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Abstract: The design of efficient oxygen evolution reaction (OER) electrocatalysts is of great signif-
icance for improving the energy efficiency of water electrolysis for hydrogen production. In this
work, low-temperature fluorination and the introduction of a conductive substrate strategy greatly
improve the OER performance in alkaline solutions. Cobalt–iron fluoride nanosheets supported
on reduced graphene architectures are constructed by a one-step solvothermal method and further
low-temperature fluorination treatment. The conductive graphene architectures can increase the
conductivity of catalysts, and the transition metal ions act as electron acceptors to reduce the Fermi
level of graphene, resulting in a low OER overpotential. The surface of the catalyst becomes porous
and rough after fluorination, which can expose more active sites and improve the OER performance.
Finally, the catalyst exhibits excellent catalytic performance in 1 M KOH, and the overpotential is
245 mV with a Tafel slope of 90 mV dec−1, which is better than the commercially available IrO2

catalyst. The good stability of the catalyst is confirmed with a chronoamperometry (CA) test and
the change in surface chemistry is elucidated by comparing the XPS before and after the CA test.
This work provides a new strategy to construct transition metal fluoride-based materials for boosted
OER catalysts.
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1. Introduction

With the rapid development of society and the increasing energy demand, pollution
caused by the combustion of fossil fuels is an emerging issue to be solved [1–4]. Electro-
catalytic water splitting is a promising option to produce renewable hydrogen energy and
decrease environmental pollution. In practical water splitting, it is impossible to directly
produce hydrogen because the efficiency of the reaction is very low. Functionalized cat-
alysts not only reduce the activation energy of the electrolyzed water reaction but also
decrease the overpotential during the oxygen evolution reaction (OER) [5,6]. Therefore, the
quality of the catalyst determines the total voltage for the practical electrolysis of water and
the conversion efficiency of electrical energy into hydrogen energy. In alkaline electrolytes,
noble metals such as platinum (Pt) and ruthenium (Ru) oxides are still good catalysts
in terms of catalytic effects, but the scarcity of their sources still hinders their practical
application for producing hydrogen.

Many efforts to develop low-price and effective catalysts have been carried out [7].
Transition metal (TM)-based nanomaterials, including transition metals [8–10], metal
alloys [11,12], perovskites [13], metal oxides/sulfides [12,14], etc., have attracted atten-
tion due to their variable electronic state distribution, rich species, and tunable structure to
maintain good electrocatalytic performance [15]. Heteroatom (e.g., sulfur and phosphorus)-
incorporated TM compounds can show enhanced electrocatalytic OER performance at-
tributed to adjusted surface chemistry and the formation of a covalent bond [16–19], such
as CoS with a hexagonal bipyramid structure [18], amorphous–crystalline CoS/NixPy/Fe-
Ni3S2 [20], CoS/Co3O4 nanoframes [19], etc. Fluorine has the largest electronegativity, and
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fluorine incorporation into TM compounds has been proven to show excellent OER activity
due to the co-existence of ionic metal-F and metal-O bonds [10,21,22], such as fluoridated
NiFe layered double hydroxides [21] and porous CoFe-F nanocubes [22]. However, the poor
conductivity of TM-based catalysts can result in a decrease in electrochemical performance
due to the existence of unstable oxygen content. Meanwhile, the catalytic reaction occurs
at the surface or subsurface, and the limited degree of self-reconfiguration can result in a
decreased number of active sites in the near-surface region and leave a large number of inac-
tive atoms in the bulk, which is not conducive to improving the catalytic activity [23,24]. To
improve the conductivity of transition metal-based catalysts and expose more active sites,
the most promising strategies are as follows: (1) Introducing new compounds to synthesize
polymetallic compounds and use their synergistic effects to tune electronic structures [25];
(2) constructing porous structures, increasing their surface area, and exposing more active
sites [26]; (3) introducing a conductive substrate to improve the charge transfer ability
of the catalyst [23], such as carbon nanotubes [27,28] and graphene [29–31]. Graphene
as a layered nanomaterial can be further introduced to construct a hierarchical structure
via its self-assembly of functionalized nanosheets, which can accelerate ion diffusion and
charge transfer and improve the conductivity of compounds [32]. The strong coupling of
hierarchical graphene with transition metal fluorides not only provides abundant channels
but also inhibits the aggregation and stacking of transition metals, exposing more active
sites to realize an enhancement in the catalytic performance [33,34].

