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Abstract: The complete removal of low concentration organic pollutants from wastewater to obtain
clean water has always been a highly desired but challenging issue. In response to this, we proposed
a new strategy to fabricate a carbon-in-silicate nanohybrid composite by recycling dye-loaded layered
clay adsorbent and converting them to new heterogeneous carbon-in-silicate nanocomposite through
an associated calcination-hydrothermal activation process. It has been confirmed that most of
the dye molecules were present in waste rectorite adsorbent using an intercalation mode, which
can be in situ converted to carbon in the confined interlayer spacing of rectorite. The further
hydrothermal activation process may further improve the pore structure and increase surface active
sites. As expected, the optimal composite shows extremely high removal rates of 99.6% and 99.5%
for Methylene blue (MB) and Basic Red 14 (BR) at low concentrations (25 mg/L), respectively. In
addition, the composite adsorbent also shows high removal capacity for single-component and
two-component dyes in deionized water and actual water (i.e., Yellow River water, Yangtze River
water, and seawater) with a removal rate higher than 99%. The adsorbent has good reusability, and
the adsorption efficiency is still above 93% after five regeneration cycles. The waste clay adsorbent-
derived composite adsorbent can be used as an inexpensive material for the decontamination of
dyed wastewater.

Keywords: rectorite; adsorbent; recycling; adsorption; wastewater

1. Introduction

According to statistics, more than 100 tons of dye pollutants are discharged into
the water environment every year [1]. The textile industry is the largest source of water
pollution, followed by the paint, paper, leather, and printing industries [2]. These toxic dye
wastewaters have caused great harm to human health, organisms, and ecosystems. How to
economically and effectively remove dye pollutants in wastewater has become an urgent
problem that needs to be solved [3–6]. The adsorption method is preferred as one of the
most hopeful approaches for removing all kinds of pollutants owing to its simplicity, high
efficiency, easy operation, reusability, and low cost [7–9].

In recent years, attempts have been made to remove dyes from wastewater with
different adsorbent materials, such as activated carbon [10,11], polymer materials [12–14],
modified clay [15], graphene [16], MOF [17], biochar [18], copper selenides [19], magnetic
NiFe layered double hydroxide decorated diatomite [20], hybrid porous hexagonal boron
nitride-based magnetic aerogel [21], and others. With the increasing demand for high
water purification levels, the development of new adsorbents with a high dye removal
rate, strong applicability in diverse water bodies, low cost, and wide range of sources has
been pursued. Silicate clay minerals have been commonly recognized as low-cost and
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efficient adsorbents for the removal of pollutants due to their abundance, non-toxicity,
stability, low cost, safety, and other advantages [22,23]. The clay minerals can be simply
modified or compounded with other species to further elevate the adsorption capability.
For example, the attapulgite/carbon composite shows an adsorption capacity (37.79 mg/g)
and removal rate (95%) that is superior to raw attapulgite [24]. The magnetic magnesium-
rich silicate adsorbent derived from natural attapulgite clay shows an adsorption capacity
of 116.1 mg/g and 169.5 mg/g for methylene blue and cationic yellow dyes, respectively,
and its performance is better than that of raw attapulgite clay [25]. The native advantages
of clay minerals make them promising candidate for the development of high-performance
adsorption materials.

Rectorite (R) is a unique two-dimensional layered clay mineral, which is composed
of mica-like layers and montmorillonite-like layers in a ratio of 1:1 [26]. Compared with
other layered clay minerals, it not only has cation exchange, water absorption, and swelling
properties similar to montmorillonite, but also has high temperature-resistant properties
similar to mica [27]. Rectorite is used to adsorb organic dyes in wastewater through hy-
drogen bond interactions, electrostatic attraction and ion exchange due to its pores, cation
exchange capacity, surface negative charges, and surface silanol groups [28]. Although
a series of natural clay minerals (such as rectorite) are widely used in the adsorption of
dyes, the spent adsorbents will become solid waste, and its improper disposal will cause
secondary pollution to the environment and a huge waste of mineral resources. Therefore,
the effective disposal of the dye-adsorbed clay waste is extremely important [29], and rele-
vant research have received much more attentions. Wang et al. synthesized a mesoporous
silicate/carbon composite adsorbent from attapulgite-based waste dye adsorbent, which
has a high removal capacity for tetracycline, methylene blue, and crystal violet [30]. Tian
et al. use attapulgite (APT)-based dye adsorbent as a raw material to synthesize ternary at-
tapulgite/carbon/silver nanoparticles (APT/C/AgNPs), nanocomposite with satisfactory
adsorption and catalytic properties [31]. Zhai et al. converted methylene blue-adsorbed
attapulgite at different temperatures to obtain a photocatalytic material with excellent
efficiency for the degradation of bisphenol A [32]. These research proved a sustainable
approach to convert waste to useful new materials. From previous research, it was also
found that the conversion behavior of dye and the performance of the resulting adsorbent
are highly dependent on the original structure of clay minerals. It is necessary to intensively
examine the structure and performance of the composite derived from clay minerals with
interlayered structures.

