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Abstract: In the present investigation, the buckling behavior of Euler–Bernoulli nanobeam, which is
placed in an electro-magnetic field, is investigated in the framework of Eringen’s nonlocal theory.
Critical buckling load for all the classical boundary conditions such as “Pined–Pined (P-P),
Clamped–Pined (C-P), Clamped–Clamped (C-C), and Clamped-Free (C-F)” are obtained using
shifted Chebyshev polynomials-based Rayleigh-Ritz method. The main advantage of the shifted
Chebyshev polynomials is that it does not make the system ill-conditioning with the higher number
of terms in the approximation due to the orthogonality of the functions. Validation and convergence
studies of the model have been carried out for different cases. Also, a closed-form solution has
been obtained for the “Pined–Pined (P-P)” boundary condition using Navier’s technique, and the
numerical results obtained for the “Pined–Pined (P-P)” boundary condition are validated with a
closed-form solution. Further, the effects of various scaling parameters on the critical buckling load
have been explored, and new results are presented as Figures and Tables. Finally, buckling mode
shapes are also plotted to show the sensitiveness of the critical buckling load.
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1. Introduction

In recent decades, with the advent of technological advancement, small-scale structures like
nanoclock, nano-oscillator, nanosensor, NEMS (Nano-Electro-Mechanica System), and so forth have
found tremendous attention due to their various applications. In this scenario, the study of dynamical
behaviors of nanostructures is important and a need of the hour. Due to the small size of nanostructures,
experimental analysis of such structures is always challenging and difficult as it requires enormous
experimental efforts. Moreover, classical mechanics or continuum mechanics fail to address the nonlocal
effect also. In this regard, nonlocal continuum theories were recently found to be useful for the modeling
of micro- and nanosized structures. Various researchers developed different nonlocal or nonclassical
continuum theories to assimilate the small-scale effect, such as strain gradient theory [1], couple stress
theory [2], micropolar theory [3], nonlocal elasticity theory [4], and so on. Out of all these theories,
nonlocal elasticity theory of Eringen has been broadly used for the dynamic analysis of nanostructures.
Few studies regarding the vibration and buckling of beam, membrane, and nanostructures such as
nanobeam, nanotube, nanoribbon, and so forth can be found in [5–14].

Wang et al. [15] studied buckling behavior of micro- and nanorods/tubes with the help of
Timoshenko beam theory, where small-scale effect was addressed by using the nonlocal elasticity
theory of Eringen. Emam [16] incorporated nonlocal elasticity theory to analyze the buckling and
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the postbuckling response of nanobeams analytically. Yu et al. [17] used nonlocal thermo-elasticity
theory to study buckling behavior of Euler–Bernoulli nanobeam with nonuniform temperature
distribution. Nejad et al. [18] employed a generalized differential quadrature method to undertake
the buckling analysis of the nanobeams made of two-directional functionally graded materials
(FGM) using nonlocal elasticity theory. Dai et al. [19] analytically studied the prebuckling and
postbuckling behavior of nonlocal nanobeams subjected to the axial and longitudinal magnetic
forces. Bakhshi Khaniki and Hosseini-Hashemi [20] implemented nonlocal strain gradient theory to
investigate the buckling behavior of Euler–Bernoulli beam, considering different types of cross-section
variation using the generalized differential quadrature method. Yu et al. [21] proposed a three
characteristic-lengths-featured size-dependent gradient-beam model by incorporating the modified
nonlocal theory and Euler–Bernoulli beam theory. He implemented the weighted residual approach to
solve the six-order differential equation to investigate the buckling behaviors. Malikan [22] used a
refined beam theory to investigate the buckling behavior of SWCNT (Single Walled carbon NanoTube)
using Navier’s method. Here, unidirectional load is applied on the SWCNT. Buckling analysis of FG
(Fanctionally Graded) nanobeam was studied in [23] analytically with the help of Navier’s method
under the framework of first-order shear deformation beam theory. Malikan et al. investigated the
transient response [24] of nanotube for a simply supported boundary condition using Kelvin–Voigt
viscoelasticity model with nonlocal strain gradient theory. An investigation regarding damped forced
vibration of SWCNTs using a shear deformation beam theory subjected to viscoelastic foundation and
thermal environment can be found in [25]. Some other notable studies can be seen in [26–30]

