for normal incidence and α represents the angle between the thickness gradient direction
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and the plane of incidence. Note that this distribution of the local thicknesses is frequently
called the Wigner semicircle distribution in the literature.

The associated ellipsometric parameters In, Is and Ic measured using phase modulated
ellipsometry are the elements of the normalized Mueller matrix (see e.g., [70,77–82]).
For reflected light these ellipsometric parameters are expressed by the following matrix:

M̂ = R0


1 −In 0 0
−In 1 0 0

0 0 Ic Is
0 0 −Is Ic

 (27)

where R0 = 1
2 (〈Rp〉+ 〈Rs〉) is the total reflectance of the samples. The degree of polariza-

tion P describing the depolarization of light reflected from the samples is given using these
ellipsometric parameters as

P =
√

I2
s + I2

c + I2
n. (28)

The measured associated ellipsometric parameters of the thin films are expressed by means
of the reflection coefficients of these films as follows (see e.g., [68,77]):

Is = i
〈rpr∗s 〉 − 〈r∗prs〉
〈|rs|2〉+ 〈|rp|2〉

, Ic = −
〈rpr∗s 〉+ 〈r∗prs〉
〈|rs|2〉+ 〈|rp|2〉

, In =
〈|rs|2〉 − 〈|rp|2〉
〈|rs|2〉+ 〈|rp|2〉

, (29)

where the angle brackets again denote the mean values of the quantities, i.e.,

〈rpr∗s 〉 =
∫

rp(d)r∗s (d)$(d)dd, 〈r∗prs〉 =
∫

r∗p(d)rs(d)$(d)dd, (30)

〈|rs|2〉 =
∫
|rs(d)|2$(d)dd, 〈|rp|2〉 =

∫
|rp(d)|2$(d)dd.

The form of this distribution enables the efficient evaluation of the integrals in the
foregoing equations by means of the numerical method of the Gaussian quadrature [54,83].
It should be noted that this wedge-shaped nonuniformity in thickness occurs often in
practice. If the thickness nonuniformity is complicated, i.e., this nonuniformity differs from
the wedge-shaped nonuniformity (see Figure 1), the other mathematical approach has to
be employed. The Mueller matrix of the thin films having the thickness nonuniformity M̂
is expressed in this way:

M̂ =
1
S

∫∫
S

M̂(d(x, y))dS, (31)

where the integration is performed over the light spot on the sample, S denotes the area of
this spot and M̂(d(x, y)) is the Mueller matrix corresponding to the point on the sample
with the local thickness d(x, y). Note that the foregoing equation is true if the illumination
by an incident light beam is constant over the entire light spot. The local thickness values
can be expressed in the following way:

d(x, y) = d0 + dx
x
R
+ dy

y
R
+ dxx

x2

R2 + dxy
xy
R2 + dyy

y2

R2 + · · · , (32)

where d0, dx, dy, dxx, dxy, dyy, etc. are parameters of the model of thickness nonuniformity.
The number of terms in the foregoing polynomial depends on the forms of the surfaces of
the upper boundaries of the films. The normalization owing to a beam radius R of incident
light is utilized because the value of this radius cannot be determined using ellipsometric
measurements. The associated ellipsometric parameters are then calculated using the
following mean values:



Coatings 2021, 11, 22 10 of 31

〈rpr∗s 〉 =
1
S

∫∫
S

rp(d(x, y))r∗s (d(x, y))dS, 〈r∗prs〉 =
1
S

∫∫
S

r∗p(d(x, y))rs(d(x, y))dS, (33)

〈|rs|2〉 =
1
S

∫∫
S

|rs(d(x, y))|2dS, 〈|rp|2〉 =
1
S

∫∫
S

|rp(d(x, y))|2dS.

An efficient method for calculating these mean values using the Gaussian quadrature
and the Golub–Welsch algorithm is described in [54].

The refractive indices inside the inhomogeneous thin films with thickness nonunifor-
mity have miscellaneous courses, i.e., they are represented by miscellaneous continuous
functions of coordinate z. In practice one can distinguish two basic groups of the profiles.
The first group consists of the profile models whose complex refractive index values are
the same along the upper boundaries, i.e., nU are constant over the entire illuminated spots
on samples. In other words, the optical constants at the upper boundaries do not depend
on local thicknesses. For instance, the profile described by means of the following equation
for the parameters pα(z) of the dispersion model can serve as the example of these profiles:

pα(z) = pL
α + (pU

α − pL
α)

(
z

d(x, y)

)s
, (34)

where symbols pU
α and pL

α denote the corresponding dispersion parameters at the upper and
lower boundaries. Index α specifies individual dispersion parameters. Symbol s denotes
the model parameter. The latter group is formed by the models for which the refractive
index values are different along the upper boundaries. For instance, the refractive index
profile described by the dispersion parameters obeying the following equation represents
such example:

pα(z) = pL
α + (pU

α − pL
α)

(
z
d0

)s
, (35)

In this case the optical constants at the upper boundaries depend on the local thicknesses.

z

nS

nL

n(z)

nU

nA

d(x, y)

ambient

non-uniform
inhomogeneous thin film

substrate β = 0◦ β = 45◦ β = 90◦ β = 135◦

Figure 1. Schematic diagram of the inhomogeneous thin film nonuniform in thickness (left).
Schematic diagram of the positions of the samples during ellipsometric measurements (right),
the dashed line represents the intersection of the plane of incidence with the sample plane.

2.2.3. Random Roughness of Film Boundaries

Random roughness of boundaries of the homogeneous and inhomogeneous thin films
is also a frequent defect. A schematic diagram of an inhomogeneous thin film with rough
boundaries is shown in Figure 2.

In the literature several models for thin films with randomly rough boundaries have
been presented so far. A mathematical description of these models is mainly dependent on
the distribution of spatial frequencies corresponding to this random roughness.
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d

Ambient

Inhomogeneous thin film

SubstratenS

nA

nL

nU

n(z)

d(x, y) = d+ η1(x, y) − η2(x, y)

z

0

η1(x, y)

η2(x, y)

Mean plane

Mean plane

Figure 2. Schematic diagram of the inhomogeneous thin film with rough boundaries.

