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Abstract: High thermal conductivity and a high breakdown field make diamond a promising
candidate for high-power and high-temperature semiconductor devices. Diamond also has a higher
radiation hardness than silicon. Recent studies show that diamond has exceptionally large electron
and hole momentum relaxation times, facilitating compact THz and sub-THz plasmonic sources
and detectors working at room temperature and elevated temperatures. The plasmonic resonance
quality factor in diamond TeraFETs could be larger than unity for the 240–600 GHz atmospheric
window, which could make them viable for 6G communications applications. This paper reviews the
potential and challenges of diamond technology, showing that diamond might augment silicon for
high-power and high-frequency compact devices with special advantages for extreme environments
and high-frequency applications.

Keywords: diamond; terahertz (THz); electronics; single crystal growth; power electronics; high
frequency FET; TeraFET

1. Introduction

Applications in renewable energy transport and distribution, power electronics, 6G
communications [1], imaging [2], security [3], VLSI testing [4,5], IoT networking [6], sens-
ing [7], and healthcare [8,9] have been the driving force behind the relentless quest for
high-power and high-frequency electronic devices. In this context, diamonds with extraor-
dinary properties have emerged as an extremely promising material. Among wide-bandgap
materials, diamond has one of the largest bandgap energies of EG = 5.46 eV, i.e., it is an ultra-
wide bandgap semiconductor (UWBGS) with an impressive breakdown field of 10 MV/cm
and an exceptional thermal conductivity of 23 W/cmK [10]. These attributes position dia-
mond as a compelling candidate for applications demanding high-power, high-frequency,
and the ability to withstand extreme temperatures or operate in a radiation environment.

However, diamond’s constraints related to material growth and especially doping
created obstacles in the production of high-quality diamond devices. While substantial
strides have been made in surmounting these obstacles [11–13], issues related to substrate
size, lattice quality, and n-type doping persist, necessitating sustained research endeav-
ors. Within the domain of radio frequency (RF) devices, state-of-the-art diamond devices
have shown impressive performance metrics—cutoff and maximum frequency, as well as
output power density—surpassing those of devices implemented in many other material
systems [14–16]. Nonetheless, diamond RF devices have not yet eclipsed the performance
benchmarks set by AlGaN/GaN high-electron-mobility transistors (HEMTs) [17]. Diamond
devices still lack in terms of using the full potential of diamond material properties.
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Diamond-based electronics hold promise of operating in the sub-terahertz (sub-THz)
and terahertz (THz) frequency regimes. By capitalizing on plasma waves within Terahertz
Field-Effect Transistors (TeraFETs), diamond offers an innovative way that avoids tradi-
tional electronics paradigms [18–20]. This new development holds the promise of achieving
room temperature operation in the millimeter-wave (mm-Wave) frequencies, heralding
advanced THz applications, including the realization of 300 GHz (6G) communication
systems [20].

This paper presents an overview of the state-of-the-art in diamond-based high-power
and high-frequency devices. It also reviews the material preparation for the devices and
underscores the potential of diamond devices capable of operating in the sub-THz and THz
regions. Simultaneously, it also highlights the challenges of fully realizing the potential of
diamond electronics.

2. Electronic Material Properties of Diamond

Diamond is a unique material with exceptional electronic properties. It has an ultra-
wide bandgap, high thermal conductivity, and the largest carrier mobility among wideband
gap materials [21]. At room temperature, diamond is a good electrical insulator, but it
acts as a semiconductor material when doped with impurities such as boron, nitrogen,
or phosphorus. These special set of qualities make diamond desirable in high-power,
high-frequency electronic applications. In this section, we will discuss the diamond’s key
electrical characteristics and contrast them with those of competing materials.

2.1. Comparison Figures of Merit

Diamond surpasses other materials by a wide margin in many metrics, including
Baliga (power handling capabilities) [22], Johnson (RF power capability) [23], and the
combined factor of merit [24] (see Figure 1). The combined figure of merit (CFOM) is
given by:

CFOM =
χE2

BKµvs(
χE2

BKµvs

)
silicon

(1)

where χ is thermal conductivity (W/cm degree K), EB is breakdown field (kV/cm), µ is
low field mobility (cm2/Vs), vs is saturation velocity (m/s), and K is the dielectric constant.
Table 1 lists the material parameters used to calculate the figures of merit.
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We also included the comparison of other figures of merit (FOM), including Baliga’s
high-frequency FOM (BHFOM) [22], Keye’s FOM (KFOM) [25], Huang’s temperature
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FOM (HTFOM) [26], Huang’s chip-area FOM (HCAFOM) [26], and Huang material FOM
(HMFOM) [26]. BFOM rates the power handling capability of the material. On the other
hand, BHFOM and JFOM can rate the high-frequency and power operations. KFOM
provides information about the thermal limitations of switching devices. Table 1 compares
the material properties along with different FOMs among diamond and other materials. It
shows that diamond surpasses other WBG materials in every category due to its excellent
material properties.

Table 1. Comparison of material properties and different FOMs for diamond and other WBG materials
[24,27–31].

Material Properties GaAs Si 4H-SiC GaN BN AlN Ga2O3 Diamond Comment

Energy bandgap (eV) 1.42 1.1 3.2 3.44 6.4 6.2 4.8 5.47 High-temperature
operation

Dielectric constant 12.9 11.8 9.7 9 7.1 9.76 10 5.7 -
Breakdown field

(MV cm−1) 0.4 0.3 3 5 17.5 15.4 8 10 High voltage
applications

Effective mass 0.067 0.19 0.24 0.43 0.4 0.297
0.74 (hole)

0.36
(electron)

Long momentum
relaxation time

Thermal conductivity
(Wm−1 K−1) 55 150 500 130 2145 1000 27 2200 High-power

applications
Electron saturation
velocity (cm s−1) 1.1 × 107 0.86 × 107 3 × 107 2.5 × 107 4.3 × 107 1.3 × 107 2 × 107 2.7 × 107

Hole saturation velocity
(cm s−1) - 0.8 × 107 1.2 × 107 - - - - 1.2 × 107 High-frequency

