Supplementary Materials

Palladium (III) Fluoride Bulk and PdFs/Ga20s/PdFs
Magnetic Tunnel Junction: Multiple Spin-Gapless
Semiconducting, Perfect Spin Filtering, and High
Tunnel Magnetoresistance

Computational Methods

In our study, the structural, electronic, and magnetic properties for rhombohedral-type PdFs
bulk were calculated based on the density functional theory (DFT), as implemented in the Nanodcal
package [1]. The Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional was applied [2] for
the parameterization of general gradient approximation (GGA) [3]. The DFT+U function was
considered to examine the electronic structures of PdFs.

The spin-transport calculations were performed by the nanodcal package, which used the
DFT combined with the non-equilibrium Green’s Function method [4]. In this calculation, the
Monkhorst-Pack k-meshes for the electrons and the centers were 9x9x100 and 9x9x1, respectively.
The self-consistent calculation is limited to 10~ Hartree tolerance. All these parameters were
evaluated and found to be sufficient to obtain accurate results. The spin-dependent current is
calculated by the Landauer-Buttiker formula:
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where fL,R(E—,uL,R) is the Fermi-Dirac distribution for the left (right) electrode, and

U g =Er£eV /2 is the corresponding electrochemical potential. TT(i)(E,Vb) is the spin-

dependent transmission coefficient:

TOEV,)=Tr[r.6 r,c ",

where GR™ s the retarded (advanced) Green’s function of the central region, and FL(R) is

the coupling matrix of the left (right) electrode.



Models of bulk Palladium (III) fluoride and PdFs/Ga:03/PdFs MT]

The crystal structure of the rhombohedral-type PdFs (space group: R3C, No. 167, ICSD ID:
16675), as shown in Figure S1. The crystal structure has been fully relaxed and detailed structure
optimization methods can be found in The Materials Project database [5]. The obtained lattice
constants area=b=c=5.618 A, a = = Y =54.956°, respectively. The lattice parameters obtained
by theory are consistent with the experimental values [6]. According to the database [5], one can see
that the calculated formation energy is -1.592 eV and negative value of formation energy shows the
possible stability of bulk Palladium (III) fluoride. The magnetic ground state of PdFs is ferromagnetic
with a magnetic moment of 0.779 us.

(@

Figure S1. (a) Front and (b) side views of lattice structure of rhombohedral-type PdFs bulk.

In our work, the MTJ device model is periodic along the x- and y-axes, while the transport
direction is along the z-axis. The crystals of Ga20s can be found here [7]. Ga20s with rhombohedral-
type is a semiconductor and no virtual frequency in the phonon spectrum of Ga20s guarantee the
stability of this material. The optimized distance between PdFs layer with F-terminated interface and
O layer was found to be 2.61 A. The lattice mismatch between PdFs and Ga20s is 3.72%.

Figure S2. Geometric structure of PdFs-Ga:03-PdFs magnetic tunnel junction (MTJ).
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(d) Band Structure (DFT+U = 4 eV)
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Figure S3. Band structures of PdFs bulk calculated based on the PBE+U method. Here, we assessed
the influence brought by Hubbard U from 1 eV to 4 eV for Pd-44 orbits.



Band structure under MB] potential

Since the GGA potential sometimes underestimates potential band gaps, here we check the band
structure of PdFs by using a combination of modified Becke-Johnson exchange potential with GGA
(MBJGGA) [8]. As shown in Figure S4, we can observe that the novel multiple linear-type spin-
gapless semiconducting band structures in PdFs retain under the MBJ calculation.
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Figure S4. Band structure of PdFs bulk under MBJGGA calculation within VASP software.
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Figure S5. Band structure of PdFs bulk calculated based on the PBE functional with consideration of
the SOC effect.
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(d) Band Structure (8 GPa)
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Figure S6. Band structures of PdFs bulk under different pressures. These results were calculated based
on the PBE functional.
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Figure S7. (a) Equilibrium-state transmission spectrum in parallel configuration for PdFs-based MT]J.
(b) Equilibrium-state transmission spectrum in anti-parallel configuration for PdFs-based MT].
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Figure S8. Non-equilibrium transmission spectrum versus electron energy at a fixed bias voltage for
PdFs-based MTJ.
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