@ nanomaterials WW\D\Py

Review

Multifunctional Inorganic Nanoparticles: Recent
Progress in Thermal Therapy and Imaging

Kondareddy Cherukula !, Kamali Manickavasagam Lekshmi !, Saji Uthaman !, Kihyun Cho 2,
Chong-Su Cho ** and In-Kyu Park 1*

1 Department of Biomedical Science and BK21 PLUS Centre for Creative Biomedical Scientists,

Chonnam National University Medical School, Gwangju 501-746, Korea; cherrikonda@gmail.com (K.C.);

kamali.mvasagam@gmail.com (K.M.L.); sajiuthaman@gmail.com (S.U.)

Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences,

Seoul National University, Seoul 151-921, Korea; andrew.kihyun.cho@gmail.com

*  Correspondence: chocs@snu.ac.kr (C.-S.C.); pik96@chonnam.ac.kr (L-K.P.); Tel.: +82-2-880-4868 (C.-S.C.);
+82-61-379-8481 (1.-K.P.)

Academic Editor: Yurii K. Gunko
Received: 29 February 2016; Accepted: 6 April 2016; Published: 18 April 2016

Abstract: Nanotechnology has enabled the development of many alternative anti-cancer approaches,
such as thermal therapies, which cause minimal damage to healthy cells. Current challenges in cancer
treatment are the identification of the diseased area and its efficient treatment without generating
many side effects. Image-guided therapies can be a useful tool to diagnose and treat the diseased tissue
and they offer therapy and imaging using a single nanostructure. The present review mainly focuses
on recent advances in the field of thermal therapy and imaging integrated with multifunctional
inorganic nanoparticles. The main heating sources for heat-induced therapies are the surface plasmon
resonance (SPR) in the near infrared region and alternating magnetic fields (AMFs). The different
families of inorganic nanoparticles employed for SPR- and AMF-based thermal therapies and imaging
are described. Furthermore, inorganic nanomaterials developed for multimodal therapies with
different and multi-imaging modalities are presented in detail. Finally, relevant clinical perspectives
and the future scope of inorganic nanoparticles in image-guided therapies are discussed.

Keywords: inorganic nanoparticles; surface plasmon resonance; alternate magnetic field;
photothermal therapy; imaging; image-guided therapy

1. Introduction

Cancer treatment is mainly performed with chemotherapy, radiation, and surgery. However, all
these strategies have limitations, such as toxic side effects, healthy cell damage, and tumor recurrence.
Researchers have investigated alternative and complementary therapies to completely eliminate tumor
cells and prevent cancer recurrence. In the past few decades, hyperthermia has been used to kill
exclusively the tumor cells. Nanoparticles using organic molecules have been widely investigated for
thermal therapy and imaging [1-3]. Although organic dye molecules with low tissue absorbance and
enhanced photothermal effects have been used for thermal therapy, photobleaching remains one of
their major drawbacks [4]. Recently, inorganic nanoparticles have attracted attention in the fields of
heat-induced cancer therapy and imaging owing to their optical, magnetic and their inertness; thus,
they provide an attractive alternative for image-guided therapies, as shown in Figure 1. Inorganic
nanoparticles have exhibited diverse physical properties, such as fluorescence, near-infrared (NIR)
absorption, and Raman enhancement and applications such as photoacoustic imaging (PAI) and
magnetic resonance imaging (MRI) [5]. However, clearance of inorganic nanoparticles and their long
term toxicity need to be examined very carefully before using in clinics. Surface modification of
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the nanoparticles by conjugating molecules such as polyethylene glycol (PEG) would change the
circulation scenario of the nanoparticles in vivo, and is excreted from the body without eliciting any
potential toxicity. Carbon materials such as graphene and carbon nanotubes, due to their nucleus
penetration ability, exhibit genotoxicity. By modifying the surface with PEG, toxicity can be reduced
and it is excreted from the mice gradually [6]. Thus, by carefully designing the formulation these
nanoparticles, potential barriers such as intrinsic toxicity and clearance can be avoided for a better
therapeutic outcome.
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Figure 1. Scheme illustrating the potential of inorganic nanoparticles in heat-induced therapies and
imaging. US: ultrasound; MR: magnetic resonance; CT: computed tomography; QD: quantum dot;
UCNP: upconversion nanoparticles; CuS: copper sulfide; CNT: carbon nanotube; AMF: alternate
magnetic field; ROS: reactive oxygen species.

In the past few decades, photothermal therapy (PTT) has attracted increasing interest as an
effective cancer treatment [7]. Large electric fields are induced at the surface level of metal nanoparticles
by the coherent oscillation of electrons in the conduction band when they interact with resonant
electromagnetic radiation. The rapid relaxation of these excited electrons can produce heat locally
and can be utilized to kill cancer cells in thermal-based therapies. This electric field enhances the
photo-physical properties of the nanoparticles and is termed the surface plasmon resonance (SPR) [8].
The surface properties of noble metals are greatly enhanced when their sizes are reduced to the
nanoscale owing to their strong SPR. Metallic nanoparticles offer various advantages for PTT because
they exhibit higher absorption cross-section compared to organic dyes and thereby reduce the energy
required for laser treatment, enabling a minimally invasive therapy. In addition, metallic nanoparticles
do not undergo photobleaching upon irradiation and thus show high photostability and achieve
effective laser therapy [9]. Two mechanisms have been proposed to describe cell death caused by PTT:
apoptosis and necrosis. Apoptosis is an active and controlled process that induces cell death without
triggering immune and inflammatory reactions whereas necrosis is a passive process resulting in
membrane damage [10] and thus leading to inflammation by releasing damage-associated molecular
pattern molecules (DAMPs) [11].

