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Abstract: Uniaxial strain was applied to aging Fe–Cr alloys to study the morphological orientation
and kinetics of the nanoscale α′ phase by utilizing phase-field simulation. The effects of applied
uniaxial compressive and tensile strain on the two and three-dimensional morphology as well as
on the separation kinetics of the α′ phase are quantitatively clarified. Compared with the applied
uniaxial tensile strain, the applied uniaxial compressive strain shows a greater effect on the rate of
phase separation, lath shape morphology and an increased rate of growth and coarsening in the α′

phase, the boundary of the α + α′ phase region is widened influenced by the applied compressive
strain, while the applied tensile strain results in an increase of particle number density and a decrease
of particle radius. The peak value of particle size distribution of the α′ phase increases with aging time,
while an opposite trend is shown under the applied strain, and there is an obvious deviation from
the theoretical distribution of Lifshitz–Slyozov–Wagner under compressive strain. The orientation
morphology and kinetic change show the substantial effects of applied strain on the phase separation
and supplies the method for the morphological control of nanoscale particles.
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1. Introduction

As one of the potential candidates for cladding and structural materials in future fusion reactors,
Fe–Cr alloys, the basic alloy of high-chromium duplex stainless steels, exhibit a combination of
beneficial properties [1–4]. The separation of the two-phase mixture of Fe-rich α phase and nanoscale
Cr-rich α′ phases in ferrite [1,3] can induce embrittlement by enhancing the hardness of the alloys.

Therefore, the phase separation in Fe–Cr alloys has attracted a great deal of attention [5–11].
The clustering of Cr atoms inside the miscibility gap of Fe–Cr alloys was studied by Zhou et al. [1] by
kinetic Monte Carlo simulations and atom probe tomography (APT) experiment. Dahlström et al. [8]
studied the initial stage phase separation in Fe–Cr alloys by 3D-APT, and their results showed that
phase separation is related to the nanostructure evolution and that Cr-rich regions form at the initial
stages of decomposition. Li et al. [9] focused on the effects of aging temperature and applied strain
on morphology by two-dimensional (2D) phase-field simulation, and showed that the orientation
of the Cr-rich phase is intensified as the temperature rises in 2D simulation. Yan et al. [11] studied
the evolution of the Cr-rich phase in a Fe-35 at. % Cr alloy by using 3D-APT and 3D phase-field
simulation, where the 3D simulation morphology and composition show good agreement with the
experimental results of APT and transmission electron microscope (TEM). Furthermore, Barker et al. [2]
discussed the effect of concentration on the spinodal decomposition of Fe–Cr alloys, and concluded
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that the qualitative morphology is very similar between 2D and 3D simulations, while the amplitude
is different. Therefore, the difference between 2D and 3D simulation results for the phase separation in
Fe–Cr alloys is still not clearly clarified and needs further study.

It is found that without external strain, the separation of individual phases is affected by the elastic
strain energy induced by composition inhomogeneity and the interfacial energy between precipitates
and matrix phase [12,13]. The external applied strain has a substantial effect on the phase separation
and spatial morphology of the second phase [14–19], which affects the mechanical, electrical and
magnetic properties [20]. Essentially, the external applied strain affects the phase transformation
and microstructure of the structural materials subjected to loading at high temperatures. Applied
tensile or compressive stress induces the orientation morphology of precipitates [21], and directional
coarsening is observed when annealed with tensile and compressive stresses [22–24]. The orientation
of the α′ phase in Fe–Cr alloys is perpendicular to the applied tensile strain, and the early-stage phase
separation is accelerated with the elevated temperature [25]. Prikhodko and Ardell [26–28] found
that applied compressive stress retards the growth of the precipitates and widens the distribution
of particle size [26]. Therefore, the effects of tensile and compressive strain on the morphology and
kinetics evolution of Fe–Cr alloys are of theoretical and practical importance.

In this work, first, a comparison of 2D and 3D phase-field simulations is performed for Fe-25 at. %
Cr alloy aged at 750 K, then the effects of the applied uniaxial tensile and compressive strain on the
morphology, and on the kinetics of the α′ phase in Fe-28 at. % Cr alloy aged at 750 K, are quantitatively
studied by 3D phase-field simulation; the rate of phase separation and later stage coarsening are
clarified by the variation of volume fraction and the particle size variation.

