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Abstract: Diffraction from a lattice of periodically spaced crystals is a topic of current interest
because of the great development of self-organised superlattices (SL) of nanocrystals (NC). The self-
organisation of NC into SL has theoretical interest, but especially a rich application prospect, as the
coherent organisation has large effects on a wide range of material properties. Diffraction is a key
method to understand the type and quality of SL ordering. Hereby, the characteristic diffraction sig-
nature of an SL of NC—together with the characteristic types of disorder—are theoretically explored.

Keywords: superlattices; nanocrystals; X-ray diffraction

1. Introduction

We will explore the diffraction characteristics of supercrystals (SCs) as superlattices
(SLs) of nanocrystals (NCs) where the periodic entity is itself a small crystal. There is a
widespread current interest on such materials, driven by the changes in properties that
the periodic organisation of NCs into an SC yields, mainly for applications in optics [1],
electionics [2], and catalysis [3]. The synthesis of SCs is a result of the always more
sophisticated ways of synthesising NCs (and nanoparticles in general) with very sharp
distributions in size and well defined faceted shape [4,5]. These NCs then, under proper
conditions, self-organise, forming an SL and thence an SC [6,7]. A recent brief current
perspective on SCs and their properties can be found in [8].

With the advances in SL synthesis methods, characterization tools such as small
and wide-angle scattering methods that allow for probing the SLs in their real sample
environments and, possibly, in real time, become increasingly important. X-ray scatter-
ing experiments allow for obtaining structural information on the ordering state of the
assembly along with their lattice parameters and symmetry. A general and comprehen-
sive review of the application of the small-angle scattering techniques has been given by
Li et al. [9], and more recently by Jiang et al. [10], which includes a detailed discussion
of the latest developments like GISAXS or coherent-SAXS. The analysis of 1D SAXS data
is well-established [11]. Senesi et al. have discussed the various approximations which
can be introduced in the structure factor calculation to describe the contributions of the
particles’ polydispersity, orientational disorder, and position [12]. The analysis of 2D SAXS
or GISAXS data, although in general performed at a more qualitative level than in the 1D
case, has become increasingly popular as the 2D images collected during the experiment
provide an overview of the reciprocal space which allow for an easier evaluation of the
symmetry and coherence lengths of the assembly [13,14].

The use of wide-angle X-ray scattering data (WAXS) is far less common in the study
of SLs, although it has been shown that information about structural coherence along two
and three directions, degree of orientational order, and coherent sizes can be retrieved [15].

Here, we deepen the discussion of diffraction theory of SCs. In particular, we will focus
on the diffraction signature of imperfectly ordered SCs, especially concerning the effect of
NCs of different sizes in the SL nodes, and the effect of slight rotation of the component
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NCs with respect to each other. We derive expressions for the powder diffraction total
scattering intensity, which includes the size dispersion effect and allow a faster evaluation
of Debye Scattering Equation. The orientational disorder will be developed only partly
in this paper, delegating the full discussion to an upcoming technical paper. The results
presented here will be useful for the quantitative interpretation of diffraction data from SLs.

2. Materials and Methods

The numerical simulations of powder diffraction patterns hereby presented were com-
puted using the DEBUSSY software suite [16] and ad hoc written code in Fortran2008 (available
by email from the authors) to include the analytic expressions derived here. The simulations
of single crystal diffraction patterns were computed using the ZODS program [17]. The pro-
grams build model crystals by means of Monte Carlo (MC) simulations and compute their
Fourier transforms according to the standard formula for kinematic scattering.

3. Perfect Superlattice of Identical Nanocrystals

A perfect superlattice of identical nanocrystals, perfectly equioriented in space and
periodically arranged without any defect, can be dealt with as a conventional crystalline
structure with a large unit cell. Several papers deal with diffraction from SCs, especially
within some experimental framework, with a comprehensive review in Jiang et al. [10]
including sophisticated techniques as GISAXS and coherent SAXS. However, there is
also an interesting and simple analytic formula describing the diffraction amplitude of
such supercrystal, if some inessential shape restrictions are assumed. We will consider
parallelohedral nanocrystals, extended along the unit cell vectors a, b, c, and whose
nanocrystal lattice coordinates are defined by integers na, nb, nc:

(naa, nbb, ncc)
∣∣∣ 0 6 na 6 Na, 0 6 nb 6 Nb, 0 6 nc 6 Nc. (1)

The superlattice cell vectors we suppose to be direct multiples of the crystal cell vectors:

aS = (Na + sa)a;

bS = (Nb + sb)b; (2)

cS = (Nc + sc)c.