Here, we prepared cobalt–iron fluoride nanosheets supported on reduced graphene
architectures (CoFeF-GA) via the precipitation, one-step hydrothermal, and fluoridation
methods. The hierarchical structure can expose more active sites and the formation of ionic
metal-F bonds is favorable for adjusting the surface chemistry of catalysts. The required
overpotential of CoFeF-GA in 1 M KOH solution is 245 mV at 10 mA cm−2, and the Tafel
slope of the material is 90 mV dec−1, which is superior to commercial IrO2 catalysts. This
work provides a new concept to prepare transition metal-based materials with improved
OER activity and stability for energy applications.

2. Materials and Methods
2.1. Chemicals

All chemicals were purchased and used without further purification. Ammonium
fluoride (NH4F), cobalt nitrate hexahydrate (Co(NO3)2·6H2O), iron nitrate nonahydrate
(Fe(NO3)3·9H2O), ethylene glycol, and ammonium hydroxide were purchased from Shang-
hai Aladdin Bio-Chem Technology Co., Ltd. (Shanghai, China). The graphene oxides were
purchased from Global Graphene Group. Sodium carbonate and potassium hydroxide
(KOH AR) were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).
Ultrapure water was used throughout the experiments.

2.2. Synthesis of CoFeF

Firstly, 12.5 mL of ammonium hydroxide (NH3·H2O) was mixed with 15 mL of
ethylene glycol under stirring for 2 min. Secondly, 3.5 mL of 1 M Na2CO3, 4 mL of 1 M
Co(NO3)2, and 1 mL of 1 M Fe(NO3)3 were added to the mixture while stirring for 20 min.
Then, the final mixture was transferred to a 50 mL Teflon-lined high-temperature autoclave
and heated at 170 ◦C for 17 h. After cooling down to room temperature, the products
were washed with ethanol/deionized water several times and dried at 60 ◦C overnight
under vacuum conditions. The as-obtained powder and ammonium fluoride (NH4F) were
placed at the downstream and upstream sides of a porcelain boat. The porcelain boat was
fixed in the center of a tube furnace. The mass ratio of NH4F to the CoFe precursor is 16:1.
Annealing was carried out at 320 ◦C for 2 h in a N2 atmosphere, and the heating rate was
3 ◦C min−1 with a N2 flow of 10 cc min−1. Finally, the target material was obtained and
named CoFeF. In comparison, the control sample was prepared using the same method
without the fluoridation and named CoFe.



Nanomaterials 2024, 14, 16 3 of 12

2.3. Synthesis of CoFeF-GA

Firstly, 12.5 mL of ammonium hydroxide (NH3·H2O) was mixed with 15 mL of
ethylene glycol under stirring for 2 min. Secondly, 3.5 mL of 1 M Na2CO3, 4 mL of 1M
Co(NO3)2, 1 mL of 1 M Fe(NO3)3, and 50 mg of graphene oxides were added to the mixture
while stirring for 20 min. Then, the final mixture with a violet color was transferred to
a 50 mL Teflon-lined high-temperature autoclave and heated at 170 ◦C for 17 h. After
cooling down to room temperature, the products were washed with ethanol/deionized
water several times and freeze-dried under vacuum conditions. After that, the as-obtained
CoFe-GO precursor and ammonium fluoride (NH4F) were placed at the downstream and
upstream sides of a porcelain boat. The porcelain boat was put in the center of a tube
furnace. The mass ratio of NH4F to CoFe-GO precursor is 16:1. The annealing temperature
was kept at 320 ◦C for 2 h in a N2 atmosphere and the heating rate was 3 ◦C min−1 with
a N2 flow of 10 cc min−1. Finally, the target material was obtained and named CoFeF-
GA. In comparison, the control sample was prepared using the same method without the
fluoridation and named CoFe-GA.