Random roughness exhibiting low spatial frequencies is called locally smooth rough-
ness because the corresponding surfaces can be approximated by tangent planes in all
the points of these surfaces. The scalar diffraction theory (SDT) was used to describe an
interaction of light with homogeneous thin films exhibiting this random roughness (for
details see e.g., [35–40,84]). In this paper it is assumed that random roughness is generated
by a stationary stochastic process. Thus, it is assumed that random roughness is homoge-
neous and isotropic. Below we deal with coherently reflected light from inhomogeneous
thin films. This coherently reflected light corresponds to the specular direction; the scat-
tered light will not be discussed in this work. Moreover, it will be assumed that slopes of
roughness are sufficiently small so that they can be neglected within the SDT. The formula
for the reflection coefficients of the inhomogeneous thin films r expressed by Equation (8)
can then be utilized in application of the SDT. Of course, the upper and lower bounds in
the integrals occurring in Equation (8) must be replaced by random functions describing
roughness of the upper and lower boundaries. For instance, the following equations must
be written

xd =
4π

λ

d+η1∫
η2

√
n2(z)− n2

A sin2 ϕAdz, j(1)1 =

d+η1∫
η2

f (z1)e−ix(z1)dz1, (36)

etc. where d, η1(x, y) and η2(x, y) are the mean thickness, random function describing the
upper boundary and random function describing the lower boundary, respectively. Then
the mean values of the reflection coefficients of the rough inhomogeneous thin films 〈r〉 are
given within the SDT as

rSDT = 〈r〉 =
∞∫
−∞

∞∫
−∞

r(η1, η2)w(η1, η2)dη1dη2, (37)

where η1 ≡ η1(x, y), η2 ≡ η2(x, y) and w(η1, η2) is the two-dimensional distribution of
probability density of the random variables η1 and η2. Symbol r(η1, η2) denotes the local
reflection coefficients given by Equation (8) having the integrals whose bounds contain the
variables η1 and η2 (see Equation (36)). An example of the two-dimensional distribution
function is the Gaussian (normal) distribution

w(η1, η2) =
1

2πσ1σ2

√
1− C2

1,2

exp

[
− 1

2(1− C2
1,2)

(
η2

1
σ2

1
− 2C1,2

η1η2

σ1σ2
+

η2
2

σ2
2

)]
, (38)

where C1,2 is a cross-correlation coefficient between roughness of the upper and lower
boundaries and σ1 and σ2 are the rms values of η1 and η2. In the foregoing equation it
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is assumed that the mean values of the random variables η1 and η2 are equal to zero.
The measured reflectances and ellipsometric parameters are expressed as follows:

Rq = 〈rq〉〈r∗q 〉, Is = i
〈rp〉〈r∗s 〉 − 〈r∗p〉〈rs〉
〈rs〉〈r∗s 〉+ 〈r∗p〉〈rp〉

, (39)

Ic = −
〈rp〉〈r∗s 〉+ 〈r∗p〉〈rs〉
〈rs〉〈r∗s 〉+ 〈r∗p〉〈rp〉

, In =
〈rs〉〈r∗s 〉 − 〈r∗p〉〈rp〉
〈rs〉〈r∗s 〉+ 〈r∗p〉〈rp〉

.

If boundary roughness exhibits high and moderate spatial frequencies, then the reflec-
tion coefficients of the inhomogeneous thin films can be calculated using the Rayleigh-Rice
theory (RRT). The second-order RRT perturbation theory was applied to the homoge-
neous thin films and their systems in many papers (see e.g., [70,84–89]). The RRT can
only be utilized if roughness has relatively small heights and slopes. Strictly speaking,
these inequalities must be fulfilled: σ � λ and tan β0 . 0.1 (tan β0 is the rms value of
the slopes of roughness). The reflection coefficients rRRT of the inhomogeneous thin films
exhibiting roughness of both the boundaries can be calculated using the approximate
method described in [90]. In this approach, the reflection coefficients are expressed as
rRRT = r(σ1, σ2, T1, T2), where r(σ1, σ2, T1, T2) is given by Formula (8) with the change
consisting in expressing reflection coefficients of the upper and lower boundaries by means
of the following equation:

rw = r0,w + ∆rw, (40)

where w =U and L. Symbols σ1, T1 and σ2, T2 denote the rms values of the heights and
autocorrelation lengths of the upper and lower boundaries, respectively, symbol r0,w
represents the reflection coefficients of the smooth upper and lower boundaries and symbol
∆rw denotes the corrections of the second order expressed in this way:

∆rw =

∞∫
−∞

∞∫
−∞

fw(Kx, Ky)Ww(K′x, Ky)dKxdKy, (41)

where Kx and Ky denote spatial frequencies of random roughness, fw(Kx, Ky) represents
complicated functions of Kx, Ky, λ, ϕA and optical constants of media forming the in-
homogeneous thin films. Symbol Ww(K′x, Ky) denotes the power spectral densities func-
tions (PSDF) of random roughness of the upper and lower boundaries. It holds that
K′x = Kx − (2π/λ)nA sin ϕA. The following Gaussian PSDF is often utilized in optical
studies of randomly rough surfaces and thin films:

W(K′x, Ky) =
σ2T2

4π
e−

T2
4 (K′2x +K2

y). (42)

If the RRT is employed, the refractive index must be constant within the range of
roughness. Furthermore, it necessary to point out that a correlation between roughness of
the upper and lower boundaries is not taken into account. Therefore, the approximation
expressed by Formulas (40) and (41) is usable if the films are sufficiently thick (thickness
values must be in the order of hundreds of nanometers and more).

A very efficient method for calculating the optical quantities of multilayer systems
comprising homogeneous thin films with randomly rough boundaries using the exact
approach of the second-order perturbation RRT, i.e., using the approach taking into account
the correlation among the rough boundaries, was published in [89]. This approach can
easily be modified to derive the formulae for the optical quantities of the rough inhomoge-
neous thin films using the approximation based on the multilayer systems.

In practice we can encounter the rough thin films with roughness exhibiting wide
intervals of the spatial frequencies. Then it is necessary to take into account the low, mod-
erate and high spatial frequencies in expressing the reflection coefficients of thin films.
In this case one can utilize the approximation based on the formulae for the reflection
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coefficients 〈r〉 (see Equation (37)). In this equation the reflection coefficients of the upper
and lower boundaries must be expressed by means of Formula (40). Thus, the reflection
coefficients rSDT+RRT of the inhomogeneous thin films exhibiting this roughness are based
on the heuristic combination of the SDT and RRT. Of course, the mathematical calculations
of such the reflection coefficients using numerical procedures are very difficult. The same
approximation can be used to calculate of the reflection coefficients of the inhomogeneous
thin films with composite random roughness (composite roughness contains, for example,
low and high spatial frequencies). The coefficients rRRT and rSDT+RRT can be employed for
calculating the optical quantities in the same way as coefficients rSDT (see Equation (39)).
Note that this combination of the SDT and RRT was utilized for calculating the ellipso-
metric parameters and reflectance of randomly rough surfaces of Si and GaAs covered by
overlayers (see [46,91]).