Magnetic hyperthermia (MHT) has been used for cancer treatment as early as 1957. In this
method, which has few side effects, tumor cells are supplied with heat using magnetic nanoparticles
and an alternating magnetic field (AMF) [12-15]. Temperatures ranging between 42 and 46 °C can
effectively kill the cancer cells while sparing the healthy ones during AMF application [16]. AMF
heating has several advantages over other heating methods, such as tumor temperature regulation and
deep penetration [17]. Recently, carbon-based nanomaterials, such as graphene and carbon nanotubes,
have attracted attention in the research of heat-induced therapies such as PTT owing to their unusual
absorption properties in the NIR region [18]. In reduced graphene oxide (rGO), NIR absorption is due
to the creation of a large electron density by displacing the oxygen atoms [19]. Carbon nanomaterials
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have been proven to be efficient PTT agents owing to their high photon-to-thermal energy conversion
efficiency and high absorption cross section in the NIR region [20].

Thermal therapies use either light or magnetism as source for heating the tumor cells. MHT has
been studied in the humans for the treatment of glioblastoma and prostate cancer [21,22]. On the other
hand, PTT will soon find its application in clinics owing to its promising results in animal models.
However, both approaches are limited by certain factors such as dosage, toxicity, etc. Multimodal
therapies help us achieve the enhanced therapeutic effect by overcoming the drawbacks of individual
therapies. Thermal therapies are often integrated with the other conventional therapies such as
chemotherapy, radiation therapy, efc. to enhance their therapeutic potential and achieve combinatorial
anti-cancer effects [22-24]. Multimodal therapies have been demonstrated to be effective strategies for
the complete elimination of tumor cells and have provided better therapeutic efficacy than single-mode
therapies [23-27]. Multifunctional nanoparticles, which provide multimodal imaging, are essential for
detecting and treating the cancer at very early stages. Inorganic nanoparticles have been engineered to
offer multimodal imaging and to collect information from the tumor site, thus enabling the clinicians
to treat cancer effectively. Several inorganic nanoparticles have been designed to be multifunctional
theranostic agents and exhibit favorable properties for multimodal imaging [28-30].

2. Surface Plasmon Resonance-Based Thermal Therapy

Thermal ablation of plasmonic nanoparticles proved to be an effective strategy because of its
unique properties of plasmonic nanoparticles such as deep penetration into human tissue with minimal
damage and thus aids in a thermal therapy with biocompatibility and reduced toxicity to the healthy
cells [31].

2.1. Nanoscale Gold Particles

Nanoscale gold particles (NGP) are the extensively studied plasmonic nanomaterial for thermal
therapy because of their enhanced photostability, higher light-to-heat conversion efficiencies, improved
biocompatibility and importantly plasmon resonance in the NIR region [32]. NGPs have much stronger
light absorption and emission properties than any other organic dye molecules owing to their SPR
properties; hence, they are very attractive option for PTT [33]. At present, three major classes of NGPs
are extensively used for PTT: (1) gold nanorods (NRs); (2) gold nanoshells; and (3) gold nanocages.
The photothermal properties of NGPs mainly depend on the size, shape, and dielectric constant of
the medium. NGPs have strong absorbance in the UV region although the SPR absorption red-shifts
to the NIR region after aggregation. Metallic nanoparticles such as gold nanoparticles tends to
aggregate due to van der Waals forces and hydrophobic forces [34]. Spherical gold nanoparticles
attained importance in thermal therapy due to its aggregation properties and high NIR absorption,
but it suffers from low disintegration and low tissue clearance which eventually causes potential
toxicity [35]. Gold NRs exhibit higher SPR absorption than spherical particles owing to their aspect
ratio. The SPR red shift reaches a maximum with an increase in the aspect ratio of the gold NRs.
Similarly, a reduction of the ratio of the thickness of gold nanoshells to their core diameter greatly
enhances the SPR wavelength [36-38].

At present, different morphologies of gold nanomaterials are explored to achieve enhanced
therapeutic outcome. One such strategy was to coat the gold nanoparticles with amorphous SiO; to
form the gold nanoaggregates. This coating of SiO; on gold nanoparticles which is greater than 1.4 nm
showed improved biocompatibility and also served as a dielectric spacer to tune the PTT [39]. PTT
efficiency of nanoaggregates was comparable with the other morphologies such as gold NRs with
similar Au concentrations (30 mg/L) [40]. Even though the hydrophilic property of silica is used for
the biodistribution of nanomaterials, it also interacts with the normal tissues and causes subsequent
damage [41]. Therefore, amphiphilic polymers were grafted on NGPs to form dense self assembled
structures. PTT studies showed a AT of 23 °C and esterase dependent disintegration of nanoparticles
and successful cellular damage in vivo [42].Polymers that induces thermo responsive properties were
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formulated with gold NRs as nanocomposites to facilitate the tissue penetration and reduced size for a
better cytotoxic effects [43]. NGPs are employed in various imaging techniques, such as photoacoustic
imaging (PAI), two-photon luminescence microscopy, and dark-field microscopy [44—46]. Colloidal
gold nanoparticles have also been used as enhancers for X-ray computed tomography (CT) imaging
owing to the high atomic number and high absorption coefficient of gold. Gold nanoparticles provide
greater contrast and less interference compared to the conventionally used iodine [47]. They have also
been observed to increase the contrast of magnetic resonance imaging (MRI) contrast agents, such as
gadolinium and iron oxide nanoparticles, by enhancing their retention and optical properties [48].