operation
Electron mobility

(cm2 V−1 s−1) 8500 1450 900 440 825 426 300 7300

Hole mobility
(cm2 V−1 s−1) - 480 120 200 500 - - 5300

BFOM 15 1 554 188 - 35,497 3214 23,068 Power handling
capability

CFOM 5 1 594 162 - 6518 53 124,424

BHFOM - 1 58 237 - - 158 12,510 Takes switching losses
into account

JFOM
(1023 ΩW s−2) 1.36 2.3 900 490 - 64 1236 2530 RF power capacity

KFOM
(107 WK−1 s−1) - 10 53 17 - - 2 218

Thermal limit of
transistor

characteristics
HMFOM - 2 - 18 - - 22 72

HCAFOM - 1 58 192 - - 280 3887 Reduction of chip area

2.2. Carrier Mobility

The carrier mobility of diamond is among the highest of any known material. In-
trinsic carrier mobility, which is the mobility of carriers in pure diamond without the
presence of impurities or defects, has been measured to be around 4500 cm2/Vs for elec-
trons and 3800 cm2/Vs for holes at room temperature for single crystal CVD grown
diamond [32]. Higher values of electron (7300 cm2/Vs) and hole (5300 cm2/Vs) mobility
were measured in ultrapure diamond crystal using the time-resolved cyclotron resonance
(TRCR) method [21]. For comparison, 4H-SiC showed mobility for electrons and holes at
900 cm2/Vs and 120 cm2/Vs, respectively [33,34]. Diamond’s distinctive crystal structure,
which is made up of a three-dimensional network of sp3 hybridized carbon atoms, is
responsible for its remarkable carrier mobility. Strong covalent connections between the
carbon atoms in this structure result in a high degree of stiffness and a high-frequency
of lattice vibrations, which decrease carrier scattering [35]. Diamond hole mobility de-
creases at temperatures above room temperature (300–400 K), which can be attributed
to the scattering by acoustic phonons [32] and incomplete ionization of impurities [36].
Studies show that the hole mobility comes down to approximately 1000 cm2/Vs at 500 K
from approximately 2000 cm2/Vs at 400 K [29]. For the devices where doping is needed to
make the p-type and n-type materials, these large mobilities cannot be sustained because
the dopant scattering decreases mobility. A boron (B)-doped CVD diamond showed hole
mobility of 1500 cm2/Vs, 1000 cm2/Vs [37], and 450 cm2/Vs [29] for B concentrations of
5 × 1016 cm−3, 2 × 1018 cm−3, and 1 × 1019 cm−3, respectively. In a phosphorous-doped
CVD grown diamond homoepitaxial film, the Hall mobility was 660 cm2/Vs at room tem-
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perature with a phosphorous concentration of 7 × 1016 cm−3 [38]. The hole mobility during
surface transfer doping was as high as 680 cm2/Vs for a sheet hole carrier concentration
of 5 × 1012 cm−2 [39,40]. Recently, a new heterojunction (h-BN/diamond) method has
been introduced in the surface transfer doping, resulting in reducing the surface charged
impurities [41]. This methodology demonstrated a hole carrier mobility of 300 cm2/Vs
for a 5 × 1012 cm−2 sheet hole density [42]. However, even these small values of carrier
mobility of diamond with doping are way higher when compared with other competing
wide band gap materials such as p-GaN (30 cm2/Vs) and p-SiC (<17 cm2/Vs) [40]. Figure 2
shows the relative contributions of different scattering mechanisms to the mobility of p-type
diamonds [43].
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2.3. Thermal Properties

Due to the strong covalent connections between the carbon atoms organized in a
crystalline lattice structure, diamond has remarkable thermal characteristics, having high
thermal conductivity, a low thermal expansion coefficient, and an extremely high melting
point. The thermal conductivity of diamond ranges from 700 W/mK at 773 K to 2300 W/mK
at room temperature [40,44]. Hence, it is a superior heat conductor to most materials, mak-
ing it an ideal candidate for heat sinks and high-power electronic devices. Moreover,
diamond has a very low coefficient of thermal expansion of 1 × 10−6/K (at 300 K) com-
pared to other wide bandgap semiconductors (AlN = 5.3 × 10−6/K, GaN = 3 × 10−6/K,
SiC = 2.8 × 10−6/K) [45–48]. The 3550 ◦C melting point of diamond is also a significant
characteristic for high-temperature and harsh environmental applications [44].

2.4. Saturation Velocity of Carriers

The saturation velocity is an important parameter for understanding the electronic
properties of diamond and its potential for use in high-speed electronic devices. Usually,
the electron drift velocity saturates in high electric fields due to the emission of optical
phonons by energetic electrons, and the electron saturation drift velocity is an increasing
function of optical phonon energy [40,49]. Diamond has a very high optical phonon energy
of Eopt = 160 meV [50], which results in fairly high saturation velocity. The saturation
velocity of diamond has been measured experimentally and found to vary from 0.85 to
1.2 × 107 cm s−1 and 1.5 to 2.7 × 107 cm s−1 for holes and electrons, respectively [29,44,51].
This translates into a higher upper bound of the diamond cutoff frequency (fT = vs/(2πL)).
These values are similar to the saturation velocities of other common semiconductors such
as SiC and GaAs. However, diamond can reach this velocity at a lower electric field of
approximately 10 kV cm−1 compared to SiC and GaN (see Figure 3) [29].
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2.5. Breakdown Field

For electronic devices where fast switching is required, a smaller device size is an
advantage, and a high breakdown field allows a smaller device size [29]. Diamond has an
exceptionally high breakdown field, estimated to be around 10 MV/cm [55]. In comparison,
the breakdown field strength of other materials such as 4H-SiC and GaN is much lower, at
around 3 MV/cm and 5 MV/cm, respectively [29]. Comparing the breakdown voltage of
semiconductor devices constructed from various materials to the specific ON resistance
is an effective method of comparison. Figure 4a illustrates the relationship between ON
resistance and the breakdown voltages for different materials. Also, Figure 4b shows the
breakdown field with respect to the different energy band gaps of various semiconductor
materials.
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2.6. Carrier Lifetime

The carrier lifetime of a single-crystal, high-quality CVD diamond ranges from
nanoseconds to several microseconds [32], comparable to SiC [58,59]. Nitrogen impu-
rities in diamond can serve as electron recombination hotspots, greatly reducing the carrier
lifetime. The carrier lifetime in a highly doped diamond can be as low as nanoseconds or
picoseconds [60,61].
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3. Material Quality and Growth Techniques
3.1. Substrate Quality

Diamond substrates of high crystalline quality and high purity are needed for various
applications. Usually, there are N2 contents in the diamond substrate [62]. Based on the
impurity concentrations available, synthetic and natural diamond substrates are primarily
classified into two main types: Type I and II. Type I contains a higher percentage of N2
impurity (from less than 1 ppm up to several thousand ppm), which can be detected using
IR spectroscopy [28]. However, high-quality Type I diamonds used in electronic and optical
applications typically have a nitrogen concentration of less than 100 ppm [63]. Diamond,
where these nitrogen atoms can be aggregated by replacing carbon atoms is classified as
Type Ia. On Type Ib diamond substrates, nitrogen impurities can also be isolated from
each other. Although its crystalline quality is worse, Type Ib is often used for electronics
applications because of its low cost and reasonable level of dislocation density (105 cm−2).
The aggregated nitrogen atoms in Type Ia substrates can come in two forms: Type IaA,
where the nitrogen atoms are in pairs, and Type IaB, where a vacancy is surrounded by 4 N
atoms [28].

When the impurity level of N2 in a diamond substrate is too low (less than 1017 cm−3)
to be detected in IR spectroscopy, diamond is categorized as Type II. Type II is also sub-
categorized into Type IIa, the purest of all diamond substrates (produced in a high-pressure,
high-temperature (HPHT) process), and Type IIb, with the boron concentration being
higher than N2, making it the p-type diamond substrate [28]. Nitrogen and boron impurity
concentrations in Type IIa are the lowest, and this material is the purest and most costly.
The classification of diamond substrates is graphically represented in Figure 5.
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3.2. Diamond Growth Technologies

Diamond is synthesized mainly using two different growth technologies: high-pressure,
high-temperature (HPHT) and chemical vapor deposition (CVD). The HPHT process is
mostly used in industries to produce synthetic diamond [63] and highly pure and crystalline
(<103 cm−3 dislocation density) Type IIa diamond substrates. However, the substrate size
is limited to below 1 cm2 [28]. The HPHT process uses the high-pressure, high-temperature
diamond area of the carbon phase diagram, where diamond is very stable. On the other
hand, CVD uses the graphite region of the carbon phase diagram [63]. Figure 6 shows the
conditions for the HPHT and CVD diamond synthesis processes in the carbon phase dia-
gram [64]. The CVD process is favored for electronics applications because it can produce a
large substrate while keeping the dislocation density in an acceptable range.
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3.2.1. Diamond Growth by HPHT

Solubility gradient, temperature gradient, no-catalyst conversion, and shock com-
pression are the four major types of HPHT diamond synthesis techniques [3]. Ni, Co,
and Fe-like metals are used in molten form in the solubility gradient method to solve the
diamond source (graphite) [4]. High-temperature, high-pressure are very stable conditions
for diamonds. Most high-quality diamonds for industry applications are produced in this
way. However, the substrate size is limited to less than 1 mm2 [65–69], which is why HPHT
is not suitable for larger size wafer technology.