2. Materials and Methods

2.1. Elastic Strain Energy

The external applied strain εa
ij works as part of the elastic strain εel

ij = εa
ij + εij − ε0

ij, where a total

strain of εtot
ij = εa

ij + εij is defined, εij is the internal strain and ε0
ij the eigenstrain [29,30]. The eigenstrain

ε0
ij = ε0δij∆c is caused by the composition heterogeneity of precipitates and the matrix, where ε0 is

the composition expansion coefficient of the lattice parameter, δij is the Kronecker–delta function,
and ∆c = c− c0, where c is the composition of Cr and c0 is the initial average composition. The internal
strain can be given by solving the mechanical equilibrium equation [30]. Then, the elastic strain energy
density is expressed by

Eel =
1
2

Cijkl(ε
a
ij + εij − ε0

ij)(ε
a
kl + εkl − ε0

kl) (1)

where Cijkl is the elastic modulus.

2.2. Phase-Field Model

The morphology evolution of the Cr-rich phase with the body-centered-cubic (bcc) crystal
structure in Fe–Cr alloys can be described by the conservative composition field, through the
Cahn–Hilliard diffusion equation [31]:

∂c(r, t)
∂t

= V2
m∇ ·

[
M · ∇

(
δF
δc

)]
(2)

where t and r = (r1, r2, r3) are time and spatial coordinates, respectively. M is the chemical
mobility [32,33]: M = 1

Vm
[cMFe + (1− c)MCr]c(1− c), where MFe and MCr are atomic mobilities

of Fe and Cr, respectively, and are given by the Einstein relation, Mi = Di/RT, where i denotes the
atom Fe or Cr, R is the gas constant, T is the absolute temperature, and Di is the diffusion coefficient of
the i-th atom.
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The total free energy F [34] of Fe–Cr alloys, containing the chemical free energy G, interfacial
energy and elastic strain energy Eel is as follows:

F =
∫

V

{
1

Vm

[
G +

1
2

κ(∇c)2
]
+ Eel

}
dV (3)

where Vm is the molar volume of the alloy, the gradient energy coefficient κ is assumed as a constant
for the convenience of the numerical solution of the Chan–Hilliard equation [35].

2.3. Numerical Calculation

By substituting Equation (3) into Equation (2), the composition evolution equation is given by

∂c(r, t)
∂t

= Vm∇ ·
[

M∇
(

δG
δc
− κ∇2c + Vm

δEel
δc

)]
(4)

By introducing the dimensionless spatial coordinates r∗ = r/l, and time t∗ = tD/l2, where l is the
grid length and chosen as the average lattice constant of Fe and Cr, D = 10−24 m2·s–1 is the diffusion
coefficient used for dimensionless, and Equation (4) is transformed into a dimensionless form for
numerical solution:

∂c(r∗, t∗)
∂t∗

= ∇∗ ·
[

M∗∇∗
(

δG∗

δc∗
− κ∗(∇∗)2c +

δE∗el
δc

)]
(5)

where ∇∗ = ∂/∂(r/l), M∗ = VmRTc M/D, G∗ = G/RTc, κ∗ = κ/RTcl2, E∗el = VmEel/RTc,
and Tc = 900 K is the critical temperature of spinodal decomposition of the Fe–Cr alloy [18,36].
The dimensionless grid size is ∆x∗ = ∆y∗ = ∆z∗ = 1.0 and the time step is ∆t∗ = 0.001. The simulation
cell is set as 128∆x ∗×128∆y ∗×128∆z∗ for 3D simulation, and for 2D simulation it is 512∆x ∗×512∆y∗
in order to contain enough particles for statistical accuracy. The elastic constants of the precipitates
and matrix are referred to in the literature [37,38]. Also, in calculation, the magnitude of the initial
thermal fluctuations [−0.003, 0.003] is added into the composition to trigger the phase separation.

3. Results and Discussions

3.1. Morphological Evolution of the α′ Phase

In this section, the morphologies of the 2D and 3D simulations were quantitatively compared
under the uniaxial applied tensile strain along the x*-direction in the aging Fe–Cr alloy; the particle
number of α′ phase is counted as about 200 in the 2D simulation and 300 in the 3D simulation at the
initial separation stage.