Recently, gold nanoparticles have been extensively used in multifunctional platforms, such
as combination therapies and theranostic applications. One such combination therapy, reported by
Ming et al. [49], used a gold NR-capped magnetic core conjugated on mesoporous silica shell exhibiting
synergistic chemo- and photothermal therapy and offered combined MRI and infrared thermal
imaging modalities in one system. Huiyi et al. [50] designed low systemic toxicity multifunctional
nanocomposites comprising of gold nanoshells on silica nanorattles (GSNs). The GSNs demonstrated
optical tunability and high payload with sustained drug release. Drug-loaded GSNs also showed
mild low side effects and higher therapeutic effect. The triple-combination therapy, which integrates
chemo-, radio-, and thermal therapy with novel metal nanoparticles, was developed by Park et al. [51].
A formulation of doxorubicin-loaded hollow gold nanoparticles (Dox-HGNPs) demonstrated the
synergy of heat, drug, and radiation therapies. The release of Dox was triggered by an NIR laser and
increased with irradiation. The radiosensitization resulted in a high level of y-H2AX (phosphorylated
histone) foci than before the irradiation, proving the radioenhancing effect of Dox-HGNPs. CT
imaging studies were performed to compare the clinically available Ultravist 300 and HGNPs and
concluded that Dox-HGNPs exhibited a linear dependence of the absorption on the concentration and
an attenuation coefficient higher than that of Ultravist 300, as shown in Figure 2.

A c
Dox-HGNP
47 mg/L 15 mg/L 4.18 mg Awml
A
174 mg/L
'\ ] air
332 mg/L bt
648 mg/L
B D
2500 Ultravist 300
" 22.12 mg I/ml
% 2000 . Ultravist 300
= i v + 11.06 mg I/ml
5
b
L
i 1000
3
T 500

Dox-HGNP (mg/mi)

Figure 2. In vitro and in vivo micro-CT images: (A) concentration-dependent CT images of air, distilled
water, and doxorubicin-loaded hollow gold nanoparticles (Dox-HGNPs); (B) X-ray absorption of
Dox-HGNP and Ultravist 300; (C) cross-sectional CT image in the back skin of mice after injection
of Dox-HGNPs; and (D) Ultravist 300. Reproduced with permission from [51]. Copyright Journal of
Controlled Release, Elsevier, 2015.
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PTT and photodynamic therapy (PDT) are two photon-mediated therapeutic methods that can
be combined in one platform for efficient cancer-killing efficiency. The integrated PTT and PDT
nanoplatform aims to achieve reactive oxygen species (ROS) and hyperthermia-mediated cellular
damage [52]. Table 1 demonstrates the theranostic potential of gold nanoparticles.

Table 1. Various types of multifunctional gold nanoparticles used in image-guided therapies.

Nanomaterials Therapy Imaging modality Ref.
Ce6-loaded gold vesicles (GV-Ce6) PTT/PDT Fluorescence/thermal /PAI [53]
Ceb6 conjugated aptamer . .
functionalized gold NR PTT/PDT Fluorescence imaging [54]
Gold NR-photosensitizer complex . .
(GNR-AIPcS4) PTT/PDT Fluorescence imaging [55]
Chitosan functionalized pluronic . .
nanogel-loaded gold NRs and Ce6 PTT/PDT Thermal/fluorescence imaging [56]
Gold nanoshelled microcapsules PTT Thermal/ultrasound imaging (USI) [57]
Cyclic RGD conjugated
gold nanostar (RGD-GNS) PTT Thermal/PAT [58]
Gold NRs and conjugated .
poly(styrene-alt-maleic acid) and ICG PIT Two-photon luminescence (591
CD44v6-conjugated . . .
PEG-modified gold nanostars PTT PAI/ Infrared microscopic imaging [60]
Gold NR-encapsulated
protein-shell microbubbles PTT PAI/two-photon fluorescence [61]
Gold-poly dopa core-petal nanostructures PTT/PDT Fluorescence imaging [62]
Gold nanostars PTT/PDT X-ray imaging/fluorescence imaging [63]
Methylene blue-loaded gold NR-SiO,
core-shell nanocomposites PTT/PDT Fluorescence imaging [64]

(MB-GNR@SiO,)

Chlorin e6 conjugated gold nanostars

Fluorescence imaging/

(GNS-PEG-Ceb) PTT/PDT US imaging/PAI [65]
Super paramagnetic Fe304 welding on Au

shells with polyphosphazene as coating agent PIT MRI [66]
Gold colloids coated on polystyrene sphere o .

modified with chitosan and containing Fe3O4 PIT MRI/dark field imaging (671
Hyaluronic acid-modified Fe3O3—Au PTT MRI/CT/thermal imaging [68]
core/shell nanostars

Core-shell Fe304—mSiO, nanoparticles PTIT MRI [69]
Core-shell structure

Core: Gold nanoparticles coated PTT MRI/CT (70]

with polydopamine

Shell: ICG and functionalized lipids with
gadolinium and lactobionic acid

Although gold nanoparticles does not exhibit inherent toxicity, capping agents such as cationic
ligands elicited toxicity in in vitro applications [71]. Therefore, a precise design considering factors
such as toxicity and systemic interactions would greatly enhance the therapeutic efficacy of gold
nanoparticles. Because a great variety of targeting and recognition units can be conjugated on the
surface of gold nanoparticles, issues such as systemic toxicity and immunogenicity can be avoided.

2.2. Silver Nanoparticles

Similarly to gold nanoparticles, silver nanoparticles have photo-thermal conversion properties.
Many studies have combined these two noble metals into core-shell nanostructures. Gold is
often selected as the shell over a silver core because of its better NIR absorption. Galvanic
repulsion and seed-mediated growth are popular techniques employed to fabricate Au/Ag core/shell
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structures [72,73]. Recently, Shi et al. [74] designed Au@Ag/Au nanoparticles for image-guided
thermotherapy. Au@Ag/Au nanoparticles are formed by coating of Au NR with Ag and coated
again with the Au nanolayer to increase the biocompatibility. Activatable aptamer probes containing
thiolated aptamer and fluorophore-labeled cDNA were self-assembled on Au@Ag/Au, whereas the
nanoparticles acted both as fluorescence quenchers and heaters. Fluorescence signal activation occurs
during target recognition and thus offers on-demand PTT therapy using image-guided irradiation.
In another work of Boca et al., chitosan-coated triangular silver nanoparticles were synthesized; these
were proven by in vitro results to be effective phototherapeutic agents with strong NIR resonances and
exhibited an enhanced hyperthermia effect compared to PEG-capped gold NRs [75].