In the temperature-gradient approach, a diamond seed crystal is used to support
nucleation on the downside of the HPHT container. The diamond source is kept on the
top side of the container, and in between there is a solution of metals such as Ni, Co, Fe,
Mn, Cr, Ta, or Nb. The condition set for the diamond to grow is 5–6 GPa pressure and
1300–1600 ◦C temperature [63,64]. Inside the vessel, a temperature gradient of 20–50 ◦C
is created where the top side/diamond source is on the hotter side than the seed crys-
tal/bottom side. This melts the diamond source in the Fe, Ni, Co, Mn, Cr, Ta, or Nb
solution, making it supersaturated. The melted diamond source is then transported to
the seed crystal as HPHT crystallized diamond [64]. Depending on the different growth
rates at different crystal directions, HPHT can produce diamond crystals shaped in various
ways, such as cubes or octahedral [70–77]. To produce large diamond crystals, the ‘no seed
crystal’ method is used, and sometimes it results in incorporating nitrogen impurities in
the diamond. These can be detected by IR testing. Highly pure carbon source, and Ti is
used to get rid of the nitrogen impurities from the metal solution [78]. In the process, TiC is
produced as a byproduct, which is later removed by adding Ag and Cu [63].

3.2.2. Diamond Growth by CVD

As mentioned above, the stable graphite region in the carbon phase diagram is used
for CVD diamond growth. Unlike HPHT and natural diamond synthesis processes, CVD
processes are more complex. The earliest work on producing synthetic diamonds in the
CVD process dates from the 1980s [79]. The process involves H2 and CH4 as the reactant
gases where, methane is used as the source for the diamond [80]. In the process called
chemical vapor deposition, these gases are involved in a reaction in the gas-phase and are
deposited on the substrate to grow epitaxial diamond. The main stages and parameters of
the CVD process are shown in Figure 7 [80,81]. Among the major elements of the process,
the reactant gas is the most important. Next comes the energy for the reactions to take
place in the plasma condition, which can be supplied using different sources. Depending
on the energy source type, the whole structure and the parameters of the CVD process
change [82]. Lastly, to facilitate the efficient output from the reactions of the gases, the
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correct temperature, pressure, flow rate, density distribution, and other parameters are
maintained.
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One of the most critical points in CVD diamond growth is the presence of a radical
H2 (H*) atom. The hydrogen atoms could split neutral hydrocarbons into reactive radicals
such as CH2. This excited hydrocarbon may create graphite (trigonal sp2) or diamond
(tetrahedral sp3)-linked carbon on this exposed carbon [83]. However, this sp2 (graphite)
bond is more stable than the diamond bond. The radical hydrogen inhibits the development
of this graphite bond and facilitates diamond growth [84]. Also, it halts the growth of the
polymer of the hydrocarbon, which might hinder diamond growth.

Since 1993, when the main chemical process for the formation of diamond from
gaseous hydrogen and hydrocarbon compounds was first proposed [80], diamond CVD
growth techniques have been constantly improved. Single-crystal epitaxial growth of
diamond can be carried out using the CVD process. Two different methods are currently
being studied to produce high-quality single-crystal diamonds. In one method, a diamond
substrate is used to grow the epitaxy, which is called homoepitaxy. In contrast to that,
a different material substrate other than diamond is used in heteroepitaxy. To create
plasma and to get the activation energy for the reactant gases different plasma sources
are used. They are classified as microwave [85], laser induced [86], radiofrequency [87],
direct current [88], hot filament [89], and chemical activation (see Figure 7). Among
them, microwave plasma-assisted plasma CVD (MPCVD) is a well-studied [90–95] and
established diamond CVD growth technology. It can produce high-quality and highly pure
(nitrogen concentration < 5 ppb) diamond crystals. These diamond substrates can be used
in electronics applications [11]. The diamond substrates grown this way have excellent
electrical (two orders higher electron mobility than natural diamond of type IIa [32]) and
thermal (approximately 24 W cm−1 K−1 at room temperature and 278 W cm−1 K−1 at
63 K [96]) properties. However, improving the growth rate, minimizing defect densities,
and achieving longer continuous growth are required to achieve CVD diamond growth on
an industrial scale.

Several process factors influence CVD diamond synthesis, including reactor gas
pressure [97,98], concentration of diamond source (methane) [99], absorbed microwave
power density [97,100], temperature [97,100], nitrogen impurity [97,101], substrate holder
shape [102], and others. Growth rates up to 165 µm h−1 were reported for 18 mm thick
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single crystal diamond (SCD) development where the gas pressure was 350 Torr. For this
process, a recipe was developed by integrating multiple advantageous characteristics of
the process parameters [103]. It was a hard and lengthy process of separating the effects
of each process parameter to optimize the reactor condition and enhance the growth rate.
A faster method has been reported where multiple parameters were assessed in a single
cycle, which cut the test time significantly. From linear growth of 5–10 min, the growth
rate was determined with great precision [100,104]. The relationship between the concen-
trations of methane and growth rate at different temperatures was identified. Typically, a
higher concentration of methane increases the growth rate [104], but it damages the crys-
tallinity of the diamond. The growth rate of typical high-crystalline diamond substrates
is <1 µm h−1 [105–108]. Typically, the methane gas flow is pretty low in contrast to the
total source gas flow (relative ratio < 1%) [107]. Nonetheless, higher pressure [109] and
higher microwave [110,111] power systems have been reported as a solution to this issue,
even with a low methane concentration (4%). The increment in pressure from 100 Torr
to 600 Torr results in greater microwave power (approximately 1800 W cm−3) absorption.
This produced an excellent growth rate of approximately 60 µm h−1 [109]. A growth rate
of over 10 µm h−1 was recorded when deposition was conducted with 3.8 kW microwave
power in the MPCVD process [110]. The size limitation of homoepitaxial diamond growth
is another important issue. Recent studies showed that by growing a thick layer, the initial
seed size can be increased by using the lateral growth of diamond [112,113]. Moreover, half
inch diamond substrates were successfully produced using side face growth of diamond
and lift off processes [114]. Another promising way of increasing the homoepitaxial dia-
mond substrate size is the mosaic growth method [115,116]. A single crystal diamond is
grown first in similar small seeds, which are then congregated together to make one mosaic
array. This mosaic array is then used to grow the CVD layer, resulting in a larger substrate
size [117,118]. Usually, these mosaic wafers are about 40 × 60 mm2 in size and made
from 10 × 10 mm2 small substrate unit cells [118]. However, the joint areas of the mosaic
substrates suffer from high defect densities and strain [119,120]. A tungsten impurity
enriched diamond buffer layer along the junction boundaries blocked the defect transfer to
the epilayer [120,121].