Figure 1a–c shows the 3D perspective morphology of the α′ phase in Fe-25 at. % Cr alloy aged at
750 K under the applied strain εa

xx = 0.02. Figure 1d–f shows the 2D morphology aged at the same
time corresponding to Figure 1a–c, respectively, and the 2D morphology of the α′ phase is shown
in a cell with 256∆x∗ × 256∆y∗. It can be seen that, under the influence of the applied tensile strain
with the increase in aging time, the α′ phase particles change from the initial near-spherical to an
elongated shape along the y*-direction as shown in Figure 1. This orientation of the α′ phase depends
on the sign of eigenstrain and the applied strain, which is illustrated in detail by Li and Chen [29]; the
elongated direction can be deduced from the ratio δ of the shear modulus of the precipitates to the
matrix phase [39]. Under the tensile strain, the soft α′ phase in the Fe–Cr alloy elongates along the
y*-direction perpendicular to the direction of the applied strain [25].
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Figure 1c,f. It should be noted that an overlap of the α′ phase particles can be obviously observed in 
the plane view of 3D figures. 
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accelerates the initial phase separation. It can also be observed that the Vf and <R> calculated from 
the TEM micrographs are closer to the results of the 3D simulation without applied strain, as shown 
in Figure 2. Moreover, the 2D simulation does not give the complete spatial structure, such as the 
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Figure 1. The temporal evolution of α′ phase in Fe-25 at. % Cr alloy aged at 750 K under the applied
uniaxial tensile strain 0.02, (a,d) t = 115 h, (b,e) t = 805 h, (c,f) t = 3450 h, (a–c) 3D morphology,
(d–f) 2D morphology.

The α′ phase in 2D is similar to the y*-x* view of the 3D morphology. Observed from the
morphology of the α′ phase in 2D and 3D simulations, the particles elongate in the y*-direction normal
to the direction of the applied uniaxial tensile strain (x*-direction), which is obvious from Figure 1c,f.
It should be noted that an overlap of the α′ phase particles can be obviously observed in the plane
view of 3D figures.

To study the separation kinetics of the α′ phase, a comparison of the simulation results of the
volume fraction and the particle radius of the α′ phase with the experimental results is performed for
the state without applied strain. The experimental data of the volume fraction Vf and the average
particle radius <R> of the α′ phase calculated from TEM micrographs [40] with aging for 800 h and
2000 h are depicted in Figure 2. In addition, the 2D and 3D simulation data with and without applied
strain are also shown.Nanomaterials 2019, 9, x FOR PEER REVIEW 5 of 12 
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Figure 2. The evolution of the volume fraction Vf (a) and the average particle radius <R> (b) of α′ 
phase in Fe-25 at. % Cr alloy aged at 750 K under the applied uniaxial tensile strain 0.02 and 0.0 for 
2D and 3D simulations, and the experimental data without applied strain. 

It can be seen from the variation of Vf in Figure 2a that the phase separation shown by 3D 
simulation is faster than that of the 2D results. The <R> of the α′ phase under applied strain is 
smaller than that without applied strain at the coarsening stage, as shown in Figure 2b. Also, the 
change of <R> indicates that the coarsening of the α′ phase is faster in 3D simulation than that of 2D 
simulation; the reason for this can be attributed to the faster interconnection of neighbouring 
particles in 3D space and the larger driving force available for coarsening in reducing the interfacial 
curvature [41]. Therefore, the phase separation and coarsening rate simulated by the 3D model are 
faster than that of the 2D simulation. 
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Figure 2. The evolution of the volume fraction Vf (a) and the average particle radius <R> (b) of α′

phase in Fe-25 at. % Cr alloy aged at 750 K under the applied uniaxial tensile strain 0.02 and 0.0 for 2D
and 3D simulations, and the experimental data without applied strain.
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The simulated and experimental Vf and <R> without applied strain indicate that the α′ phase
aged for 800 h is still at initial growth stage, as shown in Figure 2a,b, while the Vf with applied
strain almost reaches the equilibrium value at 800 h, as is seen in Figure 2a. Thus, the applied strain
accelerates the initial phase separation. It can also be observed that the Vf and <R> calculated from
the TEM micrographs are closer to the results of the 3D simulation without applied strain, as shown
in Figure 2. Moreover, the 2D simulation does not give the complete spatial structure, such as the
interconnection of particles; therefore, the 3D simulation is closer to the experimental results.