2.3. Platinum Nanoparticles

Platinum-based drugs have been used extensively in chemotherapy and, in recent times, they
have drawn interest as a fluorophore and PTT of tumors. Although platinum nanoparticles exhibit
antioxidative and DNA-strand breaking capacity owing to their potential toxicity, their use is not
encouraged for anticancer therapy because of side effects and dose-limited toxicity [76]. By carefully
controlling their size and shape, the systemic toxicity can be reduced [77,78]. Manikandan et al. [79]
synthesized non-toxic platinum nanoparticles by a nucleation-reduction reaction of the Pt precursor
and the particles showed effective photothermal killing of cells. Cancer cells reduced the platinum
metal {Pt (IV)} salts to metallic nanoclusters although the mechanism of this effect is still unknown.
Chen et al. designed a rapid one-step synthesis of fluorescent nanoclusters of platinum by the
collaborative reduction of glutathione and ascorbic acid with chloroplatinic acid as a precursor [80].
They have also reported the spontaneous synthesis of biocompatible platinum nanoclusters by
cancerous cells, which can be helpful in PTT and imaging. The biosynthesized nanoclusters proved
to be a novel platform for image-guided PTT when combined with the porphyrin derivative tetrakis
(sulfonatophenyl) porphyrin (TSPP) [81].

2.4. Palladium Nanoparticles

Palladium has a higher melting point and photothermal stability and has shown tunable localized
SPR in the NIR region. Palladium nanosheets have been observed to be more stable than gold nanorods
upon irradiation and to retain the SPR in the NIR region [82]. The lithography technique has enabled
the fabrication of Pd nanodisks with tunable SPR properties. Ultrathin Pd nanosheets demonstrated
SPR absorption properties [83]. By coating Pd nanosheets with Ag, their photothermal stability can be
enhanced to a great extent [84]. Pd nanosheets covered by mesoporous silica nanoparticles exhibited
enhanced cellular internalization and were utilized for chemo-PTT [85]. Furthermore, the structure
of Pd determines its photothermal effects. Xiao et al. evaluated the differences of the photothermal
effect of Pd nanocubes and Pd porous structures [86]. The porous Pd nanoparticles showed a two-fold
enhancement in NIR absorbance than the nanocubes structure, broadband NIR absorption, and efficient
photothermal conversion. Ultrasmall Pd nanosheet surfaces functionalized with reduced glutathione
demonstrated prolonged blood circulation, efficient PTT in the NIR region, high accumulation in
tumors, and high renal clearance [87].

2.5. Metal Chalcogenides

Metal chalcogenides recently received extensive attention for their role in PTT because they present
excellent optical, mechanical, and chemical properties similar to those of graphene [88]. Localized
SPR has been observed in chalcogenide semiconductors doped with a high concentration of free
carriers [89,90]. The SPR of chalcogenide elements has long been employed in sensor applications [91].
Although metallic nanoparticles exhibit excellent photothermal properties, their biocompatibility and
biological fate have been a great concern [92]. Stanley et al. [93] investigated the NIR photothermal
properties of chemically exfoliated molybdenum disulfide (MoS;,), which has high loading capacity, on
par with graphene, owing to its high ratio of surface area to mass. PEG-functionalized MoS, /Fe3zOy4
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composites (MSIO) were prepared for PTT guided by MR and PAI The MSIOs effectively ablated
the tumor upon NIR laser irradiation and showed the potential for use in MR/PA imaging [94].
PTT-triggered drug release using single-layer MoS, nanosheets was reported by Yin et al. [95].
Chitosan-functionalized MoS, sheets exhibited effective loading and controlled drug release upon NIR
irradiation. Enhanced contrast was also observed in X-ray CT owing to the X-ray absorption ability
of MoS,.

MoS,, which exhibits high NIR absorbance, and bismuth, which is extensively used in X-ray
CT, were integrated into a theranostic system for image-guided therapy.MoS,/Bi;S3-PEG (MBP)
composite nanosheets were synthesized with the solvothermal method and showed excellent stability
and compatibility. PEGylated MBP sheets showed excellent radiosensitization and X-ray attenuation
properties with good photothermal performance [96]. Oxygen-deficient molybdenum oxide (MoO;_,)
has exhibited an effective localized SPR in the NIR region, which was applied in PTT for cancer [97].
PEG-functionalized MoOs;_, hollow nanospheres (PEG-MoO;_,-HNS) with intrinsic mesoporous
characteristics ablated tumors efficiently and were used for showed PAl-guided chemo PTT using a
camptothecin drug on pancreatic cancer [98].

Bismuth selenide (Bi;Se3) has long been studied in the biomedical field of biological
tolerance [99,100]. Bi,Ses nanoplates exhibit effective NIR absorption and strong X-ray attenuation.
They have been utilized in X-ray CT imaging of tumor tissue [101]. Multispectral optoacoustic
tomography (MSOT) is an imaging modality based on acoustic waves induced by NIR absorption
and offers precision diagnosis and real-time monitoring [102,103]. Bismuth sulfide (Bi;S3) NRs were
employed for bimodal imaging of MSOT and CT because of their X-ray attenuation and high NIR
absorbance [104]. Tween-functionalized Bi,S3 NRs exhibited MSOT contrast and also enhanced the
contrast in angiography and organic imaging in vivo, as shown in Figure 3 [105].
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Figure 3. In vivo multispectral optoacoustic tomography (MSOT) imaging. (a—e) MSOT images of
tumor before and after intravenous injection with BiyS3 nanorods (NRs); and (f) photoacoustic signal
intensity in tumor at different time points. Reproduced with permission from [105]. Copyright
American Chemical Society, 2015.