Substrate selection is a crucial factor in the heteroepitaxy CVD diamond growth pro-
cess. The right substrate should have a combination of different important parameters, such
as an appropriate lattice constant, the stability of the substrate under plasma conditions,
and many others [11]. A number of materials, such as Si [122], SiC [123], Ir [124], Co [125],
c-BN [126], Re [127], Al2O3 [128], Pt [129], Ni [130], and TiC [131], have been explored for
diamond heteroepitaxy growth. Iridium was used as a buffer layer on top of the metal
oxide layers on Si substrates to reduce the cost and produce larger substrates [132,133].
The concept of a multilayer substrate was an excellent addition to the technology. This
allowed us to grow iridium on commercially available large substrates of Si (12 inch), MgO
(2 inch), and sapphire (8 inch) and produce large diamond substrates [11]. MgO [134] and
SrTiO3/Si [135] wafers were used to successfully produce 10 × 10 mm2 and 7 × 7 mm2

heteroepitaxial diamond films, respectively. Recently, studies on the synthesis of a 3.5 inch
diamond substrate on Ir/YSZ/Si [136] and a 2 inch substrate utilizing Ir heteroepitaxy
have been reported [137,138]. Though heteroepitaxial diamond has the advantage of be-
ing larger in size, it still suffers from a higher dislocation density (108–109 cm−2) than
homoepitaxial diamond (102–105 cm−2). The dislocation density tends to decrease with
thicker films [139]. The performance of the devices built with these diamond materials
heavily depends on their crystalline quality. Many applications require larger wafer sizes.
According to several recent studies, while patterning diamond nucleation, the stripes’
direction affects how dislocations are transferred to the developing film [140–142]. Using
these discoveries, multiple research groups were able to reduce the dislocation density to
below 9 × 106 cm−2 [143,144]. A dislocation density of 1.4 × 107 cm−2 was reported for
a 1 inch diamond substrate grown on sapphire with excellent crystal characteristics [137].
Current advancements and developments in technology have incorporated this material
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into various applications. Heteroepitaxial diamond was used to make p-i-n [145], Schottky
barrier diodes [146], and a high-voltage field-effective transistor [147].

3.3. Doping

As we discussed in the previous section, diamond has tremendous potential for
making high-power and high-frequency devices. Both p- and n-type diamonds of good
quality are required in order to achieve the full advantage of their excellent material
properties [11,148]. Unlike silicon, most of the novel wide band gap semiconductors do not
have donors and acceptors with low activation energies [28].

3.3.1. P-Type Doping

Boron and aluminum are typical p-type dopants for diamond [149]. B is a nat-
ural impurity in diamond [64,150] and is the most established and developed p-type
dopant [148,151,152]. Boron and carbon have 0.088 nm and 0.077 nm covenant bond
radii, which are close enough to produce good quality boron-doped p-type diamond [153].
Boron’s activation energy is 0.37 eV [154]. There are multiple ways to produce boron-doped
diamonds, such as CVD growth through gas phase manipulation [151], ion-implantation [155],
and high-temperature diffusion [156]. In ion-implantation, highly energized dopant ions
are bombarded into a diamond layer. Diamond is an ultra-hard material with sp3 hy-
bridization, and it is hard to break those bonds to replace carbon atoms with dopants.
Once the bonds are broken, the diamond tends to go back to more stabilized sp2 graphite
formation, where defects form [149]. Different methods, such as annealing and etching,
were developed to overcome this issue [155,157,158]. Ion-implantation with annealing
and etching can achieve outstanding ohmic contact for p-type diamonds [158]. However,
ion-implantation cannot provide a uniform distribution of dopants (it produces Gaussian
distributions for a fixed energy of impinging ions [159]). In order to get at least close
to a uniform distribution, multiple ion energies are needed. Moreover, because of the
hardness of diamond, the ion implantation method leaves many defects in the material and
makes it harder to get a good quality crystal [160,161]. More recently, the in situ method
(doping during diamond growth) [151] has become more popular due to the complexities
of the ex-situ (doped after growing diamond) [155,156] methods. Doping boron during the
CVD growth of diamond is the most established method for producing p-type diamond.
The source gases of boron are incorporated with the carbon source gases in the CVD pro-
cess. Diborane [162], trimethylboron, triethylboron, boron oxide dissolved in alcohol [163],
BCl3 [164], etc. are used as the sources for B. Studies showed that boron incorporation
prefers the (111) diamond growth plane. [165]. The crystallinity and surface structure of
diamond greatly impact the carbon replacement by boron in the diamond lattice [166,167].
Although the activation energy tends to reduce with high dopant concentration [168,169], it
also increases stress [170] and dopant proximity effects [171,172] in the diamond structure,
creating defects. This increase in defects results in lower mobility for carriers. Different
studies recorded mobility of 120 cm2/Vs for a delta-doped thin layer (1 nm) with a boron
concentration of approximately 4 × 1020 cm−3 [173,174]. Heteroepitaxial diamond sub-
strates were explored for B-doping as well. Recently, different groups have investigated
Ir [175] and other heteroepitaxial diamond substrates [176,177] to grow B-doped epilayers
and overlayers (p+ and p−) of different thicknesses with B concentrations ranging from
(1015–1020 cm−3). They have also reported on the Hall mobility of 390 cm2/Vs for a B
concentration of 1 × 1018 cm−3 in a diamond epilayer [176]. However, boron-doped p-type
diamonds have demonstrated Hall mobility as high as 2200 cm2/Vs at room tempera-
ture [178]. Some of the recent studies have reported on converting diamond to an insulator,
metal, or superconductor by tuning the B concentration [168,169,179]. The production of
p-type diamond is advanced and useful enough to make semiconductor devices such as
field-effect transistors and Schottky diodes.
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3.3.2. N-Type Doping

Producing n-type diamonds with good carrier mobility and conductivity is problem-
atic. Gathering suitable donor atoms with compatible growth technology is the research
focus in the diamond electronics sector. Numerous potential elements were investigated
as donor atoms; however, none of them produced satisfactory results [148] due to deep
donor activation energies and poor doping efficiency. N, P, O, and S are on the frontlines
of the n-type dopants for diamond, with donor activation energy levels of 1.7, 0.6, 0.32,
and 1.5 eV, respectively [180]. Among them, phosphorous has shown promising results so
far with its acceptable donor activation energy level [181,182]. The covalent bond radius
of P is 0.117 nm, which is a big mismatch with carbon (0.77 nm). This makes it tough
to incorporate P into diamond [28]. However, studies showed that the (111) diamond
plane is a good match for P-doped diamonds to grow. The Hall mobility of 28 cm2/Vs
with an activation energy of 0.55 eV was achieved. [183]. Nonetheless, P-doped diamond
was also synthesized on a (100) oriented diamond surface [184], but much later than the
synthesis of P-doped (111) diamonds [182]. After the first successful synthesis of P-doped
diamonds with a Hall mobility of 23 cm2/Vs, many studies reported high quality P-doped
diamonds [185–187]. Usually, PH3 is used as the source for P [182], but P2O5 [188] and
liquid tertiarybutylphosphine (TBP) [189] were also utilized as sources for P, which resulted
in a Hall mobility of 50 cm2/Vs (at a carrier concentration of 1015 cm−3), and 110 cm2/Vs,
respectively. Until now, the highest mobilities were recorded for n-type diamonds with
lightly doped phosphorous: [P] = 7 × 1016 cm−3 (carrier concentrations of 1011 cm−3)
and [P] = 2 × 1015 cm−3 (carrier concentrations of 1010 cm−3) are 660 cm2/Vs [38] and
1060 cm2/Vs [186], respectively at room temperature. Moreover, a high concentration of
P (1020 cm−3) can be used to create ohmic contact with diamond, which is essential for
semiconductor devices [186]. Among other single element donors, N was used for doping,
but it has a very deep donor energy level (1.7–2 eV), which results in very few ionized
electrons [180]. More recent reports show improvement from this condition with better
conductivity (approximately 140–150 Ω−1 cm−1), carrier concentration (1020 cm−3), and
mobility (1–1.5 cm2/Vs) for N-doped diamond [190–192]. These results were achieved
in ultra nanocrystalline diamond films, where grain boundaries are responsible for the
improved conductivity [193,194]. This shows that N-doped diamonds are still far behind
P-doped diamond technology. Though O has the lowest activation energy, it results in low
mobility [195,196]. Theoretical studies show that the bond between C and O is stronger than
C and C, implying that O could be a potential perfect donor impurity for diamond [197].
O-doped diamond was successfully synthesized by the implantation process [195,196,198].
However, studies showed that high oxygen can slow the growth of diamonds and increase
their defect density [199]. Moreover, a simple substitutional technique for O will result in
deep donor states and a smaller carrier concentration [200]. The status of the S-doped dia-
mond technology is at a similar stage to that of O, as both underlying mechanisms are still
being discussed. S-doped CVD grown diamond was successfully synthesized, with H2S
being the source for S [201,202]. However, there were unintentional B atoms in the diamond,
creating acceptor levels with an activation energy of 0.37 eV, whereas S was responsible for
the 1.55 donor activation energy level, which is as deep as N [201]. Furthermore, theoretical
investigations indicate that S has a much deeper donor level than P and has a lower bulk
solubility than P [203]. Some other single elements dopants such as Ti [204], halogens (F, Cl,
Br, and I) [205], As [206], Be [207], and Mg [207], are being investigated, but they are still in
the exploratory phase. As there is no single-element dopants for diamond that produces
optimum results, a novel co-doping approach employing multiple elements is being inves-
tigated. Incorporating B can make S a preferred shallow donor dopant for diamonds by
improving the solubility and conductivity of S [208]. Additionally, B-P co-doped diamonds
ere realized using ion-implantation, with a significant improvement in conductivity and
Hall mobility [209]. Co-doping can also improve the lattice quality of p-type diamonds.
The performance of B-doped p-type diamonds was enhanced in every metric, including
conductivity, carrier concentration, and lattice structure, by using B-H co-doping [210]. It
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was also reported that double-acceptor-donor (B-B-As and B-B-P) impurities improve the
lattice structure of p-type diamond [211].

