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Abstract: Bimagnetic monodisperse CoFe2O4/Fe3O4 core/shell nanoparticles have been prepared by
solution evaporation route. To demonstrate preferential coating of iron oxide onto the surface of ferrite
nanoparticles X-ray diffraction (XRD), High resolution transmission electron microscope (HR-TEM)
and Raman spectroscopy have been performed. XRD analysis using Rietveld refinement technique
confirms single phase nanoparticles with average seed size of about 18 nm and thickness of shell is
3 nm, which corroborates with transmission electron microscopy (TEM) analysis. Low temperature
magnetic hysteresis loops showed interesting behavior. We have observed large coercivity 15.8 kOe
at T = 5 K, whereas maximum saturation magnetization (125 emu/g) is attained at T = 100 K for
CoFe2O4/Fe3O4 core/shell nanoparticles. Saturation magnetization decreases due to structural
distortions at the surface of shell below 100 K. Zero field cooled (ZFC) and Field cooled (FC) plots
show that synthesized nanoparticles are ferromagnetic till room temperature and it has been noticed
that core/shell sample possess high blocking temperature than Cobalt Ferrite. Results indicate that
presence of iron oxide shell significantly increases magnetic parameters as compared to the simple
cobalt ferrite.

Keywords: core/shell nanoparticles; Rietveld refinement; surface effects; FC/ZFC

1. Introduction

Core/shell (CS) nanostructures with modulated composition and size are an efficient way
to construct multicomponent structures that combine various properties of constituent materials
in a single system [1,2]. These versatile functional nanomaterials have stimulated great interest
due to their novel applications mapping from pure science and technology to biomedical [3–5].
Recent advancement has shown continuous increasing interest in bimagnetic CS nanostructure, i.e.,
where both the core and the shell demonstrate magnetic properties (ferromagnetic/ferrimagnetic and
antiferromagnetic). Certainly, for magnetic nanomaterials, CS structure enables the enhancement of
and tailoring of magnetic properties such as anisotropy, magnetization reversal process, interparticle
interactions, thermal stability of magnetization and coercivity [6]. In fact, exploration of distinct
combinations of bimagnetic CS nanomaterials will yield detailed studies on magnetic interaction
and exhibit desirable magnetic characteristics for diverse field of applications like permanent
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magnet, magneto-restrictive devices, magnetic recording, magnetic resonance amplifiers, optimizing
hyperthermia and magnetic resonance imaging [7,8]. Furthermore, the advancement in wet chemical
synthesis has allowed great control of various parameters like shape, size and composition of
nanoparticles, which can also tune the physical and chemical functionalities of these nanomaterials [9–11].

In the context of bimagnetic CS nanomaterials, Ferromagnetic/Antiferromagnetic (FM/AFM) or
inverse AFM/FM phase structures have been extensively studied [12,13]. Interestingly, in the case of
nanoparticles, less attention has been paid to the “exchange spring magnets”, where both hard and
soft phases are coupled [14], although it has been reported that, in the case of bulk and thin films, such
bimagnetic composites reveal appealing properties [15]. Soft/hard nanocomposite thin films such
as Fe2O4/CoFe2O4 [16], NiFe/NiCo [17], Fe/CoSm [18], and Fe3O4/FePt [19] have been prepared
through various methods. Studies showed that, in the case of thin films, due to limited interface
coupling and reduced homogeneity between both phases, these materials are non-ideal to exploit the
numerous enhanced properties. To fulfil the need of maximum exchange interaction between phases,
CS nanoparticles would be considered more adequate. These bimagnetic composites can explore
properties of both phases like large magnetization and coercivity arising from soft and hard material,
respectively [20]. Hard/soft CS nanoparticles of CoFe2O4/MFe2O4 (M = Zn, Fe, Mn), Fe/Fe3O4 [21],
FePt/Fe3O4 [22], and Sm (CoFe)/Fe3O4 [23] composite materials have been reported, and their results
showed enhanced energy product over a single hard phase.