Tungsten has strong X-ray attenuation properties and high drug-loading capacity owing to its
high surface area. PEGylated WS, represents a new class of PTT materials with bimodal CT and PAI
imaging modalities [106]. WS, nanosheets were also investigated for their potential implementation
in PDT and the development of a new nanomaterial for synergistic anticancer effects [107]. Tungsten
oxide nanocrystals are also of great interest in NIR photoabsorption owing to their unusual defect
structure [108]. PEGylated tungsten oxide nanowires (W130O49) exhibited strong NIR absorption under
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980-nm laser irradiation and were used for efficient in vivo ablation of cancer cells [109]. WS,, which has
a high Z number, can act both as a radiosensitizer and a PTT agent and it can be a good candidate for
synergistic PTT/radiotherapy. WSyquantum dots (QDs) with a diameter of 3 nm efficiently improved
the cancer-killing and dose-enhancement effects of radiotherapy [110].

CuS is a well-known p-type semiconductor material that has demonstrated a PTT effect under
808-nm laser irradiation [111]. The NIR absorption of CuS obtained by the d-d transition of the Cu®*
ions was not affected by the surrounding environment or solvent [111]. CuS nanoparticles exhibited a
SPR with tunable properties that were dependent on the size and shape of the nanoparticles [112]. The
first study on CuS nanoparticles for PTT was reported by Zhou et al. [113]. The radioactive element
®4Cu integrated with CuS and PEG (PEG-stabilized ®**Cu-CuS NP) demonstrated passive targeting
and photothermal killing in vitro and in vivo. Table 2 elucidates the multifunctional potential of CuS
nanoparticles in image-guided therapies.

Table 2. Therapeutic and imaging potential of CuS nanoparticles.

Nanomaterials Therapy Imaging Modality Ref.
. Positron emission

Copper sulfide nanodot (CuS) PTT tomography (PET) [114]
Folic acid onto the surface of mesoporous Up-conversion
silica-coated core-shell-shell upconversion PTT/chemo therapy luminescence (UCL), [115]
nanoparticles (UCNPs) with Dox loading CT, and MRI
Chelator-free multifunctional (**Cu) CuS nanoparticles PTT Micro-PET/CT [113]
Ultrasmall Cu(; 1S nanodots (u-Cu_x)S) PTT PAI [116]
Dox-loaded CuygSs@mSiO,@Fe304-PEG PTT/chemo therapy MRI [117]
PEGylated CuS nanoparticles PTT PAI [118]

Ultrasound-targeted microbubbles

depositing CuS nanoparticles PTT Ust (1]

3. Magnetic Nanoparticle-Based Thermal Therapy

Magnetic nanoparticles based thermal therapy is very well studied thermal therapy and can
complement with all the available treatments such as chemotherapy, gene therapy, immunotherapy,
radiation therapy, etc. Magnetic nanoparticles based thermal therapy possess unique advantage
over conventional thermal therapies such as: (1) harmless penetration of frequencies produced by
magnetic nanoparticles [120]; (2) heat generation is homogenous [121]; (3) MHT based thermal therapy
may induce antitumoral immunity [122]; and (4) MHT approach helps us to develop a powerful
theranostic tool by simultaneously providing thermal therapy and MRI. MHT applications need very
high concentrations of Fe (around 1-2 M) [123], which is a major hurdle for human use. Recently, many
investigations were carried out to minimize the concentrations of Fe for thermal therapy by formulating
multicore iron oxide nanoparticles, iron oxide nanocubes, magnetic core-shell nanoparticles, etc. for
PTT [124,125]. Crystallized form of iron oxide nanoparticles coated with polysiloxane showed an
exceptional temperature rise of 33 °C with a laser power of 2.5 W/cm? and exhibited enhanced PTT
than commercially available magnetic nanoparticles [126]. Previously, Iron/iron oxide core-shell
nanoparticles have been applied for MHT and MRI [127,128]. However, Zhou et al. [129] investigated
the PTT efficiency of core-shell nanoparticles, which showed enhanced photothermal stability and PTT
efficiency of ~20% compared to that of gold NRs. In addition, magnetic nanoparticle clusters exhibited
higher NIR absorption and PTT efficiency than individual magnetic nanoparticles utilizing the fact
that aggregation of metallic nanoparticles exhibits high NIR absorption for PTT [130,131].

3.1. Iron oxide Nanoparticles

Fe30y is a potential MRI candidate with high magnetic saturation and has been confirmed as
a clinical magnetic contrast agent for imaging [15]. Several researchers explored the photothermal
efficiency of Fe3O4 and observed that it can be used as a promising tumor treatment using NIR laser
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irradiation [129,131-139]. Additionally, a few studies demonstrated complete tumor eradication by
combining chemotherapy and MHT [140].

Hayashi et al. [141] modified superparamagnetic iron oxide nanoparticles (SPION) clusters with
folic acid and PEG (FA-PEG-SPION NCs) and generated local heating under AMF and enhanced MRI
contrast with neither liver nor kidney toxicity. MHT and chemotherapy were combined with a smart
nanoparticle system for synergistic therapy and achieved tumor therapy without recurrence [142].
Ana et al. [143] designed iron oxide nanocubes and investigated them for dual-mode treatment
combining MHT and PTT. The PEG-gallol-coated nanocubes were exposed to both AMF and NIR
laser irradiation and amplified the heating effect two to five times compared with MHT alone. The
dual-mode treatment realized complete tumor regression mediated by apoptosis and the destruction
of collagen fibers, as shown in Figure 4.
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Figure 4. (A) Thermal images acquired after the intratumoral injection of nanocubes and the application
of magnetic hyperthermia (MHT), near-infrared (NIR)-laser irradiation, or dual-mode treatment
(both effects); (B) thermal elevation curves for the non-injected tumor in the dual condition; (C) average
final temperature increase obtained on day 0 (1h after injection) and one and two days after injection
for non-injected tumors; and (D) average tumor growth in nanocube-injected mice. Reproduced with
permission from [143]. Copyright American Chemical Society, 2015.
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3.2. Magnetic Nanostructures