As per the present authors’ knowledge, the buckling behavior of the Euler–Bernoulli nanobeam
placed in an electro-magnetic field using shifted Chebyshev polynomials Rayleigh-Ritz method has
been studied for the first time for “Pined–Pined (P-P), Clamped–Pined (C-P), Clamped–Clamped
(C-C), and Clamped-Free (C-F)” boundary conditions. Euler–Bernoulli nanobeam is combined with
Hamilton’s principle to derive the governing equation. Also, a closed-form solution for the Pined–Pined
(P-P) boundary condition has been obtained by using the Navier’s technique. Critical buckling load
for all the classical boundary conditions were obtained and a parametric study has been carried out to
comprehend the effects of various scaling parameters on the critical buckling load through graphical
and tabular results. Further, buckling mode shapes for different boundary conditions were drawn to
show the sensitivity towards various scaling parameters.

2. Proposed Model for Electromagnetic Nanobeam

In this study, the nanobeam with length L and diameter d is placed in an electromagnetic field
with the electric field intensity as E and the magnetic flux density as B. The schematic diagram for
continuum model of the nanobeam is shown in Figure 1. Then, by Ohm’s law, the current density (J)
of the system due to the induced current (because of Lorentz force) is given as [31]

J = σ0(E +w0 × B) = σ0(E +w0 × µ0H) (1)

where σ0 is the electrical conductivity, µ0 is the magnetic permeability of free space, and H is the
magnetic field strength. By neglecting the electric field intensity, the nanobeam experiences a magnetic
force or Pondermotive force which is denoted by fem and can be expressed as [31]

fem = J × B = σ0(E +w0 × µ0H) × µ0H = σ0µ
2
0H2w0 (2)
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Figure 1. Schematic continuum model of the nanobeam placed in electromagnetic field.

According to Euler–Bernoulli beam theory, the displacement field at any point may be stated
as [32]

u1(x, z, t) = −z
∂w0 (x, t)

∂x
(3a)

u3(x, z, t) = w0 (x, t) (3b)

Here, u1 and u3 represent displacements along x and z directions, respectively, and w0 (x, t)
denotes the transverse displacement of the point on the mid-plane of the beam. The strain-displacement
relation may be expressed as

εxx = −z
∂2w0 (x, t)

∂x2 (4)

Under the framework of Euler–Bernoulli nanobeam, the variation of strain energy (δU) and the
variation of work done by external force (δWe) are presented as

δU =

L∫
0

∫
A

σxxδεxxdA dx =

L∫
0

[
−Mxx

∂2δw0

∂x2

]
dx, (5)

δWe =

L∫
0

[
P

(
dw0

dx

)(
dδw0

dx

)
+ σ0µ

2
0H2w0δw0

]
dx, (6)

where σxx is the normal stress, εxx is the normal strain, and Mxx =
∫
A
σxx z dA is the bending moment of

nanobeam. The Hamilton’s principle for the conservative system is stated as

δ
∏

=

t∫
0

δ (We + U) dt, (7)
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Substituting Equations (5)–(7) and setting δ
∏

= 0, we have

δ
∏

=
t∫

0

L∫
0

[
P

( dw0
dx

)( dδw0
dx

)
+ σ0µ2

0H2w0δw0 −Mxx
∂2δw0
∂x2

]
dxdt

=
t∫

0

L∫
0

[
−P

(
d2w0
dx2

)
δw0 + σ0µ2

0H2w0δw0 +
∂2Mxx
∂x2 δw0

]
dxdt

(8)

The equation of motion for buckling behavior can be obtained as

d2Mxx

dx2 + σ0µ
2
0H2w0 = P

d2w0

dx2 (9)

For an isotropic nonlocal beam, the nonlocal elasticity theory of Eringen can be expressed as [4](
1− µ

∂2

∂x2

)
σxx = Eεxx (10)

whereµ = (e0a)2 is the nonlocal parameter, E is Young’s modulus. Here e0 and a denote material constant
and internal characteristic length, respectively. Multiplying Equation (10) by zdA and integrating over
A, the nonlocal constitutive relation for Euler–Bernoulli nanobeam may be expressed as