The spacings constants sa, sb, sc are supposed to be positive; otherwise, we would have
coalescence (or even overlap) of the crystal domains. Coalescence would bring us to
polycrystalline matter, which is quite another issue. Instead, the spacings are supposed
to be filled by some kind of ligand. Again, we assume a parallelohedral shape for the
supercrystals, assuming that the occupied superlattice nodes lie at integer multiples of
aS, bS, cS, similarly to Equation (1):

(maaS, mbbS, mccS)
∣∣∣ 0 6 ma 6 Ma, 0 6 mb 6 Mb, 0 6 mc 6 Mc. (3)

We abstain in the following from describing the atomic content of the unit cell; we will
assume that each NC unit cell contains just one point scatterer of unit scattering power in
the origin. Generalisation to real NCs with a specified unit cell content is straightforward
but able to unnecessarily complicate the notation. The NC’s scattering density is described
formally in Equation (4).

The unit cell of the superlattice contains instead a single NC. We can arbitrarily set
each superlattice node in the NC’s scattering barycentrum

C = ((Na + 1)a, (Nb + 1)b, (Nc + 1)c)/2.

As such, the scattering density of an SC is just that of the SL (with—again—unit power
point scatterers on the lattice nodes, see Equation (5)) convoluted with the scattering density
of an NC (Equation (6)):
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ρNC(r) =
Na

∑
na=1

Nb

∑
nb=1

Nc

∑
nc=1

δ(r− (naa, nbb, ncc) + C); (4)

ρSL(r) =
Ma

∑
ma=1

Mb

∑
mb=1

Mc

∑
mc=1

δ(r− (maaS, mbbS, mccS)); (5)

ρSC(r) =
∫
R3

d3r′ ρNC(r′)ρSL(r− r′)

=
Ma

∑
ma=1

Mb

∑
mb=1

Mc

∑
mc=1

Na

∑
na=1

Nb

∑
nb=1

Nc

∑
nc=1

δ(r−(naa, nbb, ncc)+C−(maaS, mbbS, mccS)) (6)

It follows that the SC’s scattering amplitude (the Fourier transform) is the product of the
scattering amplitude of NC times that of an SL decorated with unit point scatterers:

FNC(q) =
∫
R3

d3r ρNC(r)e
2πiq·r ; (7)

FSL(q) =
∫
R3

d3r ρSL(r)e
2πiq·r ; (8)

FSC(q) =
∫
R3

d3r ρSC(r)e
2πiq·r = FNC(q)FSL(q) (9)

Here, q is the transferred momentum vector, whose length is q =
∣∣∣q∣∣∣ = 2 sin(θ)/λ, with λ

the incident wavelength and θ half of the deflection angle. The transform in Equation (7)
has been historically evaluated by Max von Laue [18,19], as

FNC(q) =
sin
(

Naπq · a
)

sin
(

πq · a
) sin

(
Nbπq · b

)
sin
(

πq · b
) sin

(
Ncπq · c

)
sin
(

πq · c
) (10)

In more modern form, using the Chebyshev polynomials of the second kind Uk(x) (see [20],
Equation (22)), we can rewrite it as

FNC(q) = UNa−1

(
cos

(
πq · a

))
UNb−1

(
cos

(
πq · b

))
UNc−1

(
cos

(
πq · c

))
(11)

Similarly,

FSL(q) = e−2πiq·CS UMa−1

(
cos

(
πq · aS

))
UMb−1

(
cos

(
πq · bS

))
UMc−1

(
cos

(
πq · cS

))
(12)

The phase factor is because we have not referred our SL slab to its scattering barycentrum
CS = ((Ma + 1)aS, (Mb + 1)bS, (Mc + 1)cS)/2, but it is inessential. In fact, to obtain the
scattered intensity ISC(q), we take the square modulus of FSC(q),

ISC(q) =
∣∣∣FNC(q)FSL(q)

∣∣∣2 = F2
NC(q)

∣∣∣FSL(q)
∣∣∣2 (13)

where the phase factor disappears, and we have a product of six squared Chebyshev
polynomials. A simple graph shows these simple functions for q = ha∗, along the NC
reciprocal axis a∗. The reciprocal space vectors are defined by

a∗ · a = b∗ · b = c∗ · c = 1; a∗ · b = b∗ · c = c∗ · a = a∗ · c = b∗ · a = c∗ · b = 0.

We also assume—for this example—that the SL vectors

aS ∝ a; bS ∝ b; cS ∝ c.
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Therefore, if q = ha∗, then

cos
(

πq · b
)
= cos

(
πq · c

)
cos

(
πq · bS

)
= cos

(
πq · cS

)
= cos(0) = 1

and

UNb−1(1) = Nb; UNc−1(1) = Nc; UMb−1(1) = Mb; UMc−1(1) = Mc.

We can omit these constant factors without prejudice. The SC intensity along q = ha∗ is
then just

ISC(h) = INC(h)ISL(h) = U2
Na−1(cos (πh))U2

Ma−1(cos (πh(aS/a)))

In Figure 1, we plot both INC(h) = U2
Na−1(cos (πh)) and ISC(h)/M2

a ; the last scaling sets
0 < ISL(h) < 1 for convenience.
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Figure 1. Red line: the NC scattered intensity along q = ha∗, F2
NC(ha∗), for Na = 8. Note a sharp

peak at all integer values of h, and the NC-suffix on the x-axis label indicates that the metric is defined
by the NC lattice. The peaks have all the same shape and are bracketed by zeroes at h = k± 1/Na,
k ∈ Z. Factors Mb, Mc Blue line: ISC(q)/M2

a for Na = 8, Ma = 20, aS = 9.7a. One can clearly see the
very sharp SL peaks modulated by the NC scattered intensity, so that each NC peak is replaced by a
tight “copse” of sharper SL peaks.