Recently, the importance of magnetic nanostructures in building a theranostic nanoplatform
in combination with NIR absorbing materials for image-guided therapies has increased [144,145].
Photoacoustic tomography and MRI modalities have been extensively used for theranostic applications
under a single platform to offer higher resolution and to depict subsurface tissue structures [146]. In a
recent work by Tian et al. [147], multifunctional Fe;04,@Cu,_,S core shell nanoparticles were prepared
by combining PTT and MR imaging. The PTT effect can be precisely monitored and controlled by
varying the Cu content in the core-shell structure. Iron carbide nanoparticles with magnetic properties
were prepared by Yang et al. with a thin carbon shell and provided a platform for MRI,PTT, and
PAI [148]. Lipid-modified iron carbide nanoparticles were produced by modifying DSPE-PEG-NH; on
Fe5C, with a targeting human epidermal growth factor receptor-2 antibody (Fe5Cp-ZHER2:342) for
targeting ovarian cancer. The Fe;C, probe achieved a multifunctional platform with several advantages,
such as core protection from oxidation, high NIR absorption from carbon on the surface, and enhanced
PTT and photoacoustic signal compared with gold nanorods. FesC,-ZHER2:342 exhibited improved
MR contrast and efficient photothermal ablation without systemic side effects [149].

The synthesis steps of composite nanoparticles are complex and present a degradation problem.
To address these issues, Yang et al. [150] designed magnetic iron sulfide (FeS) nanoplates with a
single component and a simple one-step method for MR-imaging-guided PTT. The PEGylated FeS
(FeS-PEG) nanoplates achieved high NIR absorbance and high T2 contrast compared with clinically
approved contrast agents. The intravenous injection of high-dosage FeS-PEG elicited no animal toxicity
and was gradually excreted through the major organs. PEG-modified iron diselenide nanoparticles
(PEG-FeSe;) have recently emerged as potential magnetic nanostructures for dual-modal imaging
and PTT. Fu et al. [151] synthesized FeSe, by a simple solution-phase method. PEG-FeSe; exhibited
higher r2 relaxivity than the clinically available Feridex and showed high PAI contrast and effective
PTT owing to its high NIR absorbance.

Although both photothermal and magnetic hyperthermia have demonstrated promising results,
they suffer from serious drawbacks, such as high doses of laser irradiation and nanoparticle
concentrations that are potentially toxic to healthy cells. Studies focusing on the reduction
and optimization of iron doses with tolerable magnetic fields would achieve desired results in
synergistic approaches.

4. NIR-Absorbing Carbon Nanomaterials for Thermal Therapy

Carbon-based nanomaterials emerged as the most promising materials for thermal therapy
applications, as they impart versatile properties to the formulation such as large surface area, electrical
properties and non-covalent loading of anticancer drugs. Carbon materials such as graphene was
applied in in vivo PTT, but their applications are limited by their solubility [152]. PEGylation and
polymer coating helps to attain stable dispersion and significant increase in NIR absorption [18].
Hybrid nanomaterials are designed to further enhance PTT, by integrating gold with reduced graphene
oxide (rGO). This showed an increased temperature rise than nonreduced graphene oxide gold
nanoparticle or noncoated graphene oxide nanoparticles [153]. Carbon nanomaterials such as carbon
nanotubes (CNTs) are specially equipped with huge surface areas, which can be exploited for drug
delivery applications [154]. Combined photothermal and chemotherapy appeared to exert synergistic
effect on application of nanocomposite comprising of doxorubicin loaded mesoporous silica coated
on single-wall carbon nanotubes (SWNTs) [155]. It was found that SWNTs in combination with
anti-CTLA-4 antibody can act as immunological adjuvant and release tumor associated antigens,
which can drive complete tumor cell destruction with minimum dosage of SWNTs (0.33 mg/kg) [156].
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4.1. Graphene

Graphene nanoparticles are major conventional carbon nanomaterials used in biomedicine
and imaging applications owing to their electronic properties, non-toxic in vitro environment, and
cancer-specific drug delivery [157]. A comparative PTT study between graphene nanoparticles
and CNTs was performed by Zoran et al. [158]. Graphene nanoparticles demonstrated superior
photothermal death and efficiency due to the oxidative stress and membrane depolarization of
mitochondria. In addition, reduced nanosized graphene oxide (GO) exhibited six times higher NIR
absorption than non-reduced graphene and achieved PTT with lower doses [18]. One of the recently
developed forms of rGO nanomesh showed an ultra-efficient PTT effect and exhibited high-fold NIR
absorption compared with PEGylated rGO nanoparticles and graphene oxide [159].

A theranostic platform designed by Lin ef al. [160] presented dual PTT properties after combining
the photothermal conversion efficiencies of graphene and gold nanoparticles with PAL Furthermore,
rGO-coated gold super-particles, prepared using GO as the emulsifying agent, showed enhanced
PTT properties and highly sensitive photoacoustic detection and ablation of tumors. Similarly, a
smart theranostic probe based on GO and gold for fluorescent/photoacoustic image-guided PTT was
synthesized by ligating gold nanoparticles on a graphene oxide surface [161]. A NIR-dye-labeled matrix
metalloproteinase-14 (MMP 14) substrate was conjugated with a GO/ Au hybrid to provide real-time
imaging by cleaving MMP 14 and exhibited strong fluorescence in the tumor environment. Table 3
depicts the theranostic strategies designed for multimodal imaging and therapy using graphene oxide.

Table 3. Graphene nanoparticles in cancer theranostics.