It can be seen from the variation of Vf in Figure 2a that the phase separation shown by 3D
simulation is faster than that of the 2D results. The <R> of the α′ phase under applied strain is smaller
than that without applied strain at the coarsening stage, as shown in Figure 2b. Also, the change of
<R> indicates that the coarsening of the α′ phase is faster in 3D simulation than that of 2D simulation;
the reason for this can be attributed to the faster interconnection of neighbouring particles in 3D
space and the larger driving force available for coarsening in reducing the interfacial curvature [41].
Therefore, the phase separation and coarsening rate simulated by the 3D model are faster than that of
the 2D simulation.

3.2. Effect of Applied Strain on Separation Kinetics

In Section 3.1, as the results of 3D simulation are closer to the experimental values compared to
the 2D results, the 3D simulation is therefore performed to study the kinetic evolution of the α′ phase
under applied tensile and compressive strain in Fe-28 at. % Cr alloy aged at 750 K.

3.2.1. Composition Boundary Change under Applied Strain

Andersson and Sundman [42] compared the spinodal line predicted by the thermodynamic model
with the experimental data and showed that there is no clear boundary between the nucleation-growth
and spinodal decomposition region, while a transition region exists from the nucleation growth to
spinodal decomposition near the spinodal line [43], Xiong et al. [36] summarized the results for the
nucleation growth and spinodal decomposition in the phase diagram; the data show an overlap around
the spinodal line. To estimate the phase boundary of the α and α′ phase, we calculated the free energy
including chemical and elastic energy in the Fe–Cr alloy with Cr concentration ranges from about 0.0
to 1.0 at 750 K. The equilibrium composition of phase separation is derived from the tangent of free
energy curves; the boundaries of the phase separation at 750 K are about cCr = 17 at. %, and the critical
compositions of spinodal decomposition are about cCr = 30 at. %. Theoretically, the phase separation
happens via nucleation and growth in the metastable region with cCr = 17 at. % to 30 at. % at 750 K,
while the spinodal decomposition happens when the composition is greater than cCr = 30 at. % inside
the spinodal regions. The composition of cCr = 28 at. % is near the spinodal boundary in the metastable
regions; this section is focused on the effects of tensile and compressive strain on the phase separation
of α′ phase in Fe-28 at. % Cr alloy aged at 750 K.

An anisotropic and soft precipitate in the presence of an externally applied stress tends to become
thicker and will require more energy than one which inclines to become thinner [21], such as the
plate-shaped particles under compressive strain shown in Figure 3. Therefore, the separation of the
α′ phase under compressive strain is easier than that of tensile strain. The Cr concentrations of the α

and α′ phase in Fe-28 at. % Cr alloy aged at 750 K are calculated with applied tensile and compressive
strain, as shown in Table 1. It can be seen that the boundary of Cr concentrations in the α and α′ phase
under compressive strain is wider than that of tensile strain, which is consistent with the effect of
compressive and tensile strain on the free energy that decides the equilibrium concentrations.
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Figure 3. The morphology of α′ phase in the Fe-28 at. % Cr alloy aged at 750 K for t = 1150 h. (a) without
applied strain εa

xx = 0.0, (b) tensile strain εa
xx = 0.02, (c) compressive strain εa

xx = −0.02.

Table 1. The Cr concentration (at. %) in α and α′ phase of Fe-28 at. % Cr alloy aged at 750 K with and
without applied strain.

Strain α (at. % Cr) α′ (at. % Cr)

εa
xx = −0.02 16.9 84.2
εa

xx = 0.02 17.5 82.3
εa

xx = 0.0 18.1 82.0

3.2.2. Orientation Morphology of the α′ Phase under Applied Strain

The directional coarsening of precipitates under the applied stress will affect the mechanical
properties, which is known as rafting in superalloys. Wang et al. [44] and Schmidt et al. [45] both
simulated the directional coarsening of Ni-based superalloys by the phase-field model, and the
rafting of the γ′ phase is observed when the external strain is tensile or compressive. In this work,
the morphology of the α′ phase in Fe-28 at. % Cr alloy aged at 750 K is studied under applied uniaxial
strain along the x*-direction, as shown in Figure 3, where three different strains, εa

xx = 0.0, 0.02 and
−0.02, are applied and are shown in Figure 3a–c, respectively.

The α′ phase particles, as shown in Figure 3a, are randomly distributed with a near-spherical
shape without applied strain, while the orientation of the α′ phase is obvious when the uniaxial strain
0.02 is applied in Figure 3b. Under the tensile strain, the α′ phase is elongated in the y*-direction
that is normal to the direction of the applied uniaxial strain, as illustrated in Figure 3b. However,
the orientation of the α′ phase under the compressive strain is parallel to the direction of applied
uniaxial strain (x*-direction) and shows a lathy shape, as depicted in Figure 3c.