2.4. Characterizations

All samples were analyzed using a scanning electron microscope (SEM, Hitachi, S-4800
II, Tokyo, Japan), transmission electron microscope (TEM), high-resolution transmission
electron microscope (HRTEM, Philips, TECNAI 12, Amsterdam, The Netherlands), and the
related element mapping analysis (200 kV Philips TECNAI G2 electron microscope). The
KEVEX X-ray energy detector was used for energy color scattered X-ray (EDS) analysis.
Powder X-ray diffraction (XRD) patterns were recorded on a Bruker D8 Advance powder
using a Cu Kα (λ = 1.5405 Å) radiation source, operating at 40 kV and 40 mA at a scan-
ning rate of 5◦ min−1. Surface analysis of the sample was studied by X-ray photoelectron
spectroscopy (XPS, Thermo Science, ESCALAB 250Xi, Waltham, MA, USA). Thermogravi-
metric analysis (TGA) was carried out on a NETZSCH TG 209 F3 with a heating rate of
10 ◦C min−1 from room temperature to 600 ◦C under a N2 atmosphere.

2.5. Electrochemical Measurements

The electrochemical measurements were performed in a 1.0 M KOH electrolyte at
room temperature using an electrochemical workstation (CHI660E, Shanghai, China) with
a three-electrode system. A glassy carbon electrode (GC, diameter of 3 mm, 0.07 cm2) was
used as the supporting working electrode. All potentials were referenced to a reversible hy-
drogen electrode (RHE); the formula is as follows: E(RHE) = E(SCE) + 0.059 × pH + 0.242V.
A graphite rod and saturated calomel electrode (SCE) were used as the counter and ref-
erence electrodes, respectively. The uniform catalyst ink was prepared as follows: 5 mg
of catalyst, 950 µL of ethanol, and 50 µL of 5 wt% Nafion were mixed and ultrasonicated
for 1 h. Then, 10 µL of catalyst ink was loaded dropwise on to the glassy carbon electrode
under natural drying, and then the as-prepared working electrode was immersed in the
electrolyte. The mass loading of the catalyst supported on the glassy carbon electrode
was about 0.71 mg cm−2, and the SCE was calibrated before and after the electrochemi-
cal test. The potential was calibrated to the reversible hydrogen electrode (RHE) using
the equation: ERHE = ESCE + 0.059pH + 0.241 − IR. ESCE is the experimental potential
measured against the SCE reference electrode, and 0.241 is the standard potential of the
SCE at 25 ◦C. The equation of η(V) = E(RHE) − Eθ was used to calculate the overpoten-
tial of these electrocatalysts, where Eθ represents the thermodynamic potential for OER
(1.23 V vs. RHE).

The working electrode was pre-treated in 1M KOH with a N2 flow before the elec-
trochemical test. The polarization curves were measured by cyclic voltammetry (CV) at
a scan rate of 5 mV s−1. The ohmic resistance with IR correction was obtained using
electrochemical impedance spectroscopy in the frequency range of 1000 kHz~10 mHz with
an amplitude of 5 mV. A durability test was carried out by CV for 1000 cycles with the
potential ranging from 1.05 to 1.55 V vs. RHE in 1 M KOH at 150 mV s−1, and a linear
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sweep was measured under a scan rate of 5 mV s−1 for 1000 cycles. Chronoamperometry
(CA) was measured for 10 h. The electrochemical surface area (ECSA) was evaluated based
on the double-layer capacitance (Cdl), and the ECSA value was estimated by CV without
Faradaic processes occurring in the region. CV curves were measured at scan rates from 20
to 100 mV s−1 and the applied potential was from 1.02 V to 1.12 V.

The Faradaic efficiency of CoFe-F-16 was measured at 1.48 V for 1 h and calculated
using the following equation.

Faradaic yield =
VExp

VTheor
=

VExp
1
4 × Q

F × Vm

where VExp and VTheor are the experimental and theoretic volumes of the generated O2 gas
during the catalytic process, Q is the charge passed through the electrode, F is the Faraday
constant (96485 C mol−1), the number 4 means 4-mole electrons per mole of O2, and Vm is
the molar volume of gas (24.5 L mol−1, 298 K, 101 KPa).