Herein, we present extensive structural and magnetic study of hard/soft CS nanoparticles
composed of CoFe2O4/Fe3O4 obtained by solution evaporation method. CoFe2O4 is among one
of the most widely used inverse spinel structures due to its novel properties like high thermal,
physical and chemically stability, magnetically hard, moderate saturation magnetization and large
magneto-crystalline anisotropy field [24]. On the other hand, Fe3O4 is typically soft ferrite with high
saturation magnetization and Curie temperature [25]. The properties of both materials make them
appealing for several technological applications like supercapacitors, molecular imaging, spintronics
and catalysis.

2. Experimental Section

2.1. Synthesis of CoFe2O4 Nanoparticles

The nanoparticles were grown by solution evaporation method. Initially, a solution of 0.1 M
Cobalt Nitrate and Iron Nitrate were stirred at room temperature and 0.2 M Oxalic acid was rapidly
injected to the solution. In addition, 2 M Nitric acid was added dropwise into the solution to avoid
any impurity phases, under vigorous stirring of 30 min. The solution was heated at 120 ˝C and the
heating process was continued until the solution evaporated completely. Afterwards, the obtained
product was calcined at 600 ˝C inside a furnace for 6 h.

2.2. Synthesis of CoFe2O4/Fe3O4 Core/Shell Magnetic Nanoparticles

For synthesis of CoFe2O4/Fe3O4 nanoparticles, 0.2M Iron Nitrate and Oxalic acid was mixed
homogenously and heated at 40 ˝C for 30 min under constant stirring. Synthesized cobalt ferrite
nanoparticles were dispersed in the above solution and were kept under ultrasonic bath for 15 min.

2.3. Characterizations

Structural analyses of synthesized nanoparticles were carried out by X-ray diffraction (XRD)
(Rigaku D/Max-2400, Beijing, China) and Raman spectroscopy (Horiba JY, Olympus, Beijing, China).
XRD was performed by taking a small quantity of powder on an amorphous glass slide using Cu-Kα

radiation (0.15405 nm). The measurement was carried out in 2θ range of 30˝–70˝ Raman spectra were
recorded in the range of 400–900 cm´1 at room temperature. Surface morphology was analyzed by
transmission electron microscopy (TEM) high resolution-TEM (HR-TEM) (JEOL 2011, Beijing, China),
by dispersing the nanoparticles in ethanol and then placing them drop wise onto carbon coated grid.
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Room temperature and low temperature magnetic measurements of nanoparticles were examined by
the physical property measurement system (PPMS) (PPMS-model, 9T, Beijing, China) under applied
field of ˘5 T.

3. Results and Discussion

3.1. Structure and Phase Analysis

XRD patterns were obtained to identify structure, phase and crystalline nature of synthesized
samples. Figure 1 displays experimental and refined patterns of seed and CS sample annealed at 600 ˝C.
All reflected peaks in Figure 1a,b correspond to the face centered cubic CoFe2O4 and Fe3O4 spinel
structure. The peaks of CoFe2O4 and Fe3O4 are indexed with joint committee on powder diffraction
standards (JCPDS) card No.: 22–1086 and 65–3107 respectively. XRD pattern reveals the formation of
single phase ferrite structure for both samples without the presence of any impurity phases.
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Figure 1. X-ray diffraction data and Rietveld profile fits of (a) core (CoFe2O4) and (b) core/shell
(CoFe2O4/Fe3O4) ferrite nanoparticles.

Various structural parameters have been calculated from obtained XRD patterns such as crystallite
size, lattice parameter, unit cell volume and X-ray density. Crystallite size has been calculated by using
the broadening of the maximum intensity XRD peak (311), appearing around 36.39˝. Peak broadening
depends on various factors like instrumental effects, strain effect within crystal lattice and finite
crystallite size. Scherrer’s formula and the Rietveld refinement method have both been employed to
find out crystallite size of the samples. Scherrer’s formula is defined as [26]:

D “ δλ{βcosθ

where constant δ depends on the shape of crystallite size (~0.9 for circular shape), λ is the wavelength
of used radiation (Cu-Kα ~0.1542 nm), β is the full width at half maxima, and θ is Bragg’s diffraction
angle. It has been observed that the CS sample has a larger value of crystallite size than the seed
nanoparticle by 3 nm. This large value of crystallite size confirms the formation of CS structure.