Mxx − µ
d2Mxx

dx2 = −EI
d2w0

dx2 (11)

where I =
∫
A

z2dA, is the second moment of area. Using Equation (9) in Equation (11) and rearranging,

the nonlocal bending moment can be obtained as

Mxx = −EI
d2w0

dx2 + µP
d2w0

dx2 − µσ0µ
2
0H2w0 (12)

Equating the nonlocal strain energy with work done by an external force, we obtain

−

L∫
0

(
−EI

d2w0

dx2 + µP
d2w0

dx2 − µσ0µ
2
0H2w0

)
d2w0

dx2 dx =

L∫
0

P (
dw0

dx

)2

+ σ0µ
2
0H2w2

0

 dx (13)

Substituting Equation (12) in Equation (9), we obtain the governing equation of motion as

− EI
d4w0

dx4
+ µP

d4w0

dx4
− µσ0µ

2
0H2 d2w0

dx2 + σ0µ
2
0H2w0 = p

d2w0

dx2 (14)

Let us define the following nondimensional parameters

X = x
L = nondimensional spatial coordinate

W = w0
L = nondimensional transverse displacement

P̂ = PL2

EI = dimensionless frequency parameter

α = e0α
L = dimensionless nonlocal parameter

H2
a =

σ0µ
2
0H2L4

EI = dimensionless Hartmann parameter.

Incorporating the above nondimensional parameters in Equations (13) and (14), we have

1∫
0


(

d2W
dX2

)2

+ α2H2
a

(
W

d2W
dX2

)
−H2

a W2

 dX = P̂

1∫
0


(

dW
dX

)2

+ α2
(

d2W
dX2

)2
dX (15)
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d4W
dX4

+ α2H2
a

d2W
dX2 −H2

a W = P̂
(
α2 d4W

dX4
−

d2W
dX2

)
(16)

3. Solution Methodology

3.1. Shifted Chebyshev Polynomials-Based Rayleigh-Ritz Method

Chebyshev polynomials of the first kind (Cn(X)) are a sequence of orthogonal polynomials with
X ∈ [−1 1], and few terms of the sequence are defined as

C0(X) = 1

C1(X) = X (17)

Cn(X) = 2XCn−1(X) −Cn−2(X), n = 2, 3, . . .

In order to solve Equation (12), Rayleigh-Ritz method is implemented along with Chebyshev
polynomials of the first kind as shape function. For more details about the Rayleigh-Ritz method,
one may refer to the books [33,34]. The main advantages of using Chebyshev polynomials over
algebraic polynomials

(
1, X, X2, X3, . . .Xn

)
are the orthogonal properties of Chebyshev polynomials,

which reduce the computational effort, and for the higher value of n (n > 10), the system avoids
ill-conditioning. Since the domain of the nanobeam lies in [0 1], the Chebyshev polynomials must be
reduced to shifted Chebyshev polynomials of the first kind (C∗n(X)) with X ∈ [0 1]. This is achieved
by transforming X 7→ 2X − 1 , and there exists a one-to-one correspondence between [0 1] and [−1 1].
Accordingly, the first few terms of shifted Chebyshev polynomials of the first kind (C∗n(X)) can be
written as, (where C∗n(X) = Cn(2X − 1))

C∗0(X) = 1

C∗1(X) = 2X − 1 (18)

C∗n(X) = 2(2X − 1)C∗n−1(X) −C∗n−2(X), n = 2, 3, . . .

The transverse displacement function (W(X)) as per the Rayleigh-Ritz method can now be
expressed as

W(X) = Xp(1−X)q
N∑

i=1

aiC∗i−1(X) (19)

where a′i s are unknowns, C∗i−1 are the shifted Chebyshev polynomials of the index i− 1, N is the number
of terms required to obtain the result with the anticipated accuracy, p and q are the exponents which
decide the boundary conditions, as given in Table 1.

Table 1. Values of p and q for different boundary conditions [33,34].