As a continuation of our systematic research work, this paper focused on the conver-
sion and activation of waste rectorite adsorbent for production of highly efficient carbon-in-
silicate adsorbent. The conversion behavior of dye in the interlayered clay was studied,
the synthesis parameters were optimized, the change of microstructures of rectorite in the
composites were explored. The adsorption behavior of the composite towards dyes from
one-component and two-component system in different water medium was explored.

2. Materials and Methods
2.1. Materials

Rectorite (abbreviated as R) was obtained from Jingmen city, Hubei Province, China.
Dye-loaded rectorite (MB-R) powder was obtained by the following process: rectorite
powder and 1000 mL of MB dye solution (concentration, 5 g/L) were mixed together
under continuous stirring for 24 h at room temperature to attain saturated adsorption. The
solid was separated from the solution by a centrifugation process, and then crushed into a
powder with a particle size < 76 µm. Methylene blue (MB) was bought from Adamas-beta
Co., Ltd. in Shanghai, China. Basic Red 14 (BR) was bought from Duly Chemical Reagent
Co., Ltd. in Nanjing, China. Hydrochloric acid (HCl aqueous solution) was purchased
from Beijing Innochem Chemical Reagent Co., Ltd., in Beijing, China. Yangtze River water
was sourced from the Jingzhou city, China. Yellow River water is taken from the Ordos



Nanomaterials 2023, 13, 2627 3 of 16

city, China. Seawater is taken from the Bohai Sea, China (located at Tianjin, China). The
parameters of the three actual water bodies are shown in Table S1 (Supplementary Material).

2.2. Synthesis of Carbon-in-Silicate Nanohybrid Composites

The composites were prepared via the following two-step process (Figure S1 in Sup-
plementary Material). The first step is the carbonization process of dye-loaded rectorite.
First, the MB-loaded rectorite powder (1 g) was placed in a tube furnace, and then calcined
at 600 ◦C for 3 h under a nitrogen atmosphere (heating rate: 5 ◦C/min). The resultant
black solid powder was marked as R/C. The second step is the activation of the R/C
composite. The R/C powder (1 g) was dispersed into 20 mL of hydrochloric acid solution
with different concentrations (0.5, 1, 2, 3, and 4 mol/L, respectively). The mixture was
magnetically stirred for 30 min to obtain a uniform dispersion. Subsequently, the disper-
sion was transferred into hydrothermal reaction tank with Teflon liner (100 mL volume),
then sealed and placed in an oven at 160 ◦C for different time intervals (2 h, 3 h, 4 h, 6 h,
8 h, and 12 h, respectively). After the hydrothermal process was completed, the reaction
tank was naturally cooled to ambient temperature. The product was separated from the
reaction mixture via a centrifugation process, washed several times with deionized water,
dried, pulverized, and screened to obtain the final product. The product was labeled as
R/C-xHAyh (x is the amount-of-substance concentration of HCl solution, mol/L; y is the
hydrothermal reaction time, h).

2.3. Adsorption Experiments
2.3.1. Adsorption Performance Test

The effects of pH, kinetics, and isotherm on adsorption experiments are detailed in
the Supplementary Material.

2.3.2. Test for Adsorption Efficiency of R/C-2HA4h Composite

Different doses of the composite adsorbents (0.5, 1.0, 1.5, 2.0, and 3.0 g/L, respectively)
were added to the aqueous solution of MB or BR dye (concentration: 25 mg/L). After
the adsorption process reaches equilibrium, the UV-Visible spectrum of the dye solution
was scanned, the digital photograph of the solution was taken, and the removal rate of
dyes after adsorption by the adsorbent was calculated. The adsorption capacity of the
composite adsorbent (dose: 0.5 g/L) towards MB or BR dyes in different water bodies
(i.e., Deionized water, Yangtze River water, Yellow River water, and Seawater) (dye con-
centration: 200 mg/L) was evaluated according to a similar procedure. The parameters
of the three actual water bodies are shown in Table S2 (Supplementary Material). The
co-adsorption properties of the composite towards the mixed dye solutions of MB and BR in
different water medium was evaluated. Different doses of the composites (0.5 g/L, 1.0 g/L,
1.5 g/L, 2.0 g/L, 3.0 g/L, 4.0 g/L, and 5.0 g/L, respectively) were added to 20 mL of mixed
dye solution (25 mg/L for MB and BR). After adsorption, the removal rate of dye by the
adsorbent was tested and calculated, the UV-Visible spectrum of the solution was scanned,
and the digital photograph of the solution was taken.