Laue equation for cubic lattice was used to determine lattice parameter (a), defined as [27]:

a “ dhkl

a

h2 ` k2 ` l2

where
dhkl “

λ

2sinθ
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and d is interplanar distance and h, k, l are miller indices. Lattice parameter for CoFe2O4 is in agreement
with standard value, whereas lattice parameter of CoFe2O4/Fe3O4 is close to the value of the seed
nanoparticle. This small difference can be attributed to the lattice mismatch between core and shell,
which results in the growth of Fe3O4 phase on CoFe2O4 nanoparticles [27,28].

X-ray density of synthesized nanoparticles was calculated by using the following relation [29]:

DX-ray “
8M
Na3

where M is molecular weight of the sample, N is Avogadro’s number, and a3 is unit cell volume.
The calculated values show that CS nanoparticles have larger X-ray density as compared to simple core
nanoparticles. This increase of DX-ray for CS sample is attributed to the increase in molecular weight of
the sample. Calculated values of all structural parameters of core (CoFe2O4) and CS (CoFe2O4/Fe3O4)
are listed in Table 1.

Table 1. Structural parameters calculated from X-ray diffraction (XRD) patterns.

Structural Parameters Core Nanoparticles Core/Shell Nanoparticles

Crystallite Size (nm) 18.5 21.48
Lattice parameter (Ȧ) 8.177 8.246
Unit cell volume (Ȧ) 546.74 560.69

X-ray density (g/cm3) 1.90 ˆ 1017 3.79 ˆ 1017

XRD patterns of both samples were analyzed with the help of Maud software by employing the
Rietveld refinement technique using Fd3m space group [28]. Rietveld refinement is a well established
process to explore structural details using powder diffraction data. In the very first step of refinement,
background and scale factors were refined. Fitting quality of experimental data is induced by
computing goodness of fit (χ2; which should tend to 1) and two reliability factors—profile factor
(Rp) and weighted profile (Rwp; must be close to or less than 10%). The best fit to experimental data is
achieved when these factors reach their minimum values. Then, structure is considered as satisfactory.

3.2. Raman Spectroscopy

Raman spectroscopy was carried out to get information on structure of synthesized cobalt ferrite
and cobalt ferrite/magnetite (core/shell) nanoparticles. CoFe2O4 has cubic inverse spinel structure
with O7

h(Fd3m) space group. In this structure, Co2+ cations can occupy both octahedral and tetrahedral
lattice sites, giving rise to 39 vibrational modes:

A1g ` Eg ` F1g ` 3F2g ` A2u ` 2Eu ` 4F1u ` 2F2u

Among these modes, only five are Raman active modes (A1g + Eg + 3F2g) and four are infrared
active (4F1u) [30]. Figure 2a represents Raman spectrum for core nanoparticles at room temperature.
In this spectrum, the highest frequency mode at 708 cm´1 corresponds to the lattice site effects at
tetrahedral sites (T-site), while the peak at 472 cm´1 reflects lattice site effects in the octahedral site
(O-site) [31]. Along with these, the vibrational mode positions 537, 648, 814, and 915 cm´1 were also
observed in the spectrum.

Figure 2b shows the spectrum of CS nanoparticles. This includes vibrational modes of Fe3O4 and
CoFe2O4. Like cobalt ferrite, magnetite also has a spinel structure with 56 numbers of atoms per unit
cell, containing only 14 atoms in an asymmetric unit, resulting in the presence of 42 vibrational modes
in the structure [32];

A1g ` Eg ` T1g ` 3T2g ` 2A2u ` 2Eu ` 5T1u ` 2T2u
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where only five modes are Raman active vibrational modes (A1g + Eg + 3T2g), five infrared active
(5T1u), and the remaining modes (T1g + 2A2u + 2Eu + 2T2u) are silent in Raman spectra. In the present
case, 493, 516, 610, 688 and 698 cm´1 modes reflect the presence of Fe3O4 [33]. However, vibrations
around 472, 537, and 814 cm´1 show the presence of cobalt ferrite phase in the sample. The Raman
study thus showed the formation of single phase core and CS nanoparticles, which is in agreement
with XRD observation.
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3.3. TEM Analysis