Nanomaterials Therapy Imaging modality Ref.
rGO-loaded ultra small plasmonic gold NR vesicle PTT Ultrasound/photoacoustic [162]
Graphene oxide/manganese ferrite nanohybrids PTT/drug MRI [163]
Iodine-labelled rGO PTT/radiotherapy Gamma imaging [164]
Indocyanine green loaded onto hyaluronic
acid-anchored rGO(HArGO) nanosheets PTT Fluorescence imaging [165]
(ICG/HArGO)

2-chloro-3-4-dihydroxyacetophenone quaternized
poly(ethylene glycol)-grafted

poly(DMAEMA-co-NIPAAm) (CPPDN)-complexed PIT Fluorescence imaging [166]
Indocyanine green (ICG-CPPDN/rGO)

Nano-graphene oxide—Tf-FITC PTT Fluorescence imaging [167]
rGO-coated gold NRs PTT PAI [168]
Graphene oxide—BaGdFs nanocomposites PTT MRI/ X-ray CT imaging [169]
Crphene e i it onoxide i i
Carboxylated photoluminescent graphene nanodots PTT/PDT Photoluminescence [171]
Tris(2,2/ —bipyridyl)ruth<?nium—(II)chloride PTT Surface—er}har}ced Raman [172]
(Rubpy)/GO nanohybrid scattering imaging

IL-13 peptide-modified magnetic graphene-based PTT/drug MRI [173]

mesoporous silica (MGMSPI)

BSA-functionalized nano-rGO PTT PAI [174]

Graphene oxide—iron oxide nanoparticle-gold
nanocomposite (GO-IONP-Au)

PTT MRI/X-ray imaging [175]

Graphene-oxide-modified PLA microcapsules PTT Ultrasonic/CT Imaging [176]

rGO—iron oxide nanoparticle (IONP)
nanocomposite non-covalently functionalized with PTT MRI/PAI [177]
PEG (RGO-IONP-PEG)
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4.2. CN1Ts

Multi-walled carbon nanotubes (MWNTs) are cylindrical nested structures of graphene with a
strong absorbance in the NIR region and have been extensively studied as a photothermal agent [178].
MWNTs have more electrons per particle on the surface than SWNTs and, hence, exhibit enhanced
NIR absorption and photothermal conversion efficiency [179]. Many strategies, such as surface
functionalization and coating, have been examined for the reduction of the inherent toxicity of CNTs.
Fisher et al. proved that pluronic-coated MWNTs were effective in thermal therapy and also reduced
the toxicity of CNTs [178].

PEGylated nanostructures reduce systemic toxicity and provide efficient therapy. PEGylated
MWNTs were designed by Zhen et al. [180] for the photothermal ablation of bone metastasis in
breast cancer. They observed enhanced suppression of tumor growth and low systemic toxicity
compared to bare MWNTs. MWNTs for a lymphatic theranostic system were developed by Sheng et al.
by coating MWNTs with manganese oxide and PEG; the authors reported simultaneous imaging
by T1l-weighted MR imaging of MnO and dark-dye imaging of the MWNTs with NIR ablation
through dual-modality mapping [181]. A theranostic nanoplatform based on magnetic MWNTs
was demonstrated by Lei et al. [182]. Magnetic nanoparticles conjugated with the MWNT surface were
modified with PEI and PEG to attain biocompatibility. The human telomerase reverse transcriptase
small interfering RNA (siRNA)-loaded MWNTs achieved efficient delivery of the siRNA along with
PTT heating and MR imaging.

A few studies have reported on the PTT efficacy of SWINTs despite the fact that their light-to-heat
conversion efficiencies are lower than those of MWNTs because of the superior electrical properties
of MWNTs. Chao et al. [183] studied metastatic sentinel lymph nodes thermally ablated using
SWNTs, which showed enhanced retention, MR contrast, and pulmonary metastasis inhibition.
Similarly, Antaris et al. [184] used (6,5) chirality SWNTs after modification with poly(maleic
anhydride-alt-1-octadecene)-methoxy PEG (C18-PMH-mPEG) surfactant to generate biocompatible
SWNTs. The chirality-sorted CNTs exhibited bright fluorescence and ablation temperature with an
injected dose more than ten times lower than that of synthesized SWCNTs.

Owing to their large surface area, large electrical conductivity, and high drug loading, carbon
nanomaterials have been proven to be very efficient for combination and multifunctional therapies.
However, carbon-based nanomaterials present potential toxicity and bioavailabilty issues. Surface
coatings of appropriate biocompatible and biological molecules can reduce the toxicity and be excreted
over time.

5. QDs-Based Thermal Therapy

QDs were primarily developed as fluorescent probes. They have been used as probes for
photothermal and photoacoustic contrast agents and sensitizers and provide multimodal therapy
and a diagnostic platform [185]. QDs are resistant against photobleaching and their narrow emission
spectra are beneficial in photo-based treatments owing to their size-dependent and strong fluorescent
properties [186]. Chu et al. [187] studied the photothermal potential of CdTe and CdSe QDs and
evaluated their therapeutic efficiency in melanoma. After laser irradiation, a temperature increase
and intracellular ROS production were generated together with tumor inhibition. Sun et al. [188]
recently demonstrated the photothermal potential of black phosphorous QDs and their appreciable
photothermal conversion efficiency. Transition metal dichalcogenides have been investigated as
PTT agents and some have demonstrated to be excellent candidates for radiosensitization [95,107].
Yuan et al. developed multifunctional tungsten sulfide QDs (WS, QDs) for dual-mode imaging and
synergistic therapy combining PTT and radiotherapy. WS, QDs exhibited a signal enhancement in
X-ray CT/PAL Intravenous injections of QDS eradicated the tumor and facilitated the multimodal
imaging and synergistic therapy [110].