2.4. Characterizations

The instruments and methods used to characterize the composite adsorbents are
shown in the Supplementary Material.

3. Results and Discussion
3.1. Structure and Morphology of Composites

The XRD patterns of MB-loaded rectorite and R/C and R/C-2HA4h adsorbents are
shown in Figure 1. The characteristic reflections of rectorite (2θ values: 3.48◦, 7.66◦, 19.94◦,
27.40◦, and 35.06◦) [27] (JCPDS Card No. 29-1495), muscovite (2θ values: 8.74◦ and
17.50◦) [30], quartz (2θ values: 26.46◦ and 44.84◦) [25], and pyrite (2θ values: 33.02◦,
37.04◦, 40.74◦, 47.40◦, and 56.28◦) (JCPDS No. 71-0053) [33] appeared in the XRD patterns of
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MB-R, which indicate that small amounts of associated minerals coexist with the rectorite
mineral. After MB-R was calcined at 600 ◦C under nitrogen atmosphere, the diffraction
peak of rectorite at 2θ = 3.48◦ (0 0 1 plane) shifts to larger angle, which confirms that the
layer spacing decreases, and the MB in the interlayer spacing of rectorite was converted
to carbon [29,34]. Figure 1a and Figure S2 (Supplementary Material) exhibit the XRD
patterns of R/C after activation with different concentrations of acid solution and different
hydrothermal activation times. When the concentration of acid solution and hydrothermal
activation time gradually increase, the intensity of the diffraction peaks of (0 0 1) and (0 0 2)
crystal planes decrease significantly, which is due to the partial removal of metal ions (such
as Mg2+, Al3+) on the rectorite sheet during acid activation [35] and the formation of the
amorphous region. When the concentration of acid solution is 4 mol/L, the reflection peaks
of the (0 0 1) and (0 0 2) crystal planes disappear, indicating the acid activation process can
remove some metal ions from the rectorite layer to create active adsorption sites that are
beneficial to the adsorption of dyes.
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Figure 1. (a) XRD patterns of MB-R, R/C and R/C-2HA4h; (b) FTIR spectra of MB-R, R/C and
R/C-2HA4h.

Figure 1b shows the FTIR spectra of MB-R, R/C, and R/C-2HA4h. In the FTIR
spectrum of MB-R, the bands at 3645 cm−1, 3439 cm−1, and 1023 cm−1 are the stretching
vibration of Al-OH, the stretching vibration of O-H, and the stretching vibration of Si-O-
Si, respectively [27]. The bands at 1336, 1395, 1489, and 1602 cm−1 are assigned to the
antisymmetric and symmetric deformation bands of CH3, aromatic C-N, and aromatic C-C
in MB, respectively [30,36,37]. The bands at 2919 cm−1 and 2849 cm−1 are the stretching
vibration bands of C-H in -CH3 and -CH2, respectively [38]. After calcination treatment,
the absorption bands of MB disappear, but the stretching vibration band of C-H in -CH3
and -CH2 still appears at 2917 cm−1 and 2849 cm−1, proving that the MB in the layer
spacing of rectorite was converted to carbon after calcination. The Al-OH adsorption band
at 3641 cm−1 almost disappears after calcination, which is due to the dehydroxylation
reaction in the rectorite layer during the calcination process [27].

Figure S2c,d (Supplementary Material) shows the changes of functional groups on
the adsorbent after R/C was activated with different concentrations of acid solution (fixed
activation time: 8 h) and hydrothermal time (fixed acid concentration: 2 mol/L). With the
gradual increase of acid concentration and the extension of activation time, the absorptive
bands of Al-OH at 3641 cm−1 gradually disappeared, due to the dehydroxylation reaction
of the rectorite layer [27], and the surface of rectorite was slightly etched. The stretching
vibration bands of C-H in R/C at 2917 cm−1 and 2849 cm−1 almost disappeared after
treatment with 4 mol/L of acid solution for 8 h, indicating that the high concentration of
acid solution makes the carbon fall off by breaking the carbon/silicate interface.

Figure 2a,b displays the SEM images of R/C and R/C-2HA4h, respectively. Rectorite
maintains its complete lamellar structure after calcination process. However, its layer
structure is slightly damaged after acid activation process, and some fragments were
seen on it. Figure 2c,e and Figure 2d,f display the TEM images of R/C and R/C-2HA4h,
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respectively. The R/C composite still shows complete lamellar structure with uniform
carbon layer (Figure 2c). After acid activation, the layer structure of rectorite is slightly
damaged and the complete carbon layer is observed (Figure 2d). This is because the acid
activation partially leached the metal ions (i.e., Mg2+, Al3+) on the surface of rectorite layer,
and the layer structure is slightly changed. The amorphous region caused by acid etching
are observed in the high magnification TEM picture of R/C-2HA4h (Figure 2f), which is
favorable to increase the adsorption sites on the surface of rectorite. The EDS elemental
analysis of R/C and R/C-2HA4h (Figure S3 in Supplementary Material) also proves the
change of metal ions on the surface of rectorite layer. Before and after acid activation, the
Mg and Al content on the surface of R/C decreased by 7.97% and 7.30%, respectively.
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3.2. Raman Spectra Analysis