3. Results
3.1. The Morphological Structure of CoFeF-GA

The catalyst consisting of cobalt–iron fluoride nanosheets supported on reduced
graphene architectures (CoFeF-GA) was prepared by a hydrothermal method and low-
temperature fluorination. Briefly, iron nitrate, cobalt nitrate, and graphene oxides were
mixed in ammonium hydroxide and ethylene glycol, and sodium carbonate was used to
adjust the pH. During the hydrothermal process, the hierarchical structure was constructed
by the self-assembly of graphene nanosheets, which were well-maintained by the subli-
mation of solvent after the freeze-drying treatment. Finally, the hierarchical CoFeF-GA
was obtained and graphene oxides were reduced during the further fluoridation treatment.
To investigate the morphological structure, scanning electron microscopy (SEM) was ini-
tially carried out, as shown in Figure 1a–c. In comparison to the pristine CoFe nanosheets
(Figure 1a), a small and thin layer of nanosheets can be observed for CoFe-GA in Figure 1b.
After fluoridation treatment, CoFeF-GA showed a hierarchical structure and rough surface
(Figure 1c), which allowed the exposure of a large number of active sites. The nitrogen
adsorption/desorption analysis is evaluated in Figure S1, and the specific surface area of
CoFeF-GA was about 135 cm2 g−1, with an average diameter of 22.4 nm and pore volume of
4.32 cm3 g−1. Coupling reduced graphene oxides with CoFeF nanosheets and the formation
of ionic metal-F bonds are favorable to improving the conductivity of CoFeF-GA.

To further verify the morphology of CoFeF-GA, transmission electron microscopy
(TEM) and high-resolution transmission electron microscopy (HR-TEM) were conducted.
As shown in Figure 1d,e, CoFeF nanosheets are deposited on the conductive graphene
surface, and the rough surface of CoFeF-GA is caused by the shrinkage of graphene
nanosheets and fluorine incorporation into the CoFe hydroxy-carbonate. Figure 1f shows
the HR-TEM image of CoFeF-GA, and the fringed lattice spacing of 0.33 and 0.37 nm
corresponds to the (110) crystal plane of CoF2 and (220) crystal plane of FeF2, respectively.
The elemental mapping images of the CoFeF-GA catalyst imply a uniform distribution of C,
O, Co, Fe, and F elements (Figure 1g), which was further confirmed by energy-dispersive
X-ray spectroscopy (EDS) (Figure S2). The oxygen species are possibly from the partial
surface oxidation or the surface adsorption of oxygen, and the uniform distribution of the
F element indicates successful fluorination treatment.
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The X-ray diffraction (XRD) technique was carried out to characterize the crystal
structure of CoFeF-GA. As shown in Figure 2a, the CoFeF-GA catalyst has typical diffraction
peaks corresponding to a hexagonal crystal structure. The diffraction peaks at 26.73◦, 33.08◦,
and 51.45◦ correspond to the (110), (101), and (211) planes of FeF2 (PDF #75-0419), and the
diffraction peaks at 26.73◦ and 52.07◦ are index to the (110) and (211) planes of CoF2 (PDF
#33-0417), respectively. The main peak of graphene overlaps with the diffraction peaks of
CoF2 and FeF2, and no additional diffraction peaks can be found, indicating the successful
fluorination of the CoFeF-GA catalyst. To determine the proportion of graphene oxide
and metal compounds for CoFeF-GA, thermogravimetric analysis (TGA) was carried out,
as shown in Figure S3. The initial weight loss of 16.8% near 120 ◦C corresponds to the
removal of impurities and solvents, and the weight loss from 120 to 450 ◦C is attributed
to a reduction in graphene oxides. Finally, the conversion from metal fluorides to metal
oxides occurs above a temperature of 450 ◦C and the final weight loss is about 37.3%.

The surface chemical valence of CoFeF-GA was studied by X-ray photoelectron spec-
troscopy (XPS). All the peaks were calibrated by C 1s peak at 284.6 eV. The full XPS
spectrum of the CoFeF-GA catalyst shows Fe, Co, F, and C peaks at 715, 783, 685, and
284 eV (Figure S4), which is well matched with the EDS and elemental mapping results.
The high-resolution Co 2p spectrum (Figure 2b) shows the primary peaks of Co2+ [35],
and the divided peaks at 784.1 and 801.2 eV are attributed to the spin−orbits of Co 2p3/2
and Co 2p1/2 accompanying the satellite peaks. For the Fe 2p spectrum in Figure 2c, the
fitted peaks at 713.6 and 725.1 eV correspond to the spin–orbits of Fe 2p3/2 and Fe 2p3/2 for
Fe2+ [5], and the peaks at 716.8 eV and 728.3 eV are indexed to the related satellite peaks.
Figure 2d shows two peaks at 686.2 eV and 689.2 eV corresponding to the metal-F and C-F
bonds, respectively, which demonstrate the successful fluoridation of CoFeF-GA.
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3.2. Electrochemical Performance