Morphology of synthesized CS nanoparticles was investigated by TEM and HR-TEM. In order
to avoid aggregation, the product was sonicated in ethanol solution for 20 min before analysis.
Obtained micrographs are displayed in Figure 3 where magnetic cores consisting of cobalt ferrite are
visible in the dark spots centered by the spherical shell of iron oxide. Figure 3a reports a relatively low
magnified TEM image, which shows spherical shaped and reasonably monodispersed CS nanoparticles.
Also it can be observed that there is no agglomeration of particles. In Figure 3b, the HR-TEM of
core/shell NPs is shown, which illustrates that NPs retain their spherical shape. The core size is in the
range of 18 nm with a uniform shell with thickness of about 3 nm.
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3.4. Magnetic Analysis

To explore magnetic behavior of synthesized nanoparticles, temperature dependence of
magnetization (M-T) measured under zero field cooled (ZFC) and field cooled (FC) were carried
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out with applied field of 1000 Oe. Figure 4a represents FC/ZFC loop for CoFe2O4 nanoparticles which
shows that material is magnetic until room temperature. It can be observed that FC/ZFC curves
coincide at high temperature and then diverge significantly from each other as temperature decreases.
In a ZFC curve, magnetization increases slowly with increase in temperature and a sharp cusp appeared
which corresponds to blocking temperature (TB), at which thermal energy (kBT) becomes comparable
to the magnetic anisotropy energy (KeffV). At blocking temperature, it is considered as [34]:

KeffV “ 25 kB¨TB

where Keff is effective anisotropy constant of system, V is mean volume of the particle, kB is Boltzman
constant, and TB is blocking temperature. Above TB, thermal fluctuations become larger than magnetic
energy, while below TB, magnetic energy is larger than thermal fluctuations [35]. In our sample, when
TB is ~405 K, then FC/ZFC superimpose and bifurcation of both curves occurs, indicating that all
nanoparticles are in the same superparamagnetic state.

Nanomaterials 2016, 6, 72 6 of 9 

where Keff is effective anisotropy constant of system, V is mean volume of the particle, kB is Boltzman 

constant, and TB is blocking temperature. Above TB, thermal fluctuations become larger than 

magnetic energy, while below TB, magnetic energy is larger than thermal fluctuations [35]. In our 

sample, when TB is ~405 K, then FC/ZFC superimpose and bifurcation of both curves occurs, 

indicating that all nanoparticles are in the same superparamagnetic state. 

 

Figure 4. Temperature dependence of the field cooled (FC) and zero field cooled (ZFC) 

magnetizations for (a) core and (b) core/shell ferrite nanoparticles. 

The observed curves show broadened peak width where the width of the ZFC curve depends 

on distribution of particle size [36]. If a particle has a particular size, then it would have certain 

blocking temperature and behave as a ferromagnetic particle, whereas smaller particle size will be 

attributed to superparamagnetic nature. In our sample, wide peak indicates presence of 

interparticle/exchange dipole-dipole interactions in the sample. 

The FC/ZFC curve for CS nanoparticles is almost similar to the uncoated sample shown in Figure 

4b. The divergence of FC/ZFC appears near the maxima of the ZFC curve, which shows that particles 

are homogeneous in size. However, it can be seen that blocking temperature shifts toward higher 

temperature. In the case of CS, as the particle size increases, the anisotropy energy also increases 

which causes a decrease in jump probability across the anisotropy barrier. As a result, blocking 

temperature transfers toward a high temperature range [37]. 

M-H loops for core and CS nanoparticles at room and low temperature ranging from 5 to 300 K 

were obtained from PPMS. Figure 5a shows the hysteresis loops for core nanoparticles, which 

demonstrate ferrimagnetic nature at all temperatures with interesting magnetic properties. It can be 

seen from Figure 5a that with a decrease in temperature, magnetic properties such as saturation 

magnetization and coercivity of sample gradually increases. The reason behind the increase in 

magnetic properties at low temperature is explained below. The calculated values of Ms and Hc for 

core nanoparticles are plotted in Figure 6a. 

 

Figure 5. Magnetization curves recoded at different temperatures ranging from 5 to 300 K for (a) core 

and (b) core/shell sample. 

Figure 4. Temperature dependence of the field cooled (FC) and zero field cooled (ZFC) magnetizations
for (a) core and (b) core/shell ferrite nanoparticles.