Raman spectroscopy is a commonly used method to study the structural characteristics
of graphitic carbonaceous materials. Raman spectra of the MB-R, RE/C, and R/C-2HA4h
composites were analyzed to reveal the presence of carbon in the materials. As shown in
Figure 3a, the peaks at 1628, 1573, and 1584 cm−1 are identified as Raman shifts of G bands
in MB-R, R/C, and R/C-2HA4h, respectively, which belong to the characteristic peak of
graphitized carbon (sp2-C) [39]. The peaks at 1451, 1395, and 1392 cm−1 are identified as
the Raman shifts of the D bands in MB-R, R/C, and R/C-2HA4h, respectively, which are
ascribed to the absence of ordered carbon atoms or defective carbon atoms (sp3-C) [39]. The
intensity ratio of D-band to G-band (ID/IG) can generally be used as an index to evaluate
the order degree of carbon structure. The ID/IG values of MB-R, R/C, and R/C-2HA4h
are 0.44, 0.99, and 0.99, respectively. There are many peaks in the Raman spectrum of
MB-R, which is due to the existence of MB in the MB-R, which is dominated by graphitized
carbon. When MB-R was converted to R/C, the ID/IG value was close to 1, and there were
no other peaks in the Raman spectrum, accounting for the dye in MB-R being completely
transformed into carbon. After the acid activation, the ID/IG value of R/C-2HA4h is still
the same as that of R/C, but the respective peak intensities have increased, indicating that
the moderate acid activation process does not change the state of the carbon species. These
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results indicate that the carbon species in R/C and R/C-2HA4h are graphitized carbon and
amorphous carbon [40].
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3.3. BET Pore Structure Analysis

According to the IUPIC classification guideline, the R/C-2HA4h and R/C composites
show type IIB isotherms with H3 hysteresis ring (Figure 3b) [41,42]. At the relative pressure
P/P0 < 0.4, the adsorption–desorption curves almost coincided. When P/P0 > 0.4, the
capillary condensation phenomenon caused by multilayer adsorption of nitrogen can be
seen, indicating mesopores, micropores, and/or macropores are present in the R/C and
R/C-2HA4h composites [43]. The pore-diameter distribution curves of the composites are
shown in Figure 3b. The peak of R/C and R/C-2HA4h is centered at 3.8 nm, revealing
that the composite is a mesoporous material. The pore structure parameters of R/C and
R/C-2HA4h were listed in Table S2 (Supplementary Material). The average pore size of
R/C-2HA4h is higher than R/C, which is beneficial for R/C-2HA4h to adsorb BR and MB.

3.4. Influence of Adsorption Conditions
3.4.1. Influence of Synthesis Parameters

The effects of the concentration of acid solution and the activation time on the adsorp-
tion capacity were investigated (see Figure 4). When the concentration of acid solution was
2 mol/L and the acid activation time was 4 h, the adsorption amount of the adsorbent to
dye reached the best values (60.87 mg/g for MB; and 72.10 mg/g for BR). In Figure 4a, the
adsorption amount of the acid-activated adsorbent for dyes is better than that without acid
activation. Taking the composite adsorbents prepared under the optimal reaction condi-
tions as the optimal adsorbent, the effect of pH, adsorption kinetics, adsorption isotherm
and other adsorption behaviors of the adsorbent were investigated.
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3.4.2. Effect of pH Values

The initial pH of the solution can affect the properties of dyes and the adsorbent,
thus affect the adsorption behavior, especially for cationic dyes. As shown in Figure 5a,b,
under each pH condition, the adsorption amount of R/C-2HA4h composite for dyes was
much higher than that of R/C. In the test pH range (pH 2~10), the adsorption amount
of R/C-2HA4h composite to BR is almost unaffected by the pH value, but it is slightly
lower at pH 2~3, showing a very good pH immutability (Figure 5a). However, R/C-2HA4h
composite is slightly pH-dependent for the adsorption of MB (Figure 5b). The adsorption
capacity was relatively lower at pH 2~3, which increased rapidly with pH increasing from
2 to 4, and keeps almost constant at pH 4~10. The charge on R/C-2HA4h is negative
(Figure 5c), which is conducive to the adsorption of positively charged cationic dyes. When
pH is 2, because there are free H+ ions in the solution, some groups on the R/C-2HA4h
change to Si-OH2

+, which weaken the acting force between MB and the adsorbent, resulting
in a slightly lower adsorption capacity towards MB [30]. When the pH value gradually
increases to 6, the formed Si-OH2

+ also slowly change to Si-O− groups, and more negative
charges are on the adsorbent surface [44], so it is easy to adsorb positively charged MB. The
removal rate (r) of the adsorbents was compared with other adsorbents, as shown in Table 1.
The r values of MB and BR of the R/C-2HA4h adsorbent were better than those of other
adsorbents, which indicate that the adsorbent has better adsorption removal capability
towards dyes.
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Table 1. The comparison of removal rates (r) of dyes using different adsorbents at the optimal pH.