Some inhomogeneous thin films exhibit constant complex refractive indices within
regions that are more extended than regions occupied by roughness of the upper and
lower boundaries. This means that the homogeneous thin films adjacent to these rough
boundaries must be considered. The smooth inhomogeneous thin films occurring between
these two rough homogeneous films are simultaneously taken into account. It is assumed
that roughness contains the low spatial frequencies, i.e,. this roughness corresponds to the
SDT. It is again assumed that slopes of this roughness are negligible. The inhomogeneous
thin films with smooth boundaries occurring between the two rough homogeneous films
can be represented by effective boundaries whose reflection and transition coefficients
are identical with those presented for the inhomogeneous thin films in [76]. The formula
for the reflection coefficients of this model of the inhomogeneous film can be derived
using the formula for the double-layer system containing two homogeneous thin films and
three randomly rough boundaries presented in [92]. If the three-dimensional Gaussian
distribution of the heights of roughness is utilized then the following formula for the
reflection coefficients r3,2 of this system is obtained:

r3,2 = 〈r〉0 + 〈r〉1 + 〈r〉2, (43)

where

〈r〉0 = r1e−
1
2 E2

0S1,1 , (44)

〈r〉1 =
∞

∑
p=1

ei2px1 Q1(p)H1(p),

〈r〉2 =
∞

∑
p=2

p−1

∑
m1=1

ei2m1x1+2i(p−m1)x2 Q2(m1, p−m1)H2(m1, p−m1),

where

Q1(p) = t1t′1(r
′
1)

p−1rp
2 , (45)

H1(p) = e−
1
2 D2

1S1,1− 1
2 D2

2S2,2−D1D2S1,2 ,

Q2(m1, m2) = t1t′1(r
′
1)

m1−1rm2
3

min(m1,m2)

∑
ν2=1

(
m1

ν2

)(
m2 − 1
ν2 − 1

)
rm1−ν2

2 (t2t′2)
ν2(r′2)

(m2−ν2),

H2(m1, m2) = e−
1
2 D2

1S1,1− 1
2 D2

2S2,2− 1
2 D2

3S3,3−D1D2S1,2−D1D3S1,3−D2D3S2,3 ,

where m1 and m2 express how many times light passes through the upper and lower thin
films, respectively, p = m1 + m2, xi =

4π
λ nidi cos ϕi (i = 1, 2), n1, d1, ϕ1 and n2, d2, ϕ2 are

the refractive index, mean thicknesses and refraction angle of the upper and lower thin
film, respectively, Dj = Ej − Ej−1, Ej =

4π
λ mjnj cos ϕj, (j = 0, 1, 2), m0 = 1 and mj = 0

for j > g (g = 0 for 〈r〉0, g = 1 for 〈r〉1, and g = 2 for 〈r〉2). Thus, E0 = 4π
λ nA cos ϕA,

D1 = E1 − E0, D2 = E2 − E1, D3 = −E2, E1 = 4π
λ m1n1 cos ϕ1, E2 = 4π

λ m2n2 cos ϕ2,
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Si,j = σiσjCi,j, (i = 1, 2, 3), Ci,j denotes the correlation coefficient among the boundaries,
Ci,i = 1. Note that the boundaries are numbered from the ambient to substrate. Symbols
r1, r′1 and t1, t′1 denote the reflection and transmission coefficients of the first (uppermost)
boundary, r3 are the reflection coefficients of the third (lower) boundary, r2, r′2 and t2, t′2 are
the reflection and transmission coefficients of the second (medium) boundary. Symbols
without primes correspond to light falling onto the system from the ambient-side while
symbols with primes correspond to light falling onto system from the substrate-side.

The formula for the reflection coefficients rI of the model consisting of the smooth
inhomogeneous film surrounded by two rough homogeneous thin films is obtained from
Equation for r3,2 if it is put: σ2 = 0 (see Equation (43)). Moreover, the Fresnel coefficients
r2, r′2, t2 and t′2 must be replaced by the corresponding coefficients for the inhomogeneous
films given by Equation (8)

Formula (43) was derived using the general formula for the reflection coefficients of the
multilayer system containing homogeneous thin films with randomly rough boundaries.
This derivation is based on multiple beam interference model different from that utilized
for expressing inhomogeneity (for details see [93]).

The formula for the reflection coefficients of the inhomogeneous thin films with
randomly rough boundaries is obtained from the formula for rI by using x1 = x2 = 0,
r1 = rU and r3 = rL. Of course, it must be fulfilled that the refractive indices and extinction
coefficients are constant within the range of random roughness of both the boundaries.

If the inhomogeneous thin films exhibit only one rough boundary, the formula for the
reflection coefficients rSDT of this film is easily derived using equation rSDT = 〈r〉0 + 〈r〉1
in which it is taken into account that r1 = rU and r2 = r̃, where r̃ is given by (8). However,
in the Equation (8) it must be set nA = nU. Thus, one can write:

rSDT = rUχ(vz) + tUt′U
∞

∑
m=0

rm
U r̃(m+1)χ(Bm), (46)

where vz = (4π/λ)nA cos ϕA, Bm = vz + (4π/λ)(m + 1)nU cos ϕU and χ(µ) =
exp(− 1

2 σ2
1 µ2). It holds, that µ = vz or Bm. The similar formula can be derived for the

inhomogeneous thin films with the rough lower boundaries and smooth upper boundaries.
An influence of slopes of roughness on the optical quantities of the inhomogeneous

thin films has not been studied in the SDT so far. This is probably given by consider-
able difficulties connected with a theoretical solution of this problem. Fortunately, the
most inhomogeneous thin films exhibiting random roughness with negligible slopes are
encountered in the optical characterization of thin films in practice.

2.2.4. Uniaxial Anisotropy

An internal stress often occurs inside many homogeneous and inhomogeneous thin
films. This can be caused by various reasons. For example, it is caused by misfits between
crystallographic structures of these films and their substrates. The stress can generate
artificial optical anisotropy inside the films even when materials forming these films are
optically isotropic. This uniaxial anisotropy with the optical axis perpendicular to the
parallel boundaries is frequently exhibited by the thin films. In this paper we will therefore
deal with the influence of this kind of optical anisotropy on the optical quantities of the
inhomogeneous thin films in reflected light. The inhomogeneous thin films with this defect
are described by the complex dielectric tensor, i.e.,

ε(z) =

εo(z) 0 0
0 εo(z) 0
0 0 εe(z)

 (47)

where εo(z) and εe(z) are the ordinary and extraordinary complex dielectric func-
tions, respectively. The complex refractive indices no(z) and ne(z) are expressed as
no(z) = (εo(z))1/2 and ne(z) = (εe(z))1/2.
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For including this defect into formulae for the reflection coefficients of the inho-
mogeneous thin films the approximation based on the multilayer systems is used (see
Section 2.1.2). Thus, the inhomogeneous film is divided by N boundaries into N + 1 layers
in the way depicted in Figure 3. The thickness values of the inner layers are H = d/N,
where d is the total thickness of the film. Note that the first and the last layer have half
the thickness of the inner layers. It should be emphasized that the orientation and origin
of the z axis used in this section is different from that chosen is the previous sections.
The ordinary and extraordinary dielectric functions of the individual layers are as follows:

εo,k = εo(zk), εe,k = εe(zk), zk = k
d
N

, k = 0, 1, 2, . . . , N. (48)

z

d
2N

ε̂(z0)

z0

d
N

ε̂(z1)

z1

d
N

ε̂(z2)

z2

d
N

ε̂(z3)

z3

d
N

ε̂(zN−2)

zN−2

d
N

ε̂(zN−1)

zN−1

d
2N

ε̂(zN )

zN

ambient substrate

ε̂A ε̂S

Figure 3. Schematic diagram of the system of thin homogeneous layers approximating the inhomo-
geneous layer.