Boundary Conditions p q

P-P 1 1
C-P 2 1
C-C 2 2
C-F 2 0

Replacing Equation (19) into Equation (15), and minimizing the buckling load parameter with
respect to the coefficients of the admissible functions (i.e., ai′s, i = 1, 2, 3 . . .N ), we obtain the
generalized eigenvalue problem as

[K] {A} = P̂ [B] {A} (20)
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where A = [a1 a2 a3 . . . aN]
T, [K] is the stiffness matrix and [B] is the buckling matrix, which are

presented as

K(i, j) =

1∫
0

(
2C∗i

′′C∗j
′′ + α2H2

a C∗i
′′C∗j + α2H2

a C∗i C
∗

j
′′
− 2H2

a C∗i C
∗

j

)
dX, i, j = 1, 2, 3, . . .N

B(i, j) =

1∫
0

(
2C∗i
′C∗j
′ + 2α2C∗i

′′C∗j
′′

)
dX, i, j = 1, 2, 3, . . .N.

3.2. Closed-Form Solution for P-P Boundary Condition Using Navier’s Technique

Navier’s technique has been employed to find a closed-form solution for the Pined–Pined (P-P)
boundary condition. As per the Navier’s technique, the transverse displacement (W) may be expressed
as [23–25]

W =
∞∑

n=1

Wn sin(nπX) eiωnt (21)

In which Wn, and ωn are the displacement and frequency of the beam. Now, by substituting
Equation (21) in Equation (16), the buckling load P̂ for Pined–Pined (P-P) boundary condition is
calculated as

P̂n =
(nπ)4

− α2H2
a (nπ)

2
−H2

a

α2(nπ)4 + (nπ)2
(22)

4. Numerical Results and Discussion

Shifted Chebyshev polynomials-based Rayleigh-Ritz method has been employed to convert
Equation (15) into the generalized eigenvalue problem given in Equation (20). MATLAB codes have
been utilized to solve the generalized eigenvalue problem and to compute the critical buckling load
parameter. Likewise, Navier’s technique has been adopted to find a closed-form solution for the P-P
boundary condition, which is demonstrated in Equation (22). In this regard, the following parameters
are taken from [15] for computation purpose

E = 1 Tpa, d = 1 nm, and L = 10 nm.

4.1. Validation

Results of the present model were authenticated by two ways, firstly, by matching with the
numerical results given by Wang et al. (2006) for “P-P, C-P, C-C, and C-F” boundary conditions and
secondly, Pined–Pined results were compared with the closed-form solution obtained by Navier’s
technique. For this purpose, the Hartmann parameter (Ha) in the present model was taken as zero,
and the critical buckling load parameters (Pcr) for “P-P, C-P, C-C, and C-F” boundary conditions
were taken into investigation. Comparisons of critical buckling load (Pcr) are presented in Table 2.
Similarly, Table 3 illustrates the comparison of the P-P boundary condition with the Navier’s results,
with E = 1 TPa, d = 1 nm, L = 10 nm, and Ha = 1. From these comparisons, it is evident that the
critical buckling loads of the present model are on a par with [15] in the particular case and with
Navier’s solution for the P-P boundary condition.



Nanomaterials 2019, 9, 1326 7 of 15

Table 2. Comparison of “Critical buckling load” (Pcr) in nN with [15] for L
d = 10.

(a) Comparison of P-P and C-P boundary conditions

e0a P-P C-P

Present [15] Present [15]

0 4.8447 4.8447 9.9155 9.9155
0.5 4.7281 4.7281 9.4349 9.4349
1 4.4095 4.4095 8.2461 8.2461

1.5 3.9644 3.9644 6.8151 6.8151
2 3.4735 3.4735 5.4830 5.4830

(b) Comparison of C-C and C-F boundary conditions

e0a C-C C-F

Present [15] Present [15]

0 19.3790 19.3790 1.2112 1.2112
0.5 17.6381 17.6381 1.2037 1.2037
1 13.8939 13.8939 1.1820 1.1820

1.5 10.2630 10.2630 1.1475 1.1475
2 7.5137 7.5137 1.1024 1.1024

Table 3. Comparison of “Critical buckling load” (Pcr) in nN with Navier’s closed-form solution for P-P
boundary condition.