Adsorbents Dyes Initial Concentration (mg/L) r (%) (optimal pH) Ref.

F-CNTs@MOF@Gel MB 100 81 (pH 7.89) [45]
MnFe2O4/rGO MB 100 95 (pH 7) [46]

Tailing Ash MB 20 96.2 (pH 10) [47]
PpAP/Starch/GO MB 100 96.7 (pH 7) [48]

CNS/(PAAc-MAC) MB 50 98 (pH 7) [49]
Algal Biochar MB 100 97.5 (pH 7) [50]

Carbonized Dacryodes edulis leaf MB 100 93 (pH 4) [51]
R/C-2HA4h MB 25 99.6 (pH 6) This work

Valorization of olive–pomace BR 200 90 (pH 7) [52]
CuO nanoparticles BR 10 80 (pH 7) [53]

MCM-48 BR 500 97 (pH 4.6) [54]
O-CM-chitosan hydrogel BR 400 85 (pH 7) [55]

Orange peel biochar BR 100 94 (pH 10) [56]
R/C-2HA4h BR 25 99.5 (pH 6) This work
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3.4.3. Adsorption Kinetics and Isotherms

Figure 6a,b shows the time-dependent adsorption behavior of BR and MB by R/C-
2HA4h and R/C composites. The variation in the adsorption rate is strongly correlated
with the solid–liquid concentration gradient between the dye solution and the adsorbent.
In the initial stage, due to the large concentration gradient, more adsorbates will diffuse
onto the surface of the adsorbent, and at the same time, the adsorbent has more adsorption
sites to trap dye molecules. When the time gradually increased, the adsorption amount
also increased rapidly. With the gradual progress of the adsorption, the concentration
gradient between solid and liquid becomes smaller, leaching to a decrease of driving force
for dye adsorption. Adsorption reaches equilibrium when all the adsorption sites were
saturated [30]. The adsorption experiments of BR and MB by R/C-2HA4h adsorbent
reached equilibrium within 30 min. Although R/C has poor adsorption capacity for BR
and MB, the adsorption process reaches equilibrium rapidly (within 5 min). This may be
because the fewer active adsorption sites on the surface of R/C can be rapidly occupied
by dye molecules. When it is full, the adsorption reaches equilibrium immediately. As
for adsorption kinetics, the experimental data were fitted using pseudo-first-order and
pseudo-second-order kinetic models (Figure S4 in Supplementary Material) [57]. The fitting
results with the pseudo-second-order model obtains a perfect linear relationship (R2 > 0.99),
and the maximum adsorption amount calculated by the fitting is in agreement with the
experimental value (Table S2 in Supplementary Material), which demonstrates that the
kinetic adsorption behavior is consistent with the pseudo-second-order kinetic model, and
chemisorption mainly contributes to the adsorption.
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Figure 6c,d shows the variation curve of the adsorption capacity of dyes by the
adsorbent with the equilibrium concentration of BR and MB after adsorption. In the
initial stage, when the concentration of dye gradually increases, the adsorption amount
also increases quickly. This is mainly because that the concentration gradient between
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the adsorbent and the adsorbate gradually increase, and the dye molecules are more
easily diffused onto the surface of the adsorbent [30]. The adsorption of BR onto R/C-
2HA4h adsorbent reached equilibrium (adsorption capacity: 72.83 mg/g) at the initial BR
concentration of 200 mg/L, and the adsorption of MB onto R/C-2HA4h reached equilibrium
(adsorption capacity: 61.39 mg/g) at the initial MB concentration of 150 mg/g. Beyond this
concentration, the available adsorption sites are almost saturated, the adsorption amount
no longer increases with increasing dye concentration [58]. For adsorption isotherm, the
experimental data were fitted using Langmuir isotherm model and Freundlich isotherm
model (Figure S5 in Supplementary Material) [59]. The adsorption amounts calculated by
Langmuir isotherm model were in good agreement with the experimental values (Table S3
in Supplementary Material), and the R2 of the Langmuir model are all above 0.99. The
results show that the adsorption behavior is consistent with the Langmuir isotherm model,
in which the adsorption process belongs to the monolayer adsorption.