The reflection coefficients of the multilayer systems can be calculated using the Yeh
matrix formalism [94]. It should be noted that other matrix formalisms can be used to solve
this special type of anisotropy considered here [73,77]. If the plane of incidence is identical
with the coordinate plane (x, z) then the y-components of the wavevectors vanish and the
x-components are given as kx = k0 sin ϕA, where k0 = 2πnA/λ. The z-components of the
wavevectors of the ordinary and extraordinary waves inside the k-th medium are equal to
±koz,k and ±kez,k expressed as follows (see [67,77,94]):

koz,k = k0

√
εo,k − n2

A sin2 ϕA, kez,k = k0

√
εo,k

εe,k
(εe,k − n2

A sin2 ϕA), (49)

In the Yeh matrix formalism the multilayer system is described using the boundary
and phase matrices. The boundary matrices express reflection and refraction of the waves
at the boundaries between adjacent media. The phase matrices express changes of wave
phases at propagating these waves through layers. The boundary matrix describing the
boundary between the (k− 1)-th and k-th media is given as

B̂k−1,k =


B(1)

k−1,k B(2)
k−1,k 0 0

B(2)
k−1,k B(1)

k−1,k1 0 0

0 0 B(3)
k−1,k B(4)

k−1,k

0 0 B(4)
k−1,k B(3)

k−1,k

 (50)

where the elements of this matrix are given in this way:

B(1)
k−1,k =

1
2

αk
αk−1

(
Ye,k

Ye,k−1
+ 1
)

, B(2)
k−1,k =

1
2

αk
αk−1

(
Ye,k

Ye,k−1
− 1
)

, (51)

B(3)
k−1,k =

1
2

(
Yo,k

Yo,k−1
+ 1
)

, B(4)
k−1,k =

1
2

(
Yo,k

Yo,k−1
− 1
)

.

The admittances for ordinary and extraordinary waves and quantity α̂k are expressed as
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Yo,k =
ko,z,k

k0
, Ye,k =

k0εo,k

ke,z,k
, αk =

ke,z,k√
k2

0ε2
o,k

εe,k
−
(

εo,k
εe,k
− 1
)

k2
e,z,k

(52)

The propagation of the waves inside the layer with thickness H corresponding to the
k-th medium is described by the phase matrix as

T̂k(H) =


e−iHke,z,k 0 0 0

0 eiHke,z,k 0 0
0 0 e−iHko,z,k 0
0 0 0 eiHko,z,k

 (53)

The transfer matrix of the multilayer system Ŝ approximating the inhomogeneous
thin film is calculated as a product of the boundary and phase matrices, i.e.,

Ŝ = B̂A,0T̂0(H/2)B̂0,1T̂1(H)B̂1,2T̂2(H) · · · B̂N−2,N−1T̂N−1(H)B̂N−1,N T̂N(H/2)B̂N,S, (54)

where B̂A,0 is the boundary matrix of the boundary between the ambient and the upper
layer and B̂N,S represents the boundary between the lower film (N-th film) and the sub-
strate. The reflection coefficients of the inhomogeneous thin film for the p-polarization
(extraordinary waves) and s-polarization (ordinary waves) are given as follows [67]:

rI,p =
S21

S11
, rI,s =

S43

S33
, (55)

where Sij are elements of matrix Ŝ. The foregoing equations are valid for light falling onto
the system from the ambient side.

To achieve exact results corresponding to these anisotropic inhomogeneous thin films
it is necessary to perform the limit in which the number of approximating homogeneous
layers goes to infinity. As mentioned above, it was shown that the convergence to the exact
results could be improved by the Richardson extrapolation [33]. This paper dealt with
the isotropic inhomogeneous films but the results presented can easily be generalized to
anisotropic inhomogeneous films.

3. Examples of Optical Characterization

In this section the application of the theoretical results to the optical characterization
of selected inhomogeneous thin films exhibiting the defects discussed above are presented.
The results concerning two examples of optical characterization are presented. These exam-
ples were carefully selected such that most of the approaches discussed in the theoretical
part are accompanied by examples of their utilization in the optical characterization of
inhomogeneous films occurring in practice. The results achieved in the complete optical
characterization of the inhomogeneous polymer-like thin film of SiOxCyHz exhibiting the
complicated thickness nonuniformity and transition layer and inhomogeneous thin film of
nonstoichiometric silicon nitride (SiNx) with random roughness of the upper boundary
and uniaxial anisotropy are introduced here. The complete optical characterization of these
films consists in determining all the parameters describing their optical properties. Both the
thin films were deposited onto the silicon single crystal substrates. Before the deposition
of the polymer-like film, the silicon surface was pretreated in argon (Ar) discharge. This
resulted in a non-negligible transition layer at the silicon surface. Therefore, it is neces-
sary to deal with the optical characterization of this layer in the first stage of the optical
characterization of the SiOxCyHz thin film.
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3.1. Optical Characterization of the Transition Layer

The silicon substrate was pretreated 5 min in Ar discharge at applied power of 50 W.
The flow of argon was of 1 sccm. The optical characterization of the transition layer was
performed using variable-angle spectroscopic ellipsometry (see below). Since the measure-
ments were realized in air it was necessary to assume an overlayer corresponding to a
native oxide layer (NOL) onto upper boundary of the transition layer. The combination of
the Campi–Coriasso dispersion model with two terms and the exponential tail representing
weak absorption below the band gap energy together with the Kramers–Kroning relation
was utilized for determining the spectral dependencies of the optical constants of this
transition layer. The optical constants of the silicon substrate were fixed in the values taken
from the literature [95].

In Figure 4 (left) the determined spectral dependencies of the optical constants for
the characterized transition layer are plotted. These optical constants are considerably
different from the optical constants of silicon single crystal but they are relatively close
to the optical constants of amorphous silicon. The optical constants of amorphous sili-
con are taken from [96]. This implies that the material of this transition layer is closer
to amorphous silicon than to crystalline silicon. It can be expected that the transition
layer represents some damaged layer under the surface of crystalline silicon originated
in the process of pretreating this surface in argon discharge. The thickness values of this
transition layer and NOL are dT = 12.4± 0.2 nm and d0 = 2.9± 0.2 nm, respectively. The
spectral dependencies of the optical constants of the native oxide layer were fixed in those
of amorphous SiO2 published in [97]. In Figure 4 (right) the spectral dependencies of
the ellipsometric parameters corresponding to the system Si/transition layer/NOL are
depicted. It is seen that the agreement between the experimental and theoretical data is
good which supports a correctness of the results obtained for the transition layer and NOL.
The spectral dependencies of the optical constants and thickness value of the transition
layer presented in this paragraph are fixed in the optical characterization of the SiOxCyHz
thin film.
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Figure 4. Spectral dependencies of the optical constants of the transition layer (left) and the associ-
ated ellipsometric parameters measured at angle of incidence 70◦ on the sample pretreated in the
argon discharge (right). The points represent the experimental values while the lines represent the
theoretical values.