e0a Present (R-R) Navier’s Solution

0 4.7950 4.7950
0.5 4.6783 4.6783
1 4.3598 4.3598

1.5 3.9146 3.9146
2 3.4237 3.4237

2.5 2.9467 2.9467
3 2.5160 2.5160

3.5 2.1434 2.1434
4 1.8287 1.8287

4.2. Convergence

A convergence study has been performed to know the number of terms needed to obtain the
results of critical buckling load parameters (Pcr) and verify the present model using the Rayleigh-Ritz
method. In this regard, Ha = 1, L = 10, and e0a = 1 were taken for computation purpose. Both the
tabular and graphical results were noted for “P-P, C-P, C-C, and C-F” boundary conditions, which are
demonstrated in Table 4 and Figure 2, respectively. The C-F boundary condition is converging faster
with N = 5, whereas other edges such as P-P, C-P, and C-C take N = 7 for acquiring the desired accuracy.
These results revealed that both the model and the results are useful regarding the present investigation.

Table 4. Effect of no. of terms (N) on critical buckling load (Pcr) with Ha = 1, L = 10, and e0a = 1.

N P-P C-P C-C C-F

2 5.211151 8.452577 14.486540 1.100703
3 4.362030 8.240579 13.869377 1.094818
4 4.362029 8.209547 13.869177 1.094614
5 4.359792 8.208410 13.863597 1.094613
6 4.359790 8.208342 13.863594 1.094613
7 4.359791 8.208341 13.863584 1.094613
8 4.359791 8.208341 13.863584 1.094613
9 4.359791 8.208341 13.863584 1.094613
10 4.359791 8.208341 13.863584 1.094613
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4.3. Influence of Small Scale Parameter

This subsection is dedicated to investigating the influence of a small scale parameter (e0a) on
critical buckling load parameters and the critical buckling load ratio. The four frequently used
boundary conditions such as “P-P, C-P, C-C, and C-F” were taken into consideration with N = 7,
L = 10, and Ha = 2. Tabular and graphical results are illustrated in Table 4 and Figures 2 and 3 for
different e0a (0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5). Table 5 and Figure 3 represent the variation of small
scale parameter (e0a) on critical buckling load, whereas Figure 4 demonstrates the variation of small
scale parameter (e0a) on the critical buckling load ratio. The critical buckling load ratio may be defined
as the ratio of critical buckling load calculated using nonlocal theory and classical theory (e0a = 0).
This critical buckling load ratio acts as an index to estimate the influence of the small scale parameter
(e0a) qualitatively on buckling load. From Table 5 and Figure 3, it is observed that critical buckling
load is decreasing with an increase in small scale parameter (e0a), and this decline is more in case of
the C-C boundary condition. From Figure 4, it may also be noted that the influence of the small scale
parameter is comparatively more in C-C edge and less in C-F edge.

Table 5. Effect of small scale parameter (e0a) on critical buckling load (Pcr) in nN with N = 7, L = 10,
and Ha = 2.

e0a P-P C-P C-C C-F

0 4.645787 9.748924 19.229661 0.840199
0.5 4.529126 9.275797 17.497785 0.836210
1 4.210584 8.094859 13.772744 0.824504

1.5 3.765433 6.673148 10.160354 0.805815
2 3.274518 5.349719 7.425368 0.781223

2.5 2.797456 4.255716 5.510414 0.751973
3 2.366762 3.397759 4.184610 0.719306

3.5 1.994208 2.737457 3.253694 0.684313
4 1.679487 2.230108 2.585265 0.647847

4.5 1.416723 1.837632 2.093720 0.610487
5 1.198278 1.530786 1.723927 0.572534
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4.4. Influence of Aspect Ratio

The objective of this subsection is to study the impact of aspect ratio (L/d) on the critical buckling
load (Pcr) with “P-P, C-P, C-C, and C-F” boundary conditions for different L/d (5, 10, 15, 20, 25, 30,
35, 40, 45, 50). The effect of aspect ratio has been reported in Table 6 and Figure 5 for N = 7, e0a = 1,
and Ha = 2, which are respectively. From this study, it is essential to note that the critical buckling load
decreases with an increase in aspect ratio (L/d). This decrease is more consequential for the lower
value of aspect ratio.