3.3.3. Surface Transfer Doping

An alternate way of creating the p-type conductance in diamonds is through the
surface transfer doping method. Unlike other material systems, surface/interface rough-
ness has a positive impact on the diamond hole mobility [212]. A diamond surface with
hydrogen termination displays p-type surface conductivity and negative electron affinity
after being exposed to air [213–215]. By using hydrogen plasma or annealing at 500 ◦C in an
environment of hydrogen, it is possible to create H-terminated diamond surfaces [216,217].
Due to its reliance on the diamond’s surface’s hydrogen termination, this mechanism is
strongly tied to the diamond’s surface. An illustration of the process is shown in Figure 8.
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The formation of 2DHG in the vicinity of the diamond surface can be attributed to
the added H atoms, which act as acceptor impurities, and the C-H dangling bonds, which
cause upward band bending [214,219]. Currently, a complete explanation of surface trans-
fer doping cannot be given by a single model [218]. Nevertheless, in the last ten years
alone, rapid advancements have been made in this area. A detailed review of diamond
surface transfer doping is given in [218]. To better understand the mechanism of surface
transfer doping and to improve the performance of surface conductivity, various electron
acceptor materials, including molecular species such as fullerene (C60) [220], fullerene
variants (C60F18, C60F36, and C60F48) [221], tetracyanoquinodimethane (F4-TCNQ) [222],
NO2 [223,224], O3 [225], and metal oxides such as molybdenum trioxide (MoO3) [226],
vanadium pentoxide (V2O5) [227,228], tungsten trioxide (WO3) [227,229], rhenium triox-
ide (ReO3) [229], niobium pentoxide (Nb2O5) [227], chromium trioxide (CrO3) [230], and
Al2O3 [231–234], were studied. They demonstrated mobilities ranging from approximately
10 to 120 cm2/Vs with carrier densities ranging between 1012 and 1014 cm−2 [218]. With
carrier densities above 1 × 1014 cm−2, metal oxides (MoO3, V2O5, and WO3) currently
have some of the lowest documented sheet resistances [226,227,229]. However, the low-
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est reported sheet resistance (719 Ω/□) of H-terminated diamond surfaces till now was
attained using NO2 as the electron acceptor medium, where the hole density was up to
1.5 × 1014 cm−2 [223].

4. Diamond-Based High-Power Electronic Devices

Diamond electronic devices are projected to have a huge impact in the high-power
electronic device area. Both unipolar and bipolar diamond devices have been proposed
and developed.

4.1. Schottky, Diodes, and Bipolar Junction Transistors (BJTs)

Lack of n-type dopants with low activation energy in diamonds stimulates inter-
est in p-type unipolar devices such as Schottky barrier diodes (SBDs) [235,236]. The
advantages are low resistance [237], high doping concentrations [238], and high carrier
mobility [239]. So far, the highest reported breakdown voltage for SBD is over 10 kV work-
ing at high-temperatures [240]. For high-power devices, a good contact is a critical issue
as the electric field increases immensely around the sharp and rough contacts, resulting
in early breakdown. The Schottky barrier height (SBH) in these diodes is stable in the
range of 1.2–3.4 eV [241,242] depending on the Schottky metal and the surface termination
process. Studies found that oxygen surface termination provides stable performance for the
device [225,243,244]. Different Schottky metals (W, Mo, Cu, Pt, Ru, and Zr) have been ex-
plored for minimizing the leakage current and achieving high voltage operation [245–249].
Recently, p+ Si/p-diamond heterostructure diodes have been reported where Surface Acti-
vated Bonding (SAB) was used to form the heterojunction [250]. This method achieved a
reduction in the turn on voltage and reverse bias current with a high rectification factor
and a breakdown voltage of 200 V. Different diamond high-power diodes have been devel-
oped using Schottky junctions, such as vertical SBD [251], pseudo-vertical SBD [247], and
Schottky PN diode (SPND) [252]. Typically, the vertical SBDs show breakdown when the
voltage is in the range of 1.8–3.7 kV (the average electric field is 7.7 MV/cm) [236,253–255].
However, there is a scarcity of large single crystal diamonds for vertical SBDs, and the
breakdown voltage may be explained by the crystal defects. A pseudo-vertical structure
can solve this problem where the highly doped p-type layer is grown at high-pressure
and high-temperature on a diamond substrate and the ohmic contacts are grown on the
p+ layer. It boosts the current density [256]. Figure 9 illustrates schematics of different
diamond junction power devices.
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The issue with the bipolar devices is that their stored-up charges in the p-n junctions
result in high voltage drops during the ON state. Also, it takes a longer time to deplete the
charges during the reverse bias, inhibiting the high-frequency applications. When the p-n
junction was created for BJT development using boron and nitrogen-doped diamond, the
high resistivity of the nitrogen-doped base layer limited the device’s operation [257,258].
Using a high concentration of phosphorous dopants (shallow activation energy level than
nitrogen) (1022 cm−3) improved the properties of the n-type layer [12]. Diamond orien-
tation <100> was used to grow this n-type layer [13,259]. Several reports described the
development of high quality p-n [260,261] and p-i-n [262] diamond junctions. The p-i-n
structure has an intrinsic layer sandwiched between the p and the n layers, which supports
a high reverse blocking voltage. The highest breakdown voltage of 11.5 kV was achieved
using p-i-n structure [262]. However, these devices have a high ON resistance compared
to unipolar Schottky p-n (SPND) [252] and Schottky p-i-n structures [263]. Current den-
sity of 60 kA/cm2 was reported to be achieved by SPND, where the ON resistance was
0.03 mΩ.cm2 [252].