The observed curves show broadened peak width where the width of the ZFC curve depends on
distribution of particle size [36]. If a particle has a particular size, then it would have certain blocking
temperature and behave as a ferromagnetic particle, whereas smaller particle size will be attributed to
superparamagnetic nature. In our sample, wide peak indicates presence of interparticle/exchange
dipole-dipole interactions in the sample.

The FC/ZFC curve for CS nanoparticles is almost similar to the uncoated sample shown in
Figure 4b. The divergence of FC/ZFC appears near the maxima of the ZFC curve, which shows
that particles are homogeneous in size. However, it can be seen that blocking temperature shifts
toward higher temperature. In the case of CS, as the particle size increases, the anisotropy energy
also increases which causes a decrease in jump probability across the anisotropy barrier. As a result,
blocking temperature transfers toward a high temperature range [37].

M-H loops for core and CS nanoparticles at room and low temperature ranging from 5 to
300 K were obtained from PPMS. Figure 5a shows the hysteresis loops for core nanoparticles, which
demonstrate ferrimagnetic nature at all temperatures with interesting magnetic properties. It can
be seen from Figure 5a that with a decrease in temperature, magnetic properties such as saturation
magnetization and coercivity of sample gradually increases. The reason behind the increase in
magnetic properties at low temperature is explained below. The calculated values of Ms and Hc for
core nanoparticles are plotted in Figure 6a.

In M-H loop formation of CS nanostructures (Figure 5b), a small kink shape can be seen,
which results due to the presence of two mixed magnetic phases (soft and hard) and their exchange
interactions [38].
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Figure 6. Variation of the coercivity and saturation magnetization of (a) core nanoparticles with
temperature and (b) core/shell nanoparticles with temperature.

It has been observed that magnetic parameters including remanant magnetization, saturation
magnetization and coercivity of CS sample increases remarkably at 5 K. The result shows a significant
increase in saturation magnetization values for CS samples as compared to core samples. Initially,
saturation magnetization increases monotonically with temperature from 5 to 100 K. The increase
in Ms values is considered to be due to the presence of exchange interactions between the magnetic
moments of the soft and hard phases. Nevertheless, it is found that magnetization tends to decrease
as temperature goes below 100 to 300 K. Such significant decrease in saturation magnetization of CS
nanoparticles usually has been attributed to structural distortions at the surface of shell like, spin
canting, spin glass and size confinement effects. It has been observed that surface spin disorder
can be responsible for exchange anisotropy and existence of spin glass phase around magnetic
nanoparticles [39,40].

This spin glass behavior leads to the broken bonds and randomness in exchange interactions on
the surface. At low temperature (<100 K), spins of the spin glass layer become aligned and frozen
along the applied field. While taking M-H measurements, these spins keep their direction and pin the
reversible spins of the core, resulting in the exchange bias effect [41].

Coercivity of CS nanoparticles increases from 1385 to 15844 Oe followed by decrease in ambient
temperature, as shown in Figure 6b. Generally, increase in coercivity of magnetic material measures the
intrinsic anisotropy of the material [42,43], since, at a particular temperature applied, the field should
be enough to overcome any potential barriers and be able to change the orientation of magnetization.
Herein, an increase in coercivity can be attributed to the increase in magneto-crystalline anisotropy
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of the sample combined with strain anisotropy, shape anisotropy, and inter domain coupling [44,45].
This increase in the coercive field also provides evidence for the presence of exchange coupling between
soft and hard phases at interface below blocking temperature.

4. Conclusions

In conclusion, we have successfully synthesized CoFe2O4/Fe3O4 core/shell nanoparticles via
the solution evaporation technique. The structural properties have been investigated very carefully
and no extra peak was observed in XRD spectra of synthesized samples. XRD patterns indicate the
formation of cubic structure for both hard and soft ferrite nanoparticles. Furthermore, Raman spectra
also confirm formation of ferrite nanoparticles and the coexistence of both phases (hard and soft) in
the case of CS samples. The magnetic measurements confirm the presence of hard/soft structures
and exhibit strong exchange interactions between core and shell. It has been observed that magnetic
properties increase with a decrease in temperature for CS samples. The results indicate that magnetic
properties of hard/soft core-shell nanoparticles can be tuned for specific applications.
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