3.2. Optical Characterization of the Inhomogeneous SiOxCyHz Thin Film
3.2.1. Sample Preparation and Experimental Arrangement

This film was prepared by the plasma enhanced chemical vapor deposition (PECVD)
onto the silicon single crystal substrate. The deposition was performed by means of a par-
allel plate reactor with capacitively coupled discharge at working frequency of 13.56 MHz.
The reaction chamber was made of a glass cylinder closed by two stainless flanges. The par-
allel electrodes were made of graphite and RF power was applied to the lower electrode
(substrate). By using a blocking capacitor, negative DC self-bias voltage was induced at the
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substrate electrode to control the acceleration of ions bombarding the growing films. The
mixture of methane (CH4) and hexamethyldisiloxane (C6H18Si2O-HMSDO) was supplied
into the reactor chamber by the glass torus with many outlets on its perimeter. In order
to vary the composition of the SiOxCyHz thin film the methane flow rate was gradually
reduced from 5.5 sccm to 0 sccm for 5 min. The remaining details of preparing this film
are presented in [68]. The thin film was deposited onto one side of double side polished
unheated silicon substrate with temperature about 30 ◦C. In order to create the SiOxCyHz
thin films with pronounced thickness nonuniformity the samples were positioned near the
edges of the holder where the growth of the film is influenced by the distorted electric field.
The structural model of this film is schematically depicted in Figure 1 (left).

A Horiba Jobin Yvon UVISEL phase modulated ellipsometer (HORIBA Jobin Yvon,
Irvine, CA, USA) was used to measure the associated ellipsometric parameters. The spectral
dependencies of these parameters were measured for five angles of incidence in the interval
55–75◦ within the spectral range 0.6–6.5 eV (191–2066 nm). The ISR data were measured at
normal incidence in the spectral range 1.7–4.5 eV (275–700 nm) using the original self-made
imagining spectrophotometer. The pixel size was 80× 80µm.

3.2.2. Dispersion Model

The Campi–Coriasso dispersion model with one term is used to express the dielectric
response of the film characterized. The imaginary part of εi(E) of the complex dielectric
function ε(E) of this film is given as follows [98,99]:

εi(E) =
2Nvc

πE
B(E− Eg)2Θ(E− Eg)[

(Ec − Eg)2 − (E− Eg)2
]2

+ B2(E− Eg)2
, (56)

where E denotes photon energy, Nvc is the strength of the interband electronic transitions,
θ(.) represents the Heaviside function, Eg is the band gap energy and Ec and B are the
parameters (Ec > Eg).

The profile of the imaginary part of the dielectric function of the SiOxCyHz thin
film is modeled by considering the dispersion parameters as functions of coordinate z.
It was found that the dependencies of the dispersion parameters pβ(z) corresponding
to Equation (34) for s = 1 were satisfactory for the processing of the experimental data
measured for this SiOxCyHz thin film.

The spectral dependency of the real part εr(E) of the dielectric function ε(E) of the
SiOxCyHz thin film were again calculated by means of the Kramers–Kronig relation.

3.2.3. Data Processing

The experimental data consisting of the measured associated ellipsometric parameters
were processed by Formulas (29) and (33). The values of all the ellipsometric parameters
were processed simultaneously by means of the least-squares method (LSM). The spectral
dependencies of the optical constants of the silicon single crystal substrate were again fixed
in values presented in [95]. It was shown that the use of the numerical method based on the
Chebysev interpolation for calculating the integrals corresponding to inhomogeneity and
numerical method utilizing the Gaussian quadrature for calculating integrals correspond-
ing the thickness nonuniformity enormously increased the efficiency of processing the
experimental data. The ellipsometric parameters are strongly sensitive to the shape of thick-
ness nonuniformity along the direction lying in the plane of incidence where the light spot
is the longest. This is why the ellipsometric parameters were measured for four orientations
of the sample owing to the incidence plane to determine thickness nonuniformity in a more
detailed way. These orientations are shown in Figure 1 (right). The characterized sample
was covered by a mask with a circular hole so that selected parts of the inhomogeneous
nonuniform thin film were easily identified. The measured spectral dependencies of the
ellipsometric parameters were processed simultaneously for all incidence angles and all
the rotations corresponding to the individual orientations. These rotations correspond to
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the azimuth angles β = 0◦, 45◦, 90◦ and 135◦ (see Figure 1). ISR was used to confirm the
results concerning the thickness nonuniformity achieved by means of ellipsometry.

3.2.4. Results and Discussion

The polynomial expression of thickness nonuniformity is utilized for this inhomoge-
neous thin film of SiOxCyHz (see Equation (32)). The determined values of the coefficients
describing thickness nonuniformity of this film corresponding to the polynomial of the
second order are summarized in Table 1. These values are compared with those found
using ISR. Note that within the processing of the ISR data the values of the spectral depen-
dencies of the optical constants of the SiOxCyHz thin film were fixed in those determined
by means of spectroscopic ellipsometry. Thus, the values of the local thicknesses belong-
ing to individual pixels were the only parameters determined by ISR. On the basis of
these local thicknesses the values of the coefficients of the quadratic polynomial were
determined. The results presented in Table 1 imply that the differences in values of the
corresponding coefficients of nonuniformity in thickness found using ellipsometry and ISR
are rather small.

Table 1. Values of the parameters describing the thickness nonuniformity of the characterized film
of SiOxCyHz (left). Values of quantity χ for the individual total corrections in the formulae for the
reflection coefficients of the inhomogeneous SiOxCyHz thin film (right).

Ellipsometry ISR χ

d0 [nm] 960.7± 1.1 959.5± 0.3 WKBJ 5.813
dx [nm] 9.7± 0.1 14.78± 0.06 with term 1 5.419
dy [nm] 9.5± 0.1 11.10± 0.06 with terms 1 + 2 5.418
dxx [nm] 2.01± 0.09 2.73± 0.03 with terms 1 + 2 + 3 5.418
dxy [nm] 1.35± 0.09 1.30± 0.03 wedge 5.807
dyy [nm] 1.69± 0.09 2.23± 0.03

In Figure 5 (left) the spectral dependencies of the optical constants corresponding to
the upper and lower boundaries of this polymer-like film are depicted. From this figure it
is seen that the differences between the spectral dependencies of the optical constants at
the upper and lower boundary are relatively large. The profiles of the optical constants
for E = 4 eV are also shown in Figure 5 (right). The characterized film is absorbing for
E ≥ 2.5 eV in the region close to upper boundary. The quality of the fits of the experimental
data is expressed using the quantity χ defined as χ2 = Σ/Nexp, where symbols Σ and Nexp
denote the residual sum of squares and number of all measured values, respectively. By
means of quantity χ it was found that the reflection coefficients of this SiOxCyHz thin film
could be expressed as r = r0 + ∆r1 which implies the small gradients of the profiles of
the optical constants of this film which is caused by the large values of the local thickness
of the characterized film (see Table 1). If the inhomogeneous thin films exhibit the larger
values of the gradients of the profiles of their optical constants then the total corrections of
the higher orders must be included into the expression for the reflection coefficients. The
profiles of the local thicknesses of the film determined by ellipsometry and ISR for the four
orientations are plotted in Figure 6. These profiles correspond to the cross-sections of the
surface of the upper boundary with the incidence plane corresponding to the rotations for
angles β = 0◦, 90◦ and 45◦, 135◦. These profiles determined by ISR are also introduced for
comparison in this figure. The profiles of the local thicknesses corresponding to ISR are
directly evaluated from the map of the local thicknesses. The maps of the local thicknesses
and three-dimensional views of the upper boundary surface determined by ellipsometry
and ISR are shown in Figures 7 and 8. The results presented in Figures 6–8 imply that using
ellipsometry, the surface of the upper boundary of the characterized film was determined
in a correct way. The fits of the spectral dependencies of the associated ellipsometric
parameters measured for incidence angle of 70◦ and azimuth angle β = 0◦ are depicted in
Figure 9 (left). One can see that these fits are very good which supports a correctness of
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the results presented for this inhomogeneous nonuniform thin film. In Figure 9 (right) the
spectral dependencies of the degree of polarization of this film for three incidence angles
are presented. It is seen that the SiOxCyHz film exhibits the considerable depolarization.
This depolarization is mainly caused by the thickness nonuniformity. The depolarization
does not occur for photon energies E ≥ 4.5 eV because the film is not transparent in this
region. The thickness nonuniformity has no influence on reflected light in this range.