3.4.4. Removal Efficiency

The adsorption removal rate of MB and BR by the composite adsorbent was studied
at the initial dye concentration of 25 mg/L and the variable adsorbent dosages (0.5, 1, 1.5,
2, and 3 g/L, respectively). After adsorption, the UV-Visible spectrum and digital photos
of the solution were obtained (Figure 7a,b). The absorbance of the sample corresponding
to the maximum absorption wavelength decreased with the increase in the amount of
adsorbent, and the color of the solution became lighter. It is suggested that the removal
rate can be improved by increasing the adsorbent dosage. When the adsorbent dosage was
3 g/L, both solutions (initial concentration: 25 mg/L) became colorless after adsorption
(the removal rate of MB: 99.6%; the removal rate of BR: 99.5%), and the absorbance of the
solution in the UV-Visible spectrum is almost zero. The adsorbent has a high removal rate
for low-concentration dyes in solution, and has broad application prospects in the complete
removal of dye effluent.
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3.4.5. Single/Co-Adsorption in Real Water and Deionized Water

Due to the complexity of the actual water environment, the adsorption performance of
the adsorbent in the actual water body is very important. The adsorption performance of the
adsorbent towards MB and BR in three actual water samples (Yangtze River water, Yellow
River water, and Seawater) were investigated (Figure 8). Encouragingly, the adsorption
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performance of the composite adsorbent for both dyes in the actual water body is better,
which may be due to the adsorbent having a stronger interaction with the dye molecules [60].
In addition, the adsorption property of the R/C-2HA4h adsorbent for MB and BR dyes in
mixed solutions (MB or BR concentrations: 25 mg/L) were compared using three actual
water samples and deionized water as solvent. As shown in Figure 8b–e, after adsorption
with R/C-2HA4h adsorbent, when the amount of adsorbent increased gradually, the
absorbance of the mixed dye solution decreased, and the color of the solution gradually
changed light. In the three actual waters, when the dosage of the adsorbent was 3 g/L, the
dye solution becomes colorless, and no absorbance peak was observed in the UV-Visible
spectrum (the absorbance is almost 0) (Figure 8c–e). At this point, above 99.9% of the dye
in the binary mixed solution was removed. In the deionized water (Figure 8b), the dye
solution becomes colorless when the amount of the adsorbent was 5 g/L, and the dye in
the binary mixed solution is completely removed at this time. For the adsorption of dyes
in actual water, the dyes can be removed with a less amount of adsorbent. Therefore, the
single/co-adsorption property of the composite material in real water and deionized water
is better, which suggests its potential to be used for the removal and purification of multiple
dyes in wastewater.
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Figure 8. (a) The adsorption capacity of adsorbent for dyes in different water mediums (MB,
200 mg/L; BR, 200 mg/L; the dosage of adsorbent: 0.5 g/L). UV-Visible spectra of MB and BR mixed
solution after adsorption with different dosages of R/C-2HA4h in deionized water (b), Yangtze River
water (c), Yellow River water (d), and Seawater (e) (MB, 25 mg/L; BR, 25 mg/L). The illustrations are
digital photos taken before and after adsorption of the binary mixed dye solution.

3.4.6. Reusability and Cost Analysis

After MB and BR dye solution (concentration: 400 mg/L) were adsorbed by the R/C-
2HA4h adsorbent (1 g), the spent adsorbent can be regenerated via a calcination process
at 400 ◦C followed by a washing process (Figure S1 in Supplementary Material). The
adsorption-regeneration process is conducted five times, and the adsorption efficiency of



Nanomaterials 2023, 13, 2627 11 of 16

each regenerated adsorbent was tested to evaluate the reusability of the adsorbent. As
shown in Figure S7 (Supplementary Material), after five regeneration–adsorption cycles,
the adsorption efficiency of the adsorbent towards dyes can still reach more than 93%,
which confirms that the adsorbent has good reusability.

Through a simple cost–benefit analysis, the practical application potential of the
composite adsorbent was discussed. The cost analysis results of the composite adsorbent
are shown in Table S5 (Supplementary Material). Since the main raw material for preparing
the composite adsorbents is dye–clay waste, and clay has huge reserves in nature, the cost
advantage of the adsorbent is obvious. The price of R/C-2HA4h composite adsorbent is
about $475/ton, which is far lower than the current average price of commercial activated
carbon (≥$1200/ton). In addition, the composite adsorbent has more advantages in the
removal of dyes in practical wastewater. Therefore, the composite adsorbent with good
performance and economic benefits has a great potential for efficient purification of complex
dye wastewater.