Significant progress has been made in n-type doping techniques, enabling the fabrica-
tion of bipolar junction transistors (BJTs) [264–266]. The introduction of the n+ layer has
played a crucial role in addressing the issue of the high resistivity of the n-type base layer.
It helped reduce series resistance by providing a better ohmic contact for the base. Despite
these improvements, the scalability of these devices remains limited due to their inherently
low diffusion length [265].

4.2. Diamond Field Effect Transistors

Diamond MOSFETs are usually boron-doped p-channel MOSFETs (see Figure 10a) or
transfer-doped devices. However, high activation energy for the dopants results in low
conduction current. Due to diamond’s low-ionized impurity property, a unique method was
developed to realize MOSFET devices. A slightly different structure than the conventional
MOSFET was designed, called p-i-p metal-intrinsic FET (MISFET) [267]. Here, a trench
is etched through the boron-doped layer, and gate dielectric and metal are deposited on
the trench, as demonstrated in Figure 10b. The current passes around the gate through
the channel by taking advantage of the better mobility and conductivity of the intrinsic
diamond layer. However, this device is not suitable for high-power applications due to its
space charge limited current mechanism [29,268]. Another design (called delta-doped FET)
was introduced, where a thin layer of high-density boron dopant is sandwiched inside the
intrinsic diamond layer [269]. The current conduction happens on both the intrinsic and
the delta-doped layers, but there is a huge difference in the carrier mobilities between the
delta-doped layer (1–10 cm2/Vs) and the intrinsic layer (3800 cm2/Vs) [270]. Research is
going on to improve this condition [271]. Apart from that, fabricating that thin nanometer
level of delta-doped layer is challenging. Figure 10c shows the schematic of the boron
delta-doped FET. A low impurity concentration of intrinsic diamond has made it a good
choice for creating a stable deep depletion region [272]. A deep depletion boron-doped
diamond MOSFET (see Figure 10a) had a high breakdown field of 4 MV/cm [273]. Al2O3
was achieved for the gate dielectric for a normally ON lateral device. A normally OFF
p-channel inversion type MOSFET has been reported as well (see Figure 10d) [274]. A
phosphorous-doped n-type diamond <111> substrate body was utilized for the inversion
mode MOSFET. As diamond MOSFET development hinders due to a lack of natural oxide,
a high-quality gate dielectric Al2O3/O-terminated diamond interface was created by using
OH termination through a wet annealing process. The device showed a maximum current
density of 1.6 mA/mm. The extracted value of the channel mobility was reported to be
8 cm2/Vs owing to the interface trap density (6 × 1012 cm−2 eV−1). Later investigations
showed that the low channel mobility is related to the roughness of the Al2O3/O-terminated
diamond interface, which is proportional to the phosphorous dopant concentration [275].
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MESFET, and (f) H-terminated FET (H-FET) [256].

The diamond metal semiconductor FET (MESFET) configuration has more advan-
tages in high voltage applications as it does not have a gate dielectric oxide layer with
a high density of interface states [256,274]. Boron-doped p-channel diamond MESFETs
have exhibited breakdown over 2 kV with gate-to-drain length of 50 µm [276]. Among
several Schottky gate metals, Pt showed a maximum current density of 0.06 mA/mm and
1.2 mA/mm at room temperature and high-temperature (300 ◦C) [277]. High resistance at
the source and drain contacts with the diamond drift layer is a big concern for FET devices.
This restricts the drain current immensely. A highly-doped p+ layer was grown below
the metal contact at the source and the drain (shown in Figure 10e) to make good ohmic
contact [278]. A three-fold reduction in ON resistance was reported, which resulted in a
significant increment in the maximum current density from 0.06 mA/mm to 0.2 mA/mm
at room temperature. Moreover, only recently has the first n-channel MESFET been created
using the concept of a highly doped layer [279]. The highly doped phosphorous layer
n+ (approximately 1020 cm−3) was sandwiched between the metal contacts and the n-
(approximately 1016 cm−3) drift layer at the source and drain. However, the maximum
current density was quite low (0.00093 µA/mm) at room temperature, which was elevated
to 0.13 µA/mm at high-temperature (300 ◦C).

H-terminated or hydrogen surface channel FETs have been the best devices so far in
terms of providing the best hole mobility and conductivity in the channel (schematic shown
in Figure 10f) [280,281]. Different structures, such as MOSFET [280,282], MESFET [283,284],
and MISFET [285], have been used. They usually have good high-frequency performance.
However, there are some concerns about the long-term stability of the channel under
high temperatures and harsh conditions. Using atomic layer deposition (ALD) of Al2O3
improves stability and reliability [282]. A high breakdown voltage of over 2 kV has been
reported for the normally OFF MOSFET configuration [286]. Here, a partial C-O region
was implemented to achieve the OFF operation. Another report showed a maximum
current density of 1.3 A/mm. Both devices used Al2O3 as the passivation layer. Table 2
compares the parameter comparison of diamond high-power devices in comparison with
the competing material systems’ devices.
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Table 2. Comparison of high-power device performance made from different material systems
[27,28,256,287].

Material Devices Breakdown Voltage Maximum Current Gate to Drain
Length Breakdown Field

AlGaN/GaN FET 200–1400 V 300 mA/mm 4–20 µm 1 MV/cm
AlGaN/AlGaN FET 500–1700 V 200 mA/mm 1–10 µm 1.7 MV/cm

Ga2O3 MOSFET 400 V 60 mA/mm 8 µm 0.5 MV/cm
SiC FET 1600 V 90 mA/mm 20 µm 0.8 MV/cm

Lateral SBD Over 10,000 V 18 A/cm2 300 µm -

Diamond

Vertical SBD Over 1800 V Over 100 A/cm2 - -
Pseudo-vertical SBD Over 1600 V 4.5 kA/cm2 - 7.7 MV/cm

PiN Diode Over 11,000 V Below 10 A/cm2 - -
Schottky pn Diode Below 55 V Over 60 kA/cm2 - -

BJT Below 100 V approximately µA range - -
MOSFET Over 200 V Below 1 mA/mm - 4 MV/cm