From the foregoing it is evident that the method of VASE described in this paper en-
ables us to carry out the complete optical characterization of the inhomogeneous polymer-
like film exhibiting the combination of transition layer and complicated thickness nonunifor-
mity. This can also be expected for other inhomogeneous thin films with the same defects.

1.4

1.5

1.6

1.7

1.8

1.9

1000 500 300 200

upper boundary

lower boundary

0.0

0.1

0.2

0.3

1 2 3 4 5 6

re
fr

a
c
tiv

e
 in

d
e
x

e
xt

in
c
tio

n
 c

o
e

ffi
ci

e
n

t

E [eV]

λ [nm]

upper boundary

lower boundary

1.5

1.6

1.7

1.8

0.00

0.02

0.04

0.06

0.08

0.10

0 200 400 600 800

re
fr

a
c
tiv

e
 i
n

d
e
x

e
xt

in
c
tio

n
 c

o
e

ffi
ci

e
n

t

z [nm]

Figure 5. The spectral dependencies (left) and the depth profile at E = 4 eV (right) of the optical
constants of the inhomogeneous layer SiOxCyHz thin film.
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Figure 8. Three-dimensional representations of the shape of the upper boundary determined by the
ellipsometric method (left) and by ISR (right) for the SiOxCyHz film.
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Figure 9. Agreement between the experimental and theoretical values for the associated ellipsometric
parameters of the SiOxCyHz film at incidence angle 70◦ (left) and the degree of polarization at three
selected angles of incidence (right). The plots correspond to azimuth angle β = 0◦. The points
represent the experimental values while the lines represent the theoretical values.

3.3. Optical Characterization of the Inhomogeneous SiNx Thin Films
3.3.1. Sample Preparation and Experimental Arrangements

Three samples of thin films of SiNx deposited onto double side polished silicon wafers
were characterized. The deposition was carried out by the reactive magnetron sputtering
of silicon target in argon-nitrogen atmosphere. During deposition the pressure was kept at
constant value of 10−2 mbar and the flow rates of argon and nitrogen were 80 sccm and
5 sccm, respectively. The power supply for the magnetron was set at 100 W. The films
were deposited onto unheated silicon wafers. Three samples of the SiNx thin films were
deposited with different deposition times, i.e., for 30, 45 and 90 min.

The associated ellipsometric parameters were again measured by the Horiba Jobin
Yvon phase modulated ellipsometer (HORIBA Jobin Yvon, Irvine, CA, USA) for five
incidence angles 55◦, 60◦, 65◦, 70◦ and 75◦ in the spectral region 0.6–6.3 eV (197–2066 nm).

Moreover, the spectral dependencies of reflectance at near-normal incidence
were measured by a Perkin Elmer Lambda 1050 spectrophotometer (Perkin Elmer,
Waltham, MA, USA) in the spectral range 0.7–6.5 eV (190–1800 nm). The ISR data were
measured at normal incidence in the spectral range 1.7–4.5 eV (275–700 nm) with one pixel
corresponding to 40× 40µm.

3.3.2. Influence of Boundary Roughness

The influence of random roughness of the upper boundary on the optical quantities of
the films is described by means of the SDT. This theory was used to derive the formulae for
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the optical quantities of homogeneous isotropic thin films with randomly rough bound-
aries (see e.g., [35–46]). The reflection coefficients of this inhomogeneous thin film are
expressed by means of Formula (46). However, in this equation the reflection coefficients
of the isotropic inhomogeneous thin film must be substituted by those for anisotropic
inhomogeneous thin film rI,q expressed with Equation (55).

Moreover, the Fresnel coefficients of the upper boundary are given as follows:

rU,p =
Ye,0 −Yp,A

Ye,0 + Yp,A
, tU,p =

αA

α0

2Yp,A

Ye,0 + Yp,A
, r′U,p =

Yp,A −Ye,0

Yp,A + Ye,0
, (57)

t′U,p =
α0

αA

2Ye,0

Yp,A + Ye,0
, rU,s =

Yo,0 −Ys,A

Yo,0 + Ys,A
, tU,s =

αA

α0

2Ys,A

Yo,0 + Ys,A
,

r′U,s =
Ys,A −Yo,0

Ys,A + Yo,0
, t′U,s =

α0

αA

2Yo,0

Ys,A + Ye,0
,

where admittances Ye,0, Yo,0 and quantity α0 at the upper boundary of the film are calculated
by Equation (52) and the admittances Ye,A, Yo,A and αA corresponding to the ambient are
calculated using the following equations:

kz,k = k0

√
εk − n2

A sin2 ϕA = k0nk cos ϕk, αk =
kz,k

k0
√

εk
= cos ϕk, (58)

Ys,k =
kz,k

k0
= nk cos ϕk, Yp,k =

k0εk
kz,k

=
nk

cos ϕk
,

αA = cos ϕA, Ys,A = nA cos ϕA, Yp,A =
nA

cos ϕA
.

It should be noted that in case of the inhomogeneous thin film with the rough upper
boundary it is necessary to omit matrix BA,0 in calculating the elements of matrix SI.
Moreover, the presented method assumes that the optical constants are constant within the
range of random roughness of the upper boundaries.