Wang et al. [44] clarified that the difference of the elongated direction between the tensile and
compressive strain depends on whether the phase is hard or soft, and the lattice mismatch of the
precipitates is either positive or negative. Zhu et al. have demonstrated that the α′ phase is soft in
Fe–Cr alloys [25]. In addition, the interactions between the applied strain and eigenstrain can cause the
orientation difference of morphology for tensile or compressive strain. As shown in Fratzl’s results [21],
for the soft precipitates, the matrix will prevent them from contracting along the plate, which can
only contract in the direction perpendicular to the plate; hence, the anisotropic part of the strain is a
contraction in this direction, and so the plate-like precipitates will be energetically favoured when the
stress tends to compress them.

In the Fe–Cr alloys, a negative elastic anisotropy (CM
11 − CM

12 − 2CM
44 < 0) [46] of the matrix and

a positive elastic anisotropy of precipitates coexist, and the eigenstrain of the two-phase system is a
dilatational strain for a positive lattice misfit of 0.0056. When the tensile strain is along the x*-direction,
the precipitates elongate in the y*-direction, while the compressive strain produces an inverse result [44].
Therefore, the orientation of the α′ phase under compressive strain is along the direction of applied
strain, while it is normal to the direction of tensile strain (Figure 3b,c). The orientation of the lathy
shape α′ phase also indicates the potential morphology design via the application of external strain
during aging.
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3.2.3. Separation Kinetics of the α′ Phase under Applied Strain

To compare the effect of tensile and compressive strain on the kinetic evolution of the α′ phase,
the same thermal fluctuation is added into the initial composition to trigger the phase separation
with applied tensile and compressive strain. Figure 4a,b shows the temporal evolution of the volume
fraction Vf and the particle number density Nd of the α′ phase in Fe-28 at. % Cr alloy aged at 750 K
by 3D simulation. It can be seen that the values of Vf and Nd under compressive and tensile strain
are greater than that without applied strain at the early stage, and the effect of compressive strain
is more obvious. To reveal the kinetic change of the α′ phase under the effect of applied tensile and
compressive strain, the early-stage change rates kv of Vf and kd of Nd of the α′ phase as a function of
applied strain are shown in Figure 4c. The change rates of Vf and Nd also show a greater effect for
compressive strain on the phase separation than that of tensile strain.
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of the α′ phase in Fe-28 at. % Cr alloy aged at 750 K under applied strain for 3D simulation, and the
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The equilibrium Vf under compressive strain is 16%, which is a little higher than the 15% for
tensile strain or without applied strain. The steady-state coarsening is regarded as beginning when the
equilibrium Vf is reached. With this definition, the steady-state coarsening begins at about 500 h for
both compressive and tensile strain, while it is about 1000 h without applied strain, as shown by the
Vf in Figure 4a. To compare the effects of tensile and compressive strain on the coarsening, the time
exponent n for average particle radius <R>, and the time exponent m for particle number density
Nd of α′ phase after aging for 600 h are listed in Table 2. In Table 2, the time exponent m of particle
number density Nd is −0.62 under compressive strain, which is greater than the value of −0.34 under
tensile strain and −0.32 without applied strain at the coarsening stage. The reason for this is that the
directional coarsening (Figure 3c) leads to a fast decrease of the particle number under the compressive
strain. Therefore, the compressive strain has more obvious effects on accelerating the coarsening than
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that of tensile strain, and the time exponents of <R> under compressive and tensile strain are both less
than without applied strain.

Table 2. The time exponent m for Nd and n for <R> of α′ phase in Fe-28 at. % Cr alloy aged at 750 K.