MESFET approximately 3000 kV approximately 2 mA/mm 30 µm approximately
2 MV/cm

H-FET Over 2000 V 1.3 A/mm 21 µm -

5. Diamond-Based High-Frequency Devices

Surface-channel FETs are the only diamond devices supporting high-frequency opera-
tions. Typically, an H-terminated surface reduces the channel sheet resistance and gives
rise to high hole mobility [280,281,288]. The mechanism of this process of surface charge
accumulation is still uncertain. Different forms of surface acceptor medium help create
a 2DHG channel under the H-terminated diamond surface [218]. In a MOSFET, the sur-
face hole mobility is hampered by the dielectric/diamond surface interface traps [42,289].
Mobility enhancement was reported by using the monocrystalline h-BN (planner lattice
structure) as the dielectric medium [42]. Some of the earliest reports on the high-frequency
operation of MESFET H-FET can be found in [283,290]. The MISFET structure was chosen
to limit the oxygen contamination on the diamond surface. A CaF2 layer was deposited as
the insulating layer as it has low interface states with diamond [285]. For thin dielectric
layers (below 30 nm), a high gate leakage current was a problem. Different diamond
FET structures with various dielectric materials were studied, resulting in notably im-
proved performance. Figure 11 shows various diamond H-FET designs showing superior
high-frequency performance.
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Al2O3 was used as the passivation layer, which blocks the gate leakage current be-
cause of its higher band offset value at the interface [292]. The Al thin film was oxidized
to fabricate the Al2O3 layer, keeping the important ambient absorbate secured. Using this
technique, a surface channel MOSFET was fabricated exhibiting 2.14 W/mm of power
density at 1 GHz frequency with high current density (790 mA/mm) [293]. It also showed
a cutoff frequency of 45 GHz. Another similar device showed a higher power density
(3.8 W/mm) at 1 GHz (see Figure 12a). This device used 100 nm of the same dielectric mate-
rial (Al2O3) deposited using atomic layer deposition at high-temperature (450 ◦C) [16,231].
The device had a cutoff frequency of 31 GHz and achieved the highest reported diamond
hole drift velocity (1 × 107 cm/s), close to the saturation velocity as shown in Figure 12b.
A recently reported device achieved an output power density of 1.5 W/mm at 3.6 GHz
(see Figure 12c) with high voltage operation supported by a thick ALD-deposited Al2O3
layer [291]. This is the highest reported output power density for diamond FET at frequen-
cies above 2 GHz, as shown in Figure 12d. The self-aligned gate process [284] was used to
fabricate the device. Moreover, several other H-FET MOSFET devices with self-oxidized
Al2O3 showed notable performances, such as the power of 745 mW/mm at 2 GHz for a
0.8 µm gate length device [294], MOSFET with low temperature (90 ◦C) Al2O3 deposition
(182 mW/mm at 10 GHz; gate length 0.1 µm) [295], and MISFET with self-aligned gate
process (650 mW/mm at 10 GHz; gate length 0.35 µm) [296]. In summary, the technologies
used in the devices showing good performances in terms of output power density are
self-oxidized alumina, ALD Al2O3 devices with a larger gate-to-drain distance.
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diamond devices (“star symbol at 3.6 GHz”: highest reported output power from diamond FET over
2 GHz) [291].

The maximum frequency reached by a diamond FET with a gate length of 100 nm
was 120 GHz [14]. The device was fabricated using a polycrystalline, large grain, high
quality diamond substrate with a (110) orientation. The state-of-the-art cutoff frequency



Nanomaterials 2024, 14, 460 18 of 35

achieved by diamond FET is 70 GHz in a MISFET configuration with a T-shape gate struc-
ture, and the length is 100 nm, as shown in Figure 13a [15]. Another high-performance
diamond H-FET device showed a maximum functioning frequency of 63 GHz and had a
gate length of 200 nm [297]. The maximum cutoff frequencies reached by the diamond RF
FETs are comparable to the state-of-the-art AlGaN/GaN HEMT devices [17,298,299], as
demonstrated in Figure 13b. On the other hand, Figure 13c shows that in terms of output
power density, diamond FETs put behind most of the SiC FET, Si LDMOS, and GaAs FET
devices. AlGaN/GaN HEMT devices are still leading in output power densities. Shorter
channel lengths are used to increase the maximum operating frequency. However, it also
reduces the output power density due to smaller device lengths, as shown in Figure 12d.
Additionally, stability is an important aspect of high-performance RF devices. Numerous
high-k dielectric material layers have been explored for stability and reliability perfor-
mance tests. Al2O3 passivation with NO2 adsorption and ALD Al2O3 at high-temperature
(450 ◦C) showed stable performance at 200 ◦C and 400 ◦C, respectively [280,300]. Moreover,
MoO3 [301], V2O5 [302], and V2O5/Al2O3 [303] passivation layers resulted in no significant
change in device performance for 17 days and a month-long period, respectively.
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6. Plasma Wave in Diamond Terahertz Field Effect Transistors (Diamond TeraFETs)

The utilization of sub-terahertz (sub-THz) and terahertz (THz) frequency bands holds
immense potential for a wide range of technologies, including advanced high-speed
(6G) communications [1], VLSI testing [4,5], security systems, medical imaging [304],
bio/chemical sensing [305], and THz spectroscopy. This creates a significant demand for
compact, high-quality, room temperature-operating THz electronic sources and detectors.
However, the development of THz electronic devices has been limited, as traditional elec-
tronic approaches struggle to achieve cutoff frequencies in the THz range by shortening gate
length (see Figures 12b and 13b). In recent years, there has been substantial research into
terahertz plasmonic FETs [306–309]. These devices harness plasma waves, which are oscil-
lations in charge density within 2D electron/hole gas systems in the device channels. These
oscillations are akin to sound waves in musical instruments but are carried by charged
particles that carry electromagnetic power. They can be employed for THz detection and
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emission. The FET devices operating in the THz range are called TeraFETs. Depending
on channel length, mobility, and momentum relaxation time, plasmonic TeraFETs can
operate in broadband or resonant detection modes. Material properties such as mobility
and momentum relaxation time play a crucial role. Si-MOSFETs [310], GaAs/AlGaAs [311],
and InGaAs/GaAs [312] HEMTs have been used for plasmonic TeraFET detectors. They
provided room temperature broadband detection [313], and their noise-equivalent power
at sub-THz and THz frequencies has been sufficiently low. More exotic materials, such
as graphene [314,315] and diamond [19,20], have recently been explored due to their ex-
ceptional charge transport properties. Diamond, in particular, has potential advantages
over other materials in terms of THz detection and emission, thanks to its long momentum
relaxation time and high mobility [18]. Diamond-based TeraFETs have shown potential for
both room temperature and cryogenic operation [316,317].

The concept of THz detection and emission using plasmonic oscillations within the
2DEG (2D electron gas) system was first introduced using the hydrodynamic model in
1993 [318,319]. This approach is simpler than the particle-based approach such as Monte-
Carlo [320]. However, this method is applicable when the electrons or the holes in the
channel can be treated as an electronic (or hole) fluid.

6.1. Hydrodynamic Model

In a high charge density channel, when the mean free path of electron-electron or
hole-hole collision is much shorter than the channel length and the mean free path of
electron/hole-impurity and lattice collision is longer than the channel length, the channel
can be considered an electron/hole fluid. The hydrodynamic model is based on the Euler
Equation (2) and the continuity Equation (3) [307,321].

∂ns

∂t
+∇ · (nsu) = 0, (2)

∂u
∂t

+ u∇u +
e
m
∇U +

u
τ
− v∇2u = 0, (3)

Here, ns is the charge density in the channel, u represents the drift velocity, U is the
gate-to-channel potential, and v is the dynamic viscosity of the channel. The most important
parameter is the momentum relaxation time of the charge carrier (τ = µm/e; µ = mobility,
m = effective mass of the electron/hole). Following the gradual channel approximation,
the charge density is calculated from CU = ens, where C is the per unit area capacitance.
When THz radiation is impinged on an FET device, it excites a plasma oscillation in the
channel’s shorted source-gate side, which travels between drain and source. Due to the
nonlinear properties of the FET, this induced charge oscillation in the channel gets rectified
and produces a source-to-drain DC voltage that is proportional to the incident signal’s
amplitude. This is possible when an asymmetric boundary condition is applied between
the drain (open boundary condition) and the source (short boundary condition). Under
these boundary conditions, the system produces a DC voltage (∆U) as follows [321]:

∆U
U0

=
1
4

(
Ua

U0

)2
f(ω), (4)

Here, Ua is the amplitude of the radiated THz signal, and U0 gate swing voltage. ∆U
exhibits resonance with respect to the excited frequency (ω). Notably, it demonstrates its
most pronounced response at the frequency of plasma oscillation and its odd harmonics.
Also, if ωτ ≫ 1, then the detection will be a resonant detection, but for ωτ ≪ 1, it will be
broadband detection. ω = πn/(2L) [307].

THz emission requires different boundary conditions with a constant DC current. The
Dyakonov-Shur instability occurs when the drift velocity is high enough to overcome the
damping scattering and the viscosity damping [318]. The wave travels from source to drain
and gets reflected with the gain due to the asymmetric boundary conditions. In every turn,
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the amplitude of the plasma wave increases, and over time, it produces a full form standing
wave in the channel. The earliest report derived that when the drift velocity is less than
the plasma wave velocity (s) in the channel, the plasma oscillation frequency follows the
following equation [318].