3.3.3. Dispersion Model

The dielectric function of this SiNx film is expressed by two contributions. Thus, this
function is given as

ε(E) = 1 + Nvcε0
dt(E) + Nutε

0
ut(E), (59)

where the first contribution represents the valence to conduction band transitions of
electrons and the second contribution corresponds to the Urbach tail. This tail describes
weak absorption below the band gap energy. Symbols Nvc and Nut denote strengths of
the band transitions and weak absorption corresponding to the Urbach tail. Functions
ε0

dt(E) and ε0
ut(E) represent the normalized contributions to dielectric functions for the

valence to conduction transitiosions and Urbach tail, respectively. The imaginary part of
the normalized contribution to the dielectric function for the valence to conduction band
transitions is expressed as follows [99]:

ε0
i,dt(E) =

1
1 + Aex

ε0
i,vc(E) +

Aex

1 + Aex
ε0

i,ex(E), (60)

where the first contribution is given as [99,100]

ε0
i,vc(E) =

(E− Eg)2(Eh − E)2

CvE2 Θ(E; Eg, Eh), (61)
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This term corresponds to the basic absorption band. The second term is expressed as
follows [101,102]:

ε0
i,ex(E) =

(E− Eg)2(Eh − E)2

CvE2[(E− Eex)2 + B2
ex]

Θ(E; Eg, Eh), (62)

where Aex is used for to control the weights concerning ε0
i,vc and ε0

i,ex.
The imaginary part of the normalized contribution representing the Urbach tail is

expressed as:

ε0
i,ut(E) =

1
CutE2

[(
1 +

(E− Eg)(Em − E)
Eu(Em − Eg)

)
Θ(E; Eg, Em) (63)

+e
E−Eg

Eu Θ(E; Eg/2, Eg) + e
Em−E

Eu Θ(E; Em, Em + Eg/2)− e−
Eg

2Eu

]
,

where Em = (Eg + Eh)/2 and Eu is the Urbach energy. Constants Cvc, Cex and Cut must
ensure the sum rule normalization condition (see e.g., [99,101]).

The dispersion model described above is utilized for the homogeneous isotropic
thin films. The dispersion parameters corresponding to the thin films exhibiting uniaxial
anisotropy must be separated to two sets, one set corresponds to the ordinary dielectric
function and the latter set belongs to the extraordinary dielectric function. The sum rule
(see e.g., [103]) must give the same value for the ordinary and extraordinary dielectric
functions, which can be expressed using the following equation:

Nvc,e + Nut,e = Nvc,o + Nut,o (64)

where indices e and o distinguish the strengths for the extraordinary and ordinary waves,
respectively.

The inhomogeneity of the characterized SiNx thin film is described by the profiles of
the dispersion parameters pα,γ expressed as

pα,γ(z) = e−z/ξ pU
α,γ + (1− e−z/ξ)p∞

α,γ, (65)

where index α distinguishes the individual parameters, ξ is the parameter controlling the
shape of the profile, γ =e,o and pU

α,γ are the values of the parameters at the upper boundary
of the inhomogeneous thin film. Symbol p∞

α,γ denotes the values of the parameters for
z→ ∞.

3.3.4. Data Processing

The dispersion and structural models contain a large number of parameters that must
be sought. If all of these parameters are considered to be independent then the problem of
processing the experimental data is overparametrized. Therefore, it is necessary to reduce
the number of these parameters. It is reasonable to expect that the inhomogeneity of the
film and uniaxial anisotropy are relatively weak effects. Thus, one can assume that some
dispersion parameters do not exhibit profile and some dispersion parameters have the
identical value for the ordinary and extraordinary dielectric functions. Even when the
number parameters are reduced in this way, there are still enough degrees of freedom left
to successfully interpret the measured data. The concrete relations between the dispersion
parameters are described in detail in [67]. The merit function that enables the performance
of the efficient data processing by the LSM is also presented in [67]. Moreover, the mod-
ification of multisample method of the data processing was employed. This means that
measured ellipsometric and reflectometric data were processed simultaneously for all three
samples of the characterized nonstoichiometric SiNx thin films (for details see [11,104–106].
By using this modification one can reduce correlations among the searched parameters
which improves the fits of the experimental data.



Coatings 2021, 11, 22 24 of 31

3.3.5. Results and Discussion

In Figure 10 the spectral dependencies of the optical constants of the inhomogeneous
SiNx films for the ordinary and extraordinary waves at the upper and lower boundaries
are presented. The profiles of the optical constants of these films for the ordinary and
extraordinary waves are depicted in Figure 11. In this figure it is apparent that the profiles
of the inhomogeneous films corresponding to Samples 2 and 3 are similar while the profiles
belonging to Sample 1 are somewhat different from the other two samples. This is also
evident in Figure 10 on the spectral dependencies of the optical constants at the lower
boundary that are nearly the same for Samples 2 and 3 while the refractive indices of
Sample 1 are somewhat larger. However, note that the spectral dependencies of the
optical constants at the upper boundary exhibit different behavior. The refractive indices
corresponding to Samples 1 and 2 are almost identical while the refractive index of Sample 3
is a little smaller. Nevertheless, the difference between the spectral dependencies of the
optical constants at the upper and lower boundaries are relatively small. This implies
that the inhomogeneity in the optical constants of all three samples exhibits practically
identical behavior. It should be emphasized that the optical constants change their values
in the vicinity of the upper boundaries while the remaining parts of these inhomogeneous
thin films are nearly homogeneous. From Figure 10 it is evident that refractive indices
are smaller at the upper boundaries and higher at the lower boundaries. This reality
implies that in the finishing part of the deposition of the characterized films technological
conditions were considerably changed.

In the processing of the experimental data the influence of random roughness of the
upper boundaries of the SiNx thin films is described by the formula derived using the
SDT. Within this derivation it was assumed that the optical constants are constant in the
range of this roughness. This condition is not fulfilled for the samples of the SiNx thin
films characterized (see Figure 11). This means that the approach used to include the
influence of roughness on the optical quantities should be considered to be only a rough
approximation. However, roughness of the upper boundaries is slight (see Table 2) so that
this approximation is permissible. This statement is also supported by the very good fits of
the experimental data presented in Figure 12. Moreover, the rms values of sample 3 was
determined by atomic force microscopy. This determined value is 7.5 nm, which is in a
relatively good agreement with the rms value found using the optical method (see Table 2).
This result also supports a correctness of the results obtained in the optical characterization
of the samples of the inhomogeneous SiNx thin films.

In Table 2 the values of the structural parameters of the films are summarized.
The small differences in values of thickness of the films determined using the separate
processing of the ellipsometric and reflectometric data are seen. This could probably be
caused by a very slight thickness nonuniformity or different systematic errors of both the
optical techniques. Of course, both the effects can be combined. However, by using the
ISR method it was found that samples were uniform in thickness within the accuracy of
measurements. Thus, the thickness nonuniformity was not included in the structural model
of the SiNx films. In this table it is also seen that the rms values of the heights of roughness
are very small for all three samples, i.e., these samples exhibit nanometric roughness of
their upper boundaries. In the processing of the experimental data the optical constants of
the silicon substrates were again fixed in values taken from [95].

The optical characterization of the inhomogeneous thin films of SiNx can serve as an
example of the successful optical characterization of thin films exhibiting a very complicated
structure with enormous number of sought parameters.
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Figure 10. Spectral dependencies ofthe optical constants of the SiNx film at the upper (top) and lower
(bottom) boundaries for the ordinary (left) and extraordinary (right) waves.
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Figure 11. Profiles of the optical constants of the SiNx film at E = 3.5 eV for the ordinary (left) and
extraordinary (right) waves.
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Figure 12. The spectral dependencies of reflectance for all three samples (left) and the ellipsometric
quantities for sample 2 at incidence angle 70◦ (right). The points represent the experimental values
while the lines represent the theoretical values.