The electrochemical performance of CoFeF-GA was measured using a three-electrode
configuration in 1 M KOH with nitrogen purification. The electrocatalytic OER activity
of CoFeF-GA, CoFe-GA, CoFe, and CoFeF was initially evaluated via a linear sweep
voltammetry (LSV) measurement at a scan rate of 5 mV s−1. As shown in Figure 3a,
CoFeF-GA afforded an overpotential of 245 mV to reach a current density of 10 mA cm−2,
which was lower than that of CoFe-F (252 mV), CoFe-GA (420 mV), and CoFe (440 mV)
and other reported transition metal catalysts (Table S1), respectively. The slow kinetics of
oxygen desorption of oxides led to poor OER performance for CoFe and CoFe-GA. After the
fluorination treatment, the required overpotential for CoFeF was 252 mV at 10 mA cm−2,
and the catalytic performance was significantly enhanced, which proves that the heteroatom
fluorine doping strategy with the formation of an ionic metal-F bond has a positive effect
on the improvement in the catalytic performance. Furthermore, a lower overpotential
for CoFeF-GA than CoFeF can be attributed to the good electrical conductivity and large
surface area due to the introduction of the conductive graphene, which can expose more
active sites and provide fast ion transfer channels.
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The Tafel slope is an important parameter to reveal the reaction mechanism. As shown
in Figure 3b, the Tafel slope of CoFeF-GA is 90 mV dec−1, which is smaller than that of
CoFeF (107 mV dec−1), CoFe-GA (113 mV dec−1), and CoFe (120 mV dec−1). A smaller
value of the Tafel slope implies a faster increase in current density and a smaller change in
overpotential (η). This result confirms that CoFeF-GA has rapid kinetic behavior and good
electrocatalytic OER performance. The surface dynamic performance and electrode inter-
face properties were studied by electrochemical impedance spectroscopy (EIS). Figure 3c
shows the Nyquist plots of all samples, which are fitted according to the electrical equiva-
lent circuit (inset of Figure 3c). The related resistances Rs, R1, and Rct represent the solution
resistance of the electrolyte, the catalyst membrane resistance, and the charge transfer
resistance. At high frequency, the value of R1 is recorded at the highly porous surface and
the reaction on the catalyst. CoFeF-GA shows a smaller semicircle than other samples,
implying a faster charge transfer rate during the OER process, which is in agreement with
the result of Tafel slopes. The fitted Nyquist plots are listed in Table S2. The double-layer
capacitance (Cdl) was calculated by cyclic voltammetry (CV) in the non-faradic region from
20 to 100 mV s−1 (Figure S5), and electrochemical surface area (ECSA) is proportional to
Cdl, which can be effectively calculated from the values of Cdl. As shown in Figure 3d, the
Cdl of CoFeF-GA (0.5 mF cm−2) is higher than that of CoFeF (0.32 mF cm−2), CoFe-GA
(0.03 mF cm−2), and CoFe (0.01 mF cm−2) in Table S3, indicating a larger active surface
for CoFeF-GA. The large values of ECSA, Cdl, and Rf predict that CoFeF-GA can provide
sufficient open space and surface area for fast electrolyte diffusion and charge transfer.

The specific activity was compared by normalizing the raw current to the ECSA. At
an overpotential of 300 mV, the specific activity of CoFeF-GA was 4.7, which was about
5.8 and 11.8 times that of CoFe-GA and CoFe (Figure 4a). A similar specific activity for
CoFeF-GA and CoFeF is attributed to the formation of metal-F bonds after the fluoride
element incorporation. To confirm the catalytic stability, the CV curves for 1000 cycles
and chronoamperometry (CA) were measured. After 1000 cycles, the CV curve almost
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overlaps with its initial cycle, and the change in overpotential is almost ignored (Figure 4b),
indicating a high catalytic OER stability for CoFeF-GA as the anode catalyst in an alkaline
electrolyte. Furthermore, the durability was further confirmed by the CA test at 1.475 V,
and the current density was slightly changed after the CA test for 10 h (Figure 4c). Faraday
efficiency is an important indicator for the practical application of catalysts, which is
determined by matching the generated experimental amount of oxygen with the theoretical
amount of oxygen. After the faradic efficiency was measured at a potential of 1.475 V
for 50 min, the calculated current efficiency for CoFeF-GA was close to 100% (Figure 4d),
indicating good electrocatalytic stability.