Nanomaterials 2019, 9, 1326 10 of 15

Table 6. Effect of aspect ratio (L/d) on critical buckling load (Pcr) in nN with N = 7, e0a = 1, and Ha = 2.

L/d P-P C-P C-C C-F

5 13.098075 21.398879 29.701473 3.124893
10 4.210584 8.094859 13.772744 0.824504
15 1.974312 3.972494 7.267483 0.370283
20 1.132281 2.318949 4.374446 0.209052
25 0.731275 1.510526 2.893474 0.134022
30 0.510359 1.059208 2.046611 0.093157
35 0.376087 0.782797 1.520631 0.068481
40 0.288505 0.601638 1.172838 0.052449
45 0.228261 0.476628 0.931406 0.041452
50 0.185069 0.386801 0.757197 0.033582
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4.5. Influence of Hartmann Parameter

For the designing of electromagnetic devices, proper knowledge about the effect of electric
and magnetic fields on critical buckling load is necessary as it greatly influences the lifespan of
electromagnetic devices. In this regard, the effect of Hartmann parameter (Ha) on the critical buckling
load (Pcr) has been studied in this subsection for different values of Ha (0, 1, 1.5, 2, 2.5, 3, 3.5). Table 7
and Figure 6 represent the results for the variation of critical buckling load with Hartmann parameter
(Ha) for “P-P, C-P, C-C, and C-F” boundary conditions. From these results, we may note that the critical
buckling load decreases with increase in Hartmann parameter, but this drop in critical buckling load is
very slow.

Table 7. Effect of Hartmann parameter (Ha) on critical buckling load (Pcr) in nN with N = 7, e0a = 1,
and L = 10.

Ha P-P C-P C-C C-F

0 4.409527 8.246144 13.893850 1.182017
0.5 4.397093 8.236694 13.886284 1.160290
1 4.359791 8.208341 13.863584 1.094613

1.5 4.297621 8.161070 13.825741 0.983502
2 4.210584 8.094859 13.772744 0.824504

2.5 4.098678 8.009677 13.704575 0.614226
3 3.961904 7.905484 13.621213 0.348424

3.5 3.800262 7.782236 13.522631 0.022134
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5. Buckling Mode Shape

Buckling is the state of instability of structures that leads to structural failure. In this circumstance,
the buckling mode shape has a vital role in predicting the instability. In this regard, buckling mode
shapes were plotted with Ha = 0.5 and L = 10 for different e0a (0.5, 1, 1.5, 2). Figures 7–10
show the buckling mode shapes for “P-P, C-P, C-C, and C-F” boundary conditions, respectively.
From these figures, one may witness the sensitiveness of buckling mode shapes towards scaling
parameters. Also, these mode shapes help to predict the mechanical health and lifespan of several
electromechanical devices.

Nanomaterials 2019, 9, x FOR PEER REVIEW 12 of 16 

 

 

Figure 6. Response of ( )aH  on ( )crP  for 7=N , 10 =ae , and 10=L . 

5. Buckling Mode Shape 

Buckling is the state of instability of structures that leads to structural failure. In this 
circumstance, the buckling mode shape has a vital role in predicting the instability. In this regard, 
buckling mode shapes were plotted with 5.0=aH  and 10=L  for different ae0  (0.5, 1, 1.5, 2). 
Figures 7–10 show the buckling mode shapes for “P-P, C-P, C-C, and C-F” boundary conditions, 
respectively. From these figures, one may witness the sensitiveness of buckling mode shapes towards 
scaling parameters. Also, these mode shapes help to predict the mechanical health and lifespan of 
several electromechanical devices. 

 
Figure 7. Buckling mode shape for P-P boundary condition with 5.0=aH  and 10=L . 

Figure 7. Buckling mode shape for P-P boundary condition with Ha = 0.5 and L = 10.



Nanomaterials 2019, 9, 1326 12 of 15
Nanomaterials 2019, 9, x FOR PEER REVIEW 13 of 16 

 

 

Figure 8. Buckling mode shape for C-P boundary condition with 5.0=aH  and 10=L . 