Time Exponent εa
xx = −0.02 εa

xx = 0.0 εa
xx = 0.02

m (Nd ~ tm) −0.62 −0.32 −0.34
n (<R> ~ tn) 0.21 0.25 0.12

As shown in Figure 5, there is an apparent increase in the average particle radius <R> as the aging
time increases, and the particle radius without applied strain is a little larger than that under applied
strain at the steady-state coarsening stage (t > 600 h). The coarsening rate constant kc is calculated to
compare the effects of uniaxial tensile and compressive strain; the coarsening rate constants under
uniaxial compressive and tensile strain are, respectively, kc3 = 0.01 nm3 h−1 and kc2 = 0.004 nm3

h−1, which is less than the value kc1 = 0.013 nm3 h−1 without applied strain. Kim and Voorhees [47]
calculated the coarsening rate constant of Ostwald ripening under a constant equivalent radius of
particles; the results show that the coarsening rate constant decreases with an increasing aspect ratio of
particles. In this study, the coarsening rate constant is calculated with both coalescence coarsening and
Ostwald ripening. The coarsening rate constant kc2 with high aspect ratio of 4.5 under compressive
strain is greater than kc1 with an aspect ratio of 2.01 under tensile strain, which is different from Kim’s
results. The difference is due to the assumption of the constant radius and increased number density
by Kim et al. [47], while the particle number density decreases in the present results.
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Figure 5. The temporal evolution of the average particle radius <R> of the α′ phase in Fe-28 at. % Cr
alloy aged at 750 K under applied strain.

Figure 6 shows the variation of particle size distribution (PSD) of the α′ phase with the aging time
under compressive and tensile strain; the histogram is the simulation result and its Gaussian fitting is
shown by the solid line, and the red dashed line is the theoretical value of Lifshitz–Slyozov–Wagner
(LSW) [48]. When there is no applied strain, the peak value of the PSD rises as the aging time increases,
with the peak position located at 1.0 and similar to the theoretical value of LSW, as shown in Figure 6a–c.
However, the peaks start decreasing under the applied strain as aging time increases, which is lower
than LSW’s prediction, as shown in Figure 6d–i. The change of the PSD peaks is caused by the
additional strain energy, which changes the particle shape and spatial distribution strongly; thus,
the state of the system is different to LSW’s assumptions of a dilute solution without elastic interactions.
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Figure 6. The histogram of the particle size distribution (PSD) of the α′ phase in Fe-28 at.% Cr alloy as
a function of aging time aged at 750 K, (a–c) εa

xx = 0.0, (d–f) εa
xx = 0.02, (g–i) εa

xx = −0.02. (a,d,g) 115 h,
(b,e,h) 690 h, (c,f,i) 1150 h.

Under the tensile and compressive strain, the width of PSD becomes broader, as shown in
Figure 6d–i. The PSD indicates that the particle size is similar at the initial phase separation stage,
then the α′ phases coalesce into large particles or some small particles are dissolved via Ostwald
ripening, and so the width of the PSD becomes broader. It is noted that the PSD has obvious changes
under compressive strain, as shown in Figure 6g–i. Due to the formation of lathy particles via the
directional coarsening and arrangement along the z*-axis, the PSD deviates from the normalized
distribution. The coarsening of the α′ phase results in the increase of the average particle radius <R>
and the movement of the peak position of PSD to the left, especially for the applied compressive
strain εa

xx = −0.02. In addition, the height of the histogram shows a more obvious decrease under
εa

xx = −0.02 than that of εa
xx = 0.02, as shown in Figures 6g–i and 6d–f. Therefore, the peak value

of PSD increases with the aging time without applied strain, while it decreases under the effects of
applied strain, especially for the applied compressive strain.

4. Conclusions

The temporal morphology and the kinetics of the nanoscale α′ phase under the external
applied strain in an aged Fe-25 at. % Cr alloy are investigated by two and three-dimensional
phase-field simulations. The study shows that the 3D simulation is closer to the experimental results.
Also, the applied uniaxial compressive strain illustrates more obvious effects on the morphological
orientation and separation rate of the α′ phase than the uniaxial tensile strain, the lathy α′ phase
with directional coarsening is observed, and the particle size distribution deviates from a normal
distribution. In addition, the composition boundary of the α + α′ phase region can be seen to be widely
influenced by the applied compressive strain.

The applied strain accelerates the initial phase separation, while the coarsening rate decreases
under the applied strain for the steady-state coarsening of the α′ phase, and the applied compressive
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strain induces a greater change rate of growth and coarsening than that of tensile strain. The α′ phase
is elongated in the direction normal to the direction of the applied uniaxial tensile strain, while the
elongation of the α′ phase is parallel to the direction of uniaxial compressive strain. The peak value
of particle size distribution decreases under the applied strain, especially for the compressive strain.
The results are helpful for understanding the evolution of nanoscale particles under applied strain,
and indicate a microstructure design with orientation arrangement.
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