Nanomaterials 2023, 13, x FOR PEER REVIEW 8 of 13 
 

 

CoFeF-GA and CoFeF is attributed to the formation of metal-F bonds after the fluoride 
element incorporation. To confirm the catalytic stability, the CV curves for 1000 cycles and 
chronoamperometry (CA) were measured. After 1000 cycles, the CV curve almost over-
laps with its initial cycle, and the change in overpotential is almost ignored (Figure 4b), 
indicating a high catalytic OER stability for CoFeF-GA as the anode catalyst in an alkaline 
electrolyte. Furthermore, the durability was further confirmed by the CA test at 1.475 V, 
and the current density was slightly changed after the CA test for 10 h (Figure 4c). Faraday 
efficiency is an important indicator for the practical application of catalysts, which is de-
termined by matching the generated experimental amount of oxygen with the theoretical 
amount of oxygen. After the faradic efficiency was measured at a potential of 1.475 V for 
50 min, the calculated current efficiency for CoFeF-GA was close to 100% (Figure 4d), in-
dicating good electrocatalytic stability. 

 
Figure 4. (a) Specific activity of CoFeF-GA, CoFe-GA, CoFe, and CoFeF in 1 M KOH solution. (b) 
CV curves before and after 1000 cycles of CoFeF-GA, (c) chronoamperometry measurement of 
CoFeF-GA at a potential of 1.475 V, and (d) current efficiency of CoFeF-GA for OER during potential 
electrolysis at 1.475 V in 1 M KOH. 

The morphological and crystal structure of CoFeF-GA after the stability test were 
probed by TEM and XRD. It was found that the surface of CoFeF-GA after the stability 
test became dark and the typical characteristic peaks of metal fluorides disappeared, re-
sulting from the formation of metal oxyhydroxides during the OER test (Figure S6). To 
investigate the change in the surface chemistry of CoFeF-GA, XPS spectra before and after 
the stability test were compared. It can be observed that the Co 2p and Fe 2p spectra of 
CoFeF-GA after the CA test shifted to a lower binding energy than the pristine state (Fig-
ure 5a,b). The disappearance of the metal-F bond and the formation of the metal-O bond 
were assigned to the surface oxidation of CoFeF-GA during the OER process. Since the 
electronegativity of fluorine is greater than that of oxygen, the electrons are more easily 
detached from the metal sites, resulting in the shift of the primary peak. As further con-
firmed by the O 1s spectra in Figure 5c, the metal-O bond appears at 529.8 eV after the CA 

Figure 4. (a) Specific activity of CoFeF-GA, CoFe-GA, CoFe, and CoFeF in 1 M KOH solution. (b) CV
curves before and after 1000 cycles of CoFeF-GA, (c) chronoamperometry measurement of CoFeF-GA
at a potential of 1.475 V, and (d) current efficiency of CoFeF-GA for OER during potential electrolysis
at 1.475 V in 1 M KOH.