3.4.7. Adsorption Mechanism

The adsorption mechanism was studied by analyzing the dye-adsorbed adsorbent with
XRD, FTIR spectra, BET, and XPS spectra. The diffraction peak of MB crystal is not seen in
the XRD pattern of R/C-2HA4h-MB (Figure 9a), which shows that the MB dye is adsorbed
on the adsorbent in a molecular form. It can be seen from the FTIR spectrum of R/C-2HA4h-
MB (Figure 9b), after adsorption of MB, the new absorption bands appear at around 1602,
1489, 1390, and 1332 cm−1 (the stretching vibration of aromatic C-C, the stretching vibration
of aromatic C-N, and the antisymmetric and symmetric deformation bands of CH3 in
MB, respectively) [30,36,37]. At 1630 cm−1 (H–O–H bending), the absorption band of the
adsorbent weakened slightly and shifted toward lower wavenumber region, demonstrating
that there are hydrogen-bonding interactions between R/C-2HA4h and dyes. As shown in
Table S2 (Supplementary Material), when the dye was adsorbed onto the adsorbent, the
BET specific surface area decreased, indicating that dye molecules entered the pores. This
also shows that the pore plays an important role in the adsorption of dye. The full-scan
XPS spectra showed that the composition elements of R/C-2HA4h adsorbent are Si, Al,
O, C, N, and Na (Figure 9c). After adsorbing the dye, the signal peaks of these elements
all moved towards the low binding energy region, which was caused by the interaction
of MB dye molecules with surface groups of rectorite during the adsorption process. The
O 1s peak of R/C-2HA4h is divided into Si-OH, Si-O-Al, and Si-O-Si, which are located
at 531.62, 532.18, and 532.56 eV, respectively [61], and they move to 531.33, 532.01, and
532.53 eV, respectively, after adsorption (Figure 9d). The Si 2p peak of R/C-2HA4h are
divided Si-O-Al and Si-O-Si, which are located at 102.39 eV and 103.36 eV, respectively.
After adsorption of MB, these peaks shift to 102.81 eV and 103.45 eV, respectively (Figure 9e).
At the same time, the Al 2p peak of R/C-2HA4h and R/C-2HA4h-MB can be divided into
two peaks, located at 74.68 eV (Si-O-Al) and 73.95 eV (Si-O-Al-O) and 74.16 (Si-O-Al) and
73.51 eV (Si-O-Al-O) (Figure 9f), respectively [62]. After adsorption of MB, the binding
energy of these cleavage peaks shifts, and the peak area changes. This change is visible as
aerobic groups are involved in the adsorption process of MB on R/C-2HA4h. In general,
the main adsorption mechanisms of the composite adsorbents to dyes are electrostatic
attraction, ion exchange, and hydrogen bond interaction between adsorbent and dye [63].
As for the adsorption of the composite adsorbent towards cationic dyes, the electrostatic
attraction, ion exchange, hydrogen bonding, and chemical interaction between Si-O− group
and dye group mainly contribute to the adsorption process (Figure 10). Therefore, the
adsorbent has a good ability and potential to remove dyes.
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Nanomaterials 2023, 13, x FOR PEER REVIEW 13 of 16 
 

 

 
Figure 10. Interaction mechanism diagram of R/C-2HA4h adsorbent with MB and BR. 

4. Conclusions 
Dye-loaded layered clay adsorbent waste was converted into a new carbon-in-silicate 

nanohybrid composite with ultrahigh removal ability for dyes at low concentrations. The 
dye intercalated in the interlayer spacing of rectorite can be converted into carbon sheet 
within the silicate, and the associated acid activation process can further create defects to 
produce more adsorption sites, which enable the resultant composite to completely re-
move dye in wastewater. Therefore, the composite adsorbent has a very high removal rate 
of 99.6% and 99.5% for MB and BR dyes (initial concentration: 25 mg/L), respectively. The 
adsorption of dyes by the composite adsorbents conformed to the Langmuir isotherm 
model and the pseudo-second-order kinetic model, indicating that the adsorption process 
is a typical monolayer adsorption process, and chemisorption action is dominant. In ad-
dition, the composite adsorbent also shows high removal capacity for dyes in single-com-
ponent and two-component solution system in deionized water and actual water (i.e., Yel-
low River water, Yangtze River water, and seawater) with a removal rate higher than 99%. 
The adsorbent has good reusability, and the adsorption efficiency is still above 93% 
after five regenerations. Moreover, the composite adsorbent is prepared from solid waste, 
so it has great potential for the purification of practical printing and dyeing wastewater. 