Coatings 2021, 11, 22 26 of 31

Table 2. The values of the structural parameters.

Sample 1 Sample 2 Sample 3

deposition time t [min] 30 45 90
thickness ellipsometry de [nm] 111.21± 0.05 167.10± 0.08 323.9 ± 0.1
thickness reflectance dr [nm] 112.12± 0.06 167.91± 0.07 320.80± 0.09

roughness (rms) σ [nm] 3.0 ± 0.2 4.6 ± 0.2 6.3 ± 0.2
profile parameter ξ [nm] 39.3 ± 1.8 65.6 ± 2.8 57.6 ± 2.6

4. Conclusions

This review paper is devoted to optics of the inhomogeneous thin films exhibiting
defects that are often encountered in practice. The following defects are thus considered:
transition layers, overlayers, thickness nonuniformity, boundary roughness and artificial
(unwanted) uniaxial anisotropy with the optical axis perpendicular to the boundaries of
the films. The approximations based on multilayer systems and multiple-beam interference
model are used to describe the inhomogeneity of the thin films exhibiting these defects.
In the theoretical part, the approaches utilized for including the individual defects into the
formulae for the optical quantities of the inhomogeneous thin films are presented. The de-
fects consisting in the transition layers and overlays are easily included into these formulae
by means of the recursive or matrix formalisms. As for the thickness nonuniformity, the
theoretical approach is more complicated. The inclusion of this defect into the mentioned
formulae is performed using the averaging of the elements of the corresponding Mueller
matrix. This averaging is carried out by means of a local thickness distribution density in
the case of simple forms of this nonuniformity. The typical example of this simple nonuni-
formity is the wedge-shaped thickness nonuniformity. If the thickness nonuniformity is
more complicated, this model is not satisfactory and a more complicated model describing
the local thicknesses of the inhomogeneous thin film using a polynomial in coordinates
along the surface of the film must be used. Random roughness of the boundaries of the
inhomogeneous films also represents defect requiring relatively complicated mathematical
approaches for its inclusion into the formulae of for the optical quantities. It is necessary
to use approaches based on the scalar diffraction theory if randomly rough boundaries
exhibit low spatial frequencies (locally smooth roughness) and perturbations theories such
as the Rayleigh-Rice theory for roughness having moderate and high spatial frequencies.
In this paper it is shown that for the film boundaries exhibiting a wide interval of spatial
frequencies, it is possible to utilize the approximation based on the heuristic combination
of both the theories. The defect consisting in the uniaxial anisotropy is included into
formulae for reflection coefficients of the inhomogeneous thin films using the Yeh matrix
formalism. The other matrix formalisms can also be utilized because in the case of the
uniaxial anisotropy the extraordinary wave corresponds to the p-polarization and ordinary
wave corresponds to the s-polarization.

The paper also contains two selected examples of the optical characterization of the
inhomogeneous thin films exhibiting the combinations of the defects mentioned above.
The optical characterization of one inhomogeneous polymer-like thin film (SiOxCyHz) pre-
pared by the PECVD onto the silicon single crystal substrates exhibiting the combination
of the transition layer and thickness nonuniformity is performed. This film exhibits the
complicated thickness nonuniformity differing from the wedge-shaped model. Therefore,
thickness nonuniformity had to be included into the formulae for the ellipsometric pa-
rameters using the approach with the local thicknesses given by the polynomial in the
coordinates along the film surface. The complete optical characterization of the polymer-
like thin film consisting in determining all the parameters of this film is carried out by
means of variable angle spectroscopic ellipsometry. This means that the spectral depen-
dencies of the optical constants at upper and lower boundaries, profiles of these constants
and values of the coefficients of the quadratic polynomial describing the geometry of the
surface of the upper boundary were determined. The results concerning thickness nonuni-
formity were confirmed by ISR. The complete optical characterization of the three samples
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of the inhomogeneous thin films of nonstoichiometric silicon nitride (SiNx) prepared by
magnetron sputtering onto the same substrates is performed by the combined method
of variable angle spectroscopic ellipsometry and spectroscopic reflectomery applied at
the near-normal incidence of light. These samples exhibit the combination of random
roughness of the upper boundaries and uniaxial anisotropy. Boundary roughness was
described using the SDT. Inhomogeneity in the optical constants was expressed by the
approximate approach based on the multilayer system. Uniaxial anisotropy was described
by the Yeh formalism. In the processing of the experimental data the multiple-sample
method is used to determine all the parameters of the films, i.e., spectral dependencies of
the optical constants at the upper and lower boundaries for the ordinary and extraordinary
waves, profiles of the optical constants for both the waves and mean thickness values
of these films were determined. Moreover, the rms values of the heights of boundary
roughness were determined. In the multiple-sample method, the experimental data of the
three samples were processed simultaneously, which enables us to increase the efficiency
of the optical characterization of the inhomogeneous SiNx thin films. The ISR method was
used to verify the results of the optical characterization achieved for the inhomogeneous
nonstoichiometric silicon nitride thin films.

The examples of the optical characterization of the inhomogeneous thin films of
SiOxCyHz and SiNx also show that the processing of the experimental data is very difficult
because the formulae for the inhomogeneous films including thickness nonuniformity and
boundary roughness are complicated from the mathematical point of view. The integrals
occurring in these formulae must be solved using the sophisticated numerical methods
based on the Chebyshev approximation and Gaussian quadrature. The processing of the
experimental data without using these sophisticated numerical methods is impossible
from the practical point of view. However, the inhomogeneous thin films with defects will
be encountered more and more frequently in practice which is caused by a progress in
various branches of the fundamental and applied researches such as in the semiconductor
industry, optics industry, solar energetics, etc. Therefore, one can expect that in the future
the methods described above will be utilized more frequently in spite of their difficulties.

The main aim of this review paper is to summarize the theoretical approaches enabling
one to derive the formulae for the optical quantities of the inhomogeneous thin films
exhibiting the defects often occurring in practice, together with illustrating the examples
of the optical characterization of the inhomogeneous thin films with the selected defects.
The other reason why we decided to write this review paper is our desire to inspire
the researchers to utilize the presented methods within the optical characterization of
inhomogeneous thin films exhibiting defects.
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61. Ohlídal, M.; Vodák, J.; Nečas, D. Optical Characterization of Thin Films by Means of Imaging Spectroscopic Reflectometry.
In Optical Characterization of Thin Solid Films; Stenzel, O., Ohlídal, M., Eds.; Springer International Publishing: Cham, Switzerland,
2018; pp. 107–141.

62. Taft, E.; Cordes, L. Optical Evidence for a Silicon-Silicon Oxide Interlayer. J. Electrochem. Soc. 1979, 126, 131–134. [CrossRef]
63. Aspnes, D.E.; Theeten, J.B. Dielectric function of Si-SiO2 and Si-Si3N4 mixtures. J. Appl. Phys. 1979, 50, 4928–4935. [CrossRef]
64. Ohlídal, M.; Ohlídal, I.; Lukeš, F. Ellipsometric studies of polished silicon surfaces. Surf. Sci. 1976, 55, 467–476. [CrossRef]
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