The morphological and crystal structure of CoFeF-GA after the stability test were
probed by TEM and XRD. It was found that the surface of CoFeF-GA after the stability test
became dark and the typical characteristic peaks of metal fluorides disappeared, resulting
from the formation of metal oxyhydroxides during the OER test (Figure S6). To investigate
the change in the surface chemistry of CoFeF-GA, XPS spectra before and after the stability
test were compared. It can be observed that the Co 2p and Fe 2p spectra of CoFeF-GA
after the CA test shifted to a lower binding energy than the pristine state (Figure 5a,b). The
disappearance of the metal-F bond and the formation of the metal-O bond were assigned
to the surface oxidation of CoFeF-GA during the OER process. Since the electronegativity
of fluorine is greater than that of oxygen, the electrons are more easily detached from the
metal sites, resulting in the shift of the primary peak. As further confirmed by the O 1s
spectra in Figure 5c, the metal-O bond appears at 529.8 eV after the CA test, and the peak at
535.4 eV corresponds to the C-SO3 arising from the Nafion as the binder. For F 1s spectra in
Figure 5d, the disappearance of the metal-F bond results from the formation of the metal-O
bond at high potential by surface oxidation during the OER process. The above results
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indicate that the surface of OER catalysts will self-restructure to form oxides or hydroxyls
at high anode potentials, and the new phases formed are the real catalytic active sites [36].
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The active phase of CoFeF-rGA is a high-valence state of MOOH driven by the high
potential under alkaline conditions. According to the reported catalytic mechanism, the
basic principle of the catalytic OER for CoFeF-rGA is presented as follows. In the catalytic
process, the M-F bond will be dissociated to form M-OH, which will be finally transferred
to M-O and M-OOH species at a high oxidation potential [37]. The critical intermediates of
MOO− as the active oxygen species convert to O2 gas, which can provide a new position for
the next cycle. The most likely reaction mechanisms are listed as Equations 1 to 4 [38,39].

M + OH− → M-OH + e− (1)

M-OH + OH− → M-O + H2O + e− (2)

M-O + OH− → M-OOH + e− (3)

M-OOH + OH− → M + H2O + O2 + e− (4)

As demonstrated by the above results, CoFeF-GA shows excellent electrocatalytic
OER activity, which can be attributed to the following possibilities. (1) The hierarchical
structure and rough surface of the catalyst can guarantee the exposure of a large active
surface, provide many ion diffusion pathways, and improve the utilization of active sites;
(2) the formation of the ionic metal-F bond by heteroatom fluorine doping can adjust the
surface chemistry of the catalyst to boost the surface active sites; (3) the introduction of
conductive graphene can increase the electrical conductivity and prevent the aggregation
of CoFeF nanosheets during the synthesis process to develop the electrocatalytic stability
of CoFeF-GA; (4) CoFeF coupled with reduced graphene oxides can boost the active sites
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and reduce the reaction barrier of the catalyst to develop its electrocatalytic activity for the
OER in an alkaline electrolyte.

4. Conclusions

In this work, a hierarchical and effective CoFeF-GA catalyst was constructed by
the hydrothermal and fluoridation methods. The hierarchical structure of CoFeF-GA
was formed by the crosslink of graphene nanosheets via a π-π configuration, which can
guarantee the exposure of abundant active sites and provide many pathways for fast
ion diffusion. Meanwhile, the surface chemistry was adjusted by heteroatom fluorine
incorporation, and the formation of ionic metal-F bonds was favorable for boosting the
active sites, improving the electrocatalytic OER performance. Due to the structural and
chemical effects, CoFeF-GA shows excellent OER performance in alkaline electrolytes, such
as the low overpotential of 245 mV to afford a current density of 10 mA cm−2 and its small
Tafel slope of 90 mV dec−1. The low Rct value of CoFeF-GA implies fast dynamic behavior
during the OER process. This work provides a facile strategy to prepare hierarchical
transition metal fluoride-based catalysts for energy conversion systems.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/nano14010016/s1, Figure S1: The nitrogen adsorption/desorption isotherms
of CoFeF-GA. Figure S2: Energy dispersive X-ray spectroscopy of CoFeF-GA. Figure S3: TGA full
spectrum of the CoFeF-GA. Figure S4: XPS full spectrum of the CoFeF-GA. Figure S5: CV curves
of (a) CoFe, (b) CoFe-GA, (c) CoFeF (d) CoFeF-GA in 1 M KOH at scan rates of 20, 40, 60, 80 and
100 mV s−1. Figure S6: TEM image and XRD pattern of the CoFeF-GA catalyst after continuous CA
test in 1.0 M KOH. Table S1: The comparison of other OER catalysts derived from transition metal-
based materials in 1M KOH (η: overpotential at the current density of 10 mA cm−2). Table S2. The
fitted Rs, Rct and R1 values of all catalysts. Table S3. Detailed values of Cdl, ECSA and Rf of all
catalysts. References [40–50] are cited in the Supplementary Materials.
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