Gold QDs have enhanced optical and magnetic properties compared to the larger gold
nanoparticles although the applications of Au QDs are limited by their aggregation and unfavorable
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interactions in aqueous solvents [189,190]. Mathew et al. [191] designed a gold-silica rattle (quantum
rattle, QR) consisting of a hollow mesoporous silica shell with two hydrophobic domains of Au QDs
and larger gold nanoparticles to retain the advantages of Au QDs. Furthermore, the drug-carrying
efficiency and prolonged release of the drug were achieved because of the highly hydrophobic surface
of the QR. Figure 5 shows the multimodal in vivo imaging of QRs in a colorectal carcinoma tumor
model. The NIR fluorescence and photoacoustic images clearly demonstrate strong post-treatment
contrast of the QRs within the tumor mass compared to the hollow silica shell-treated animals.
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Figure 5. Multimodal in vivo imaging of quantum rattles (QRs): (A) NIR fluorescent intensity in the
areas where QRs (red) and non-fluorescent hollow mesoporous silica shells (HS) control (blue); (B) MR
image obtained following the injection of QRs; and 3D photoacoustic images of tumors acquired
at 670 nm before (C) and after (D) the injection of QRs. Reproduced with permission from [191].
Copyright Proceedings of the National Academy of Sciences of the United States of America, 2015.

6. UCNPs-Based Thermal Therapy

UCNPs emit short-wavelength photons upon NIR light excitation and thus provide a new scope in
biomedical imaging [192]. UCNPs have several advantages compared to organic dyes, such as narrow
emission peaks, good photostability, high signal-to-noise ratio, and low toxicity [193]. The emission
and therapeutic efficiency of UCNPs can be enhanced by surface coating with gold nanoparticles and
the loading of drugs or photosensitizers on UCNPs for multimodal imaging and therapy [194,195].
Multifunctional nanoparticles (MFNPs) have been formed using layer-by-layer assembly of UCNPs
as the core, ultrasmall iron oxide nanoparticles as the intermediate shell, and Au as the outer shell.
The MFNPs exhibited UCL, MR, and photothermal ablation of tumor cells [196]. Additionally, in vivo
multimodal imaging and efficient PTT were achieved using MFNPs, which showed no systemic
toxicity [197].
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Theranostic UCNPs were prepared by Yinghui ef al. by covalently grafting nanographene oxide
(NGO) to core-shell UCNP and loading phthalocyanine (ZnPc) on NGO. The UCNPs-NGO/ZnPc
were used as UCL probes, and resulting PDT and PTT showed high therapeutic efficiency in in vitro
cancer therapy [198]. Protein-modified UCNPs (NaGdF,:Yb:Er) were also employed for synergistic
PTT and PDT by simultaneously loading the photosensitizer rose bengal and NIR dye IR825 [199].
Multifunctional nanostructures based on DNA backbones were designed for multimodal image-guided
therapy. A core-satellite structure, in which the core was composed of gold NRs and chlorine
e6-attached UCNPs (NaGdF,) as satellites, was assembled hierarchically by complementary base
pairing. Combined with UCL, MRI, CT, and PAI, the core-satellite structures achieved the complete
elimination of tumors with a safe dosage [200].

Organic-inorganic nanocomposites based on UCNPs were prepared for synergistic
therapy by Liuetal [201]. The nanocomposites, formed by doxorubicin-loaded NaGdF,:Yb,
Er@NaGdF,UCNP@PDA core-shell nanoparticles (UCNP@PDAS5-PEG-DOX), were suitable five
applications: UCL, MRI, CT, PTT, and chemotherapy. The nanocomposites elicited no organ toxicity
and enhanced the tumor cytotoxicity without regrowth. Photothermal therapy and radiotherapy
were integrated under one platform by decorating CuS nanoparticles on silica-coated rare earth
UCNPs (NaYbF:2%Er®* /20%Gd3* @SiO,-NH,). The synergistic interaction between radiotherapy
and PTT eradicated tumors in mice with negligible toxicity by simultaneously providing UCL, MRI,
and CT [202].

7. Conclusions and Perspectives

An overview of the different classes of inorganic nanoparticles used in thermal therapy and
imaging has been presented. Considering the great variety of nanoparticles and parameters used
for thermal therapy, it is difficult to focus on a single particle for an improved therapy. In the future,
PTT can be combined with immunotherapy using immunoadjuvants with PTT agents to produce a
synergistic anti-tumor effect. Despite exhibiting a tremendous potential in thermal-induced therapies,
research on inorganic nanoparticles must address many issues, such as photostability, physiological
stability, and clearance, before proceeding into clinical trials. The stability of inorganic nanoparticles is a
potential advantage over conventional ones although their long-term toxic effects must be investigated.
Although a few inorganic nanoparticles are in clinical use, such as iron oxide in MR, clinically relevant
issues, such as systemic toxicity and clearance, must be addressed before promoting thermal therapies
for clinical use. To sum up, inorganic nanoparticles have demonstrated tremendous potential as a
theranostic tool and have revealed a new direction in cancer therapy.
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us Ultrasound

MR magnetic resonance

CT computed tomography

QD quantum dot

UCNP upconversion nanoparticles

CuS copper sulfide

CNT carbon nanotube

AMF alternate magnetic field

ROS reactive oxygen species

SPR surface plasmon resonance

NIR near-infrared

PAI photoacoustic imaging

MRI magnetic resonance imaging

PTT photothermal therapy

DAMPs damage-associated molecular pattern molecules
rGO reduced graphene oxide

NGP Nanoscale gold particles

GSNs gold nanoshells on silica nanorattles
PDT photodynamic therapy

uUsl ultrasound imaging

MSOT Multispectral optoacoustic tomography
PET Positron emission tomography

UCL Up-conversion luminescence

SPION superparamagnetic iron oxide nanoparticles
MMP 14 matrix metalloproteinase-14

MWNTs Multi-walled carbon nanotubes

SWNTs single-wall carbon nanotubes

siRNA small interfering RNA

QR quantum rattle

MENPs Multifunctional nanoparticles
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