Supplementary Materials: The following supporting information can be downloaded at: 
www.mdpi.com/xxx/s1. Figure S1: Preparation diagram and regeneration cycle experiment dia-
gram of R/C-2HA4h adsorbent; Figure S2: XRD patterns of R/C, and the composite adsorbents pre-
pared at different concentration of acid solution (a) and acid activation time (b); FTIR spectra of R/C, 
and the composite adsorbents prepared at different concentration of acid solution (c) and activation 
time (d). Figure S3: The EDS image of (a) R/C and R/C-2HA4h(b). Figure S4: The plots of log(qe-qt) 
versus t for the adsorption of BR (a) and MB (c) on the composite adsorbents (fitting with pseudo-
first-order model); and the plots of t/qt versus t for the adsorption of BR (c) and MB (d) on the com-
posite adsorbents (fitting with pseudo-second-order model). Figure S5: The plots of Ce/qe versus Ce 
for the adsorption of BR(a) and MB(c) on the composite adsorbents (fitting with Langmuir model); 
and the plots of logqe versus log Ce for the adsorption of BR(b) and MB(d) on the composite adsor-
bents (fitting with Freundlich model). Figure S6: N2 adsorption–desorption isotherms of R/C-2HA4h 
and R/C-2HA4h-MB(a), the pore size distribution curves of R/C-2HA4h and R/C-2HA4h-MB (b). 
Figure S7: Recycling efficiency diagram of R/C-2HA4h. Table S1: pH and electrical conductivity of 
Yangtze River water, Yellow River water, Sea water. Table S2: Specific surface area and pore structure 
parameters for R/C, R/C-2HA4h, and R/C-2HA4h-MB. Table S3: Adsorption kinetic parameters cal-
culated from the fitting results with pseudo-first-order and pseudo-second-order kinetic model for 
adsorption of BR and MB. Table S4: Adsorption isotherm parameters calculated from the fitting 

Figure 10. Interaction mechanism diagram of R/C-2HA4h adsorbent with MB and BR.

4. Conclusions

Dye-loaded layered clay adsorbent waste was converted into a new carbon-in-silicate
nanohybrid composite with ultrahigh removal ability for dyes at low concentrations. The
dye intercalated in the interlayer spacing of rectorite can be converted into carbon sheet
within the silicate, and the associated acid activation process can further create defects
to produce more adsorption sites, which enable the resultant composite to completely
remove dye in wastewater. Therefore, the composite adsorbent has a very high removal
rate of 99.6% and 99.5% for MB and BR dyes (initial concentration: 25 mg/L), respectively.
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The adsorption of dyes by the composite adsorbents conformed to the Langmuir isotherm
model and the pseudo-second-order kinetic model, indicating that the adsorption process is
a typical monolayer adsorption process, and chemisorption action is dominant. In addition,
the composite adsorbent also shows high removal capacity for dyes in single-component
and two-component solution system in deionized water and actual water (i.e., Yellow
River water, Yangtze River water, and seawater) with a removal rate higher than 99%. The
adsorbent has good reusability, and the adsorption efficiency is still above 93% after five
regenerations. Moreover, the composite adsorbent is prepared from solid waste, so it has
great potential for the purification of practical printing and dyeing wastewater.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano13192627/s1. Figure S1: Preparation diagram and regeneration
cycle experiment diagram of R/C-2HA4h adsorbent; Figure S2: XRD patterns of R/C, and the
composite adsorbents prepared at different concentration of acid solution (a) and acid activation
time (b); FTIR spectra of R/C, and the composite adsorbents prepared at different concentration of
acid solution (c) and activation time (d). Figure S3: The EDS image of (a) R/C and R/C-2HA4h(b).
Figure S4: The plots of log(qe-qt) versus t for the adsorption of BR (a) and MB (c) on the composite
adsorbents (fitting with pseudo-first-order model); and the plots of t/qt versus t for the adsorption of
BR (c) and MB (d) on the composite adsorbents (fitting with pseudo-second-order model). Figure S5:
The plots of Ce/qe versus Ce for the adsorption of BR (a) and MB (c) on the composite adsorbents
(fitting with Langmuir model); and the plots of logqe versus log Ce for the adsorption of BR (b) and
MB (d) on the composite adsorbents (fitting with Freundlich model). Figure S6: N2 adsorption–
desorption isotherms of R/C-2HA4h and R/C-2HA4h-MB(a), the pore size distribution curves of
R/C-2HA4h and R/C-2HA4h-MB (b). Figure S7: Recycling efficiency diagram of R/C-2HA4h.
Table S1: pH and electrical conductivity of Yangtze River water, Yellow River water, Sea water.
Table S2: Specific surface area and pore structure parameters for R/C, R/C-2HA4h, and R/C-2HA4h-
MB. Table S3: Adsorption kinetic parameters calculated from the fitting results with pseudo-first-order
and pseudo-second-order kinetic model for adsorption of BR and MB. Table S4: Adsorption isotherm
parameters calculated from the fitting results of Langmuir and Freundlich model for adsorption of
BR and MB. Table S5: Commercial cost—benefit analysis of composite adsorbents in dye wastewater
purification in China. (see Refs. [64–67]).
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