 

Figure 9. Buckling mode shape for C-C boundary condition with 5.0=aH  and 10=L . 

Figure 8. Buckling mode shape for C-P boundary condition with Ha = 0.5 and L = 10.

Nanomaterials 2019, 9, x FOR PEER REVIEW 13 of 16 

 

 

Figure 8. Buckling mode shape for C-P boundary condition with 5.0=aH  and 10=L . 

 

Figure 9. Buckling mode shape for C-C boundary condition with 5.0=aH  and 10=L . 
Figure 9. Buckling mode shape for C-C boundary condition with Ha = 0.5 and L = 10.



Nanomaterials 2019, 9, 1326 13 of 15
Nanomaterials 2019, 9, x FOR PEER REVIEW 14 of 16 

 

 

Figure 10. Buckling mode shape for C-F boundary condition with 5.0=aH  and 10=L . 

6. Concluding Remarks 

The buckling behavior of Electromagnetic nanobeam is investigated in the combined framework 

of Euler–Bernoulli beam theory and Eringen’s nonlocal theory. Critical buckling load parameters 

were obtained using shifted Chebyshev polynomials-based Rayleigh-Ritz method for all the classical 

boundary conditions such as “Pined–Pined (P-P), Clamped–Pined (C-P), Clamped–Clamped (C-C), 

and Clamped-Free (C-F)”. The C-F boundary condition converges faster with 5=N , whereas other 

boundary conditions such as P-P, C-P, and C-C require 7=N  for achieving convergence to the 

desired accuracy. Critical buckling load parameters decrease with an increase in small scale 

parameter, and this decline is more in case of the C-C boundary condition. It may also be noted that 

the influence of small scale parameter is comparatively more in C-C edge and less in C-F edge. It is 

interesting to note that the critical buckling load decreases with an increase in aspect ratio. This 

decrease is more consequential for the lower values of aspect ratio. We may note that the critical 

buckling load decreases with an increase in Hartmann parameter, but this drop in critical buckling 

load is prolonged. The C-C nanobeam possesses the highest critical buckling load, whereas the C-F 

nanobeam possesses the lowest. 

Author Contributions: Conceptualization, S.C., S.K.J. and F.T.; Formal analysis, S.C., S.K.J. and F.T.; 

Investigation, S.C., S.K.J. and F.T.; Validation, S.C., S.K.J. and F.T.; Writing-original draft, S.C., S.K.J. and F.T.; 

Writing-review & editing, S.C., S.K.J. and F.T. 

Funding: This research received no external funding. 

Acknowledgments: The first two authors are thankful to Defence Research & Development Organization 

(DRDO), Ministry of Defence, New Delhi, India (Sanction Code: DG/TM/ERIPR/GIA/17-18/0129/020) for the 

funding to carry out the present research work. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Aifantis, E.C. Strain gradient interpretation of size effects. Int. J. Fract. 1999, 95, 299–314. 

Figure 10. Buckling mode shape for C-F boundary condition with Ha = 0.5 and L = 10.

6. Concluding Remarks

The buckling behavior of Electromagnetic nanobeam is investigated in the combined framework
of Euler–Bernoulli beam theory and Eringen’s nonlocal theory. Critical buckling load parameters
were obtained using shifted Chebyshev polynomials-based Rayleigh-Ritz method for all the classical
boundary conditions such as “Pined–Pined (P-P), Clamped–Pined (C-P), Clamped–Clamped (C-C),
and Clamped-Free (C-F)”. The C-F boundary condition converges faster with N = 5, whereas other
boundary conditions such as P-P, C-P, and C-C require N = 7 for achieving convergence to the desired
accuracy. Critical buckling load parameters decrease with an increase in small scale parameter, and this
decline is more in case of the C-C boundary condition. It may also be noted that the influence of small
scale parameter is comparatively more in C-C edge and less in C-F edge. It is interesting to note that the
critical buckling load decreases with an increase in aspect ratio. This decrease is more consequential for
the lower values of aspect ratio. We may note that the critical buckling load decreases with an increase
in Hartmann parameter, but this drop in critical buckling load is prolonged. The C-C nanobeam
possesses the highest critical buckling load, whereas the C-F nanobeam possesses the lowest.
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