ω
′
=

∣∣s2 − u2
∣∣

2Ls
πn, (5)

Here L is the channel length, and n is an odd integer number. Once this plasma
oscillation sustains itself in the charge density of the channel, it creates mirror charge
density oscillations in the gate metal and produces EM radiation at the plasma frequency.

6.2. Diamond Properties for THz Detection and Emission

Diamond’s exceptional physical properties make it very suitable for THz plasmonic
devices. When it comes to electron and hole mobilities in diamond, the highest reported val-
ues obtained through time-resolved cyclotron resonance are 7300 cm2/Vs and 5300 cm2/Vs,
respectively [21]. Additionally, diamond exhibits substantial surface-heavy hole effective
mass values, typically ranging from 0.66 to 2.12 [197,322]. Table 3 lists the important param-
eters for THz detection and emission for different materials, including diamond. Diamond’s
large optical phonon energy serves to minimize optical phonon scattering, resulting in a
significantly extended momentum relaxation time, particularly limited by optical phonon
scattering. This property positions p-diamond as a highly promising candidate for sub-THz
and THz plasmonic devices. Notably, the quality factor (Q = ωτ) of plasmonic resonance in
p-diamond, can potentially exceed unity at frequencies as low as 300 GHz [18].

Table 3. Diamond, GaN, InGaAs, and Si properties for TeraFET applications [19].

Material Effective Mass Mobility (300 K)
(cm2/Vs)

p-diamond 0.74 5300
n-diamond 0.36 7300

GaN 0.24 2000
InGaAs 0.041 12,000

Si 0.19 1450

Recently, p-diamond has emerged as a contender for plasmonic THz applications,
drawing attention to its substantial potential for THz and IR plasmonic detection [18]. One
crucial parameter governing the plasma response in p-diamond is the hole momentum
relaxation time (τ), which can vary significantly, ranging from 0.013 to 6.4 ps at room
temperature. Figure 14a shows that p-diamond crosses the unity value of the quality
factor in the sub-THz frequency range at room temperature, which is required for resonant
THz detection and emission. Also, p-diamond has the longest reported hole momentum
relaxation time among other competitor materials, which helps in reaching the high-
quality factor as shown in Figure 14b,c. The minimum mobility required for p-diamond
to achieve resonant operation is much lower than that of Si, GaN, and InGaAs, as shown
in Figure 14d [19]. This makes p-diamond a superior material of choice for TeraFET
applications.
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Figure 14. (a) p-diamond quality factor (Q) vs. frequency for room temperature momentum relaxation
times [18,323], (b) momentum relaxation time and quality factor (Q) of different materials as a function
of mobility and effective mass at 300 GHz [324], (c) momentum relaxation time of different materials
for measured values of mobility [19], and (d) ultimate response times for different materials vs. their
carrier mobilities [19].

Moreover, p-diamond TeraFETs can support better resonant operation (comparing
quality factor values) than Si, GaN, and InGaAs at cryogenic (77 K) and room (300 K)
temperatures [317]. Si can achieve plasmonic oscillation at cryogenic temperature with
22 nm and 65 nm of channel lengths only if the highest reported mobility (1450 cm2/Vs) is
ensured. On the other hand, a p-diamond FET can function as a THz plasmonic resonator
even with 130 nm of channel length at room temperature. All these studies predict that
diamond could be a promising candidate for TeraFET applications.

6.3. Terahertz Detection and Emission by Diamond TeraFET

Various analytical and numerical studies have been conducted to analyze the
THz detection and emission process by diamond TeraFET using hydrodynamic mod-
eling [19,20,324–326]. Figure 15a,b shows the diagrams of the detection and emission
processes using diamond TeraFETs. Numerical simulations were reported on the resonant
response of sub-THz and THz radiation in p [19,20,327] and n-diamond [324,326] TeraFET
at cryogenic and room temperature, as predicted in the earlier analysis of the diamond’s
material properties. P-diamond TeraFETs with over 100 nm channel length should be able
to achieve a resonant response even at room temperature.
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Among different material systems such as InGaAs, Si, and GaN, the DC responsivity
values for diamond TeraFET were reported to be the highest, as shown in Figure 16a. Also,
p-diamond has the lowest resonance frequency for the same biasing condition and the same
channel length. This demonstrates that it will be easier for p-diamond to detect the 300 GHz
resonance response, which is promising for implementing 300 GHz communication links.
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Figure 16b shows the DC response of p-diamond at cryogenic (77 K) and room temperature
(300 K), where the channel length was 130 nm. Moreover, the gate biasing dependency of
the resonance frequency in both p- and n-diamond can help realize a tunable THz detector.
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77 K and 300 K [19], (c,d) sub-THz and THz emission from p-diamond TeraFET (n0 is charge density
and U0 is the gate swing voltage) [327].

Ultrashort pulse detection analysis has been demonstrated numerically in diamond
TeraFET [328]. To boost the DC response, a variable gate structure was investigated. p-
diamond showed higher responsibilities among other material systems [329].

Compact modeling of diamond TeraFETs uses transmission line analysis for p-implemented
SPICE and ADS modeling [317]. Apart from that, the operation of a TeraFET THz spectrom-
eter has been reported in [330–332]. SPICE modeling has been used for the analysis, which
demonstrated that p-diamond supported sub-THz operation in the 200–600 GHz frequency
range for a channel length of 250 nm.

Recent study have reported the numerical analysis of sub-THz and THz emission from
p-diamond TeraFET by implementing the Dyakonov-Shur instability in the channel [327].
P-diamond showed plasma wave oscillation in the frequency range from 200–400 GHz
for channel lengths of 80 to 120 nm at room temperature, as shown in Figure 16c,d. This
makes p-diamond an interesting room temperature compact THz source for the 300 GHz
communication technology.

However, there has been no report on the experimental demonstration of these features
in diamonds yet. Though these reports show great promise for the diamond-based TeraFET,
but fabricating a diamond-based FET with high mobility and making good ohmic contacts
at the source and drain will be challenging. New designs and techniques (rachet [333],
perforated channel [334], and plasmonic crystal [335]) have been proposed to achieve the
highest predicted performances.

7. Conclusions

In summary, we reviewed the state-of-the-art diamond high-power and frequency
devices in this paper. Diamond promises superlative performance in the field of high-power
and high-frequency applications due to its exceptional material properties. However, the
lack of efficient dopant atoms held down the progress of producing high quality diamond
devices. Though many of the bottlenecks have been resolved over the years and high-
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quality diamond substrates are being manufactured; substrate size, quality of the lattice,
and n-type doping remain some of the issues that need to be resolved. Over the years,
various device structures, including Schottky diodes, p-i-n diodes, p-n diodes, and FETs,
have been developed using diamond, displaying competitive performance in high-power
applications compared to other materials. However, there is room for improvement,
especially in the development of diamond bipolar devices to achieve top-tier performance
in high-power applications. When it comes to state-of-the-art diamond RF devices, they
exhibit impressive performance in terms of cutoff and maximum frequency, as well as
output power density, surpassing many other material systems. Yet, they still fall short of
the performance achieved by AlGaN/GaN HEMT devices. Fortunately, diamond’s long
carrier momentum relaxation time has opened up new possibilities in the sub-THz and THz
frequency ranges, leveraging plasma waves in TeraFETs and moving beyond traditional
electronics approaches. Diamond has the potential to enable room temperature operation
in the mm-Wave frequencies, paving the way for advanced THz applications, including
300 GHz communication.
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