4. Superlattice of Not Identical Objects

In this section, we explore the case when the NCs arranged on the SL are not all equal
sized. We will call this situation the size disorder effect (SDE).

We still assume a paralleloidal shape. The dimensional constants Na, Nb, Nc and the
spacing constants sa, sb, sc (see Equation (2)) may sometimes not be indeed constant and
immutable throughout the structure. We will suppose instead that all of them may be
statistically described by (narrow) distributions over the positive real axis, each having
a defined average and variance and all finite superior moments. The simplest and most
widely used such distributions are lognormals. Thus, for instance, we suppose that Na has
average 〈Na〉 and variance VNa . We also introduce for convenience the fractional dispersions

ξ ≡

√
VNa

〈Na〉
; τ ≡

√
Vsa

〈sa〉
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A lognormal probability density describing Na (represented by the continuous variable X) is

PNa(X) =
1

X
√

2π log
(
〈Na〉2(1 + ξ2)

) exp

−1
2

(
log (X)− log (〈Na〉) + (1/2) log

(
1 + ξ2

))2

log
(

1 + ξ2
)

 (14)

In addition, similarly, for sa, with associated variable Y,

Psa(Y) =
1

Y
√

2π log
(
〈sa〉2(1 + τ2)

) exp

−1
2

(
log (Y)− log (〈sa〉) + (1/2) log

(
1 + τ2

))2

log
(

1 + τ2
)

 (15)

Similarly, for Nb, Nc and sb, sc, all the averages are straightly denoted

〈Na〉, 〈Nb〉, 〈Nc〉, 〈sa〉, 〈sb〉, 〈cc〉;

and the variances
VNa , VNb , VNc , Vsa , Vsb , Vsc .

4.1. 1D Superlattice

This is a simple set of nanocrystals on a line, hence forming a rod. Notation: if a
variable X is distributed according to a given probability density P(X) whose moments
are all finite, we denote 〈X〉 its average (normalized first moment) and VX its variance
(normalized central moment) under P(X).

Consider first the fully ordered case, where

〈Na〉 = Na, VNa = 0; 〈sa〉 = sa, Vsa = 0. (16)

Firstly, for a finite sequence of equispaced points of length Ma, the multiplicity of the
zero distance is Ma, while that of any pair of k-spaced nodes is

µdk
= 2(Ma − |k|) (17)

The average distance between two nodes spaced by k superlattice sites will be simply

dk = k(Na + sa)a.

If now we remove the assumptions in Equation (16), we have to average over the distribu-
tion of every variable segment. Supposing now every segment is variable, thus

〈dk〉 = a
∫

dX1

∫
dX2 . . .

∫
dXk

∫
dY1

∫
dY2 . . .

∫
dYk

(
k

∑
`=1

X` +
k

∑
`=1

Y`

)
×

× PNa(X1)PNa(X2) . . . PNa(Xk) Psa(Y1)Psa(Y2) . . . Psa(Yk) (18)

= a
k

∑
`=1

∫
dX` X` PNa(X`) + a

k

∑
`=1

∫
dY` Y` PSa(Y`) (19)

[because all P∗ functions are normalised to 1]

= k(〈Na〉+ 〈sa〉)a by definition (20)

Similarly, for the variance, repeating similar passages, we obtain

Vdk
= |k|(VNa + Vsa)a2 (21)
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It is clear that the effect on the interatomic distances of the variability of the size Na and that
of the spacing sa are indistinguishable. We will consider—unless otherwise specified—a
single parameter ηa ≡ Na + sa, so that

〈dk〉 = k 〈ηa〉a; Vdk
= |k| Vηa a2 (22)

4.2. 2D and 3D Superlattices

The fully ordered case is described in Section 3. We will hereby only consider the
orthorhombic case where

a · b = b · c = c · a = 0; aS = ηaa, bS = ηab, cS = ηac,

where, as before,

ηa ≡ Na + sa; ηb ≡ Nb + sb; ηc ≡ Nc + sc.

In the ordered case,

〈ηa〉 = Na, Vηa = 0; 〈ηb〉 = Nb, Vηb = 0; 〈ηc〉 = Nc, Vηc = 0. (23)

Consider an SL formed by a parallelogram

ma = 1, . . . , Ma; mb = 1, . . . , Mb; mc = 1, . . . , Mc.

The vector distance between two SL nodes M = (ma, mb, mc) and M ′ = (m′a, m′b, m′c) spaced
by K ≡ (ka, kb, kc) = (m′a, m′b, m′c)− (ma, mb, mc) will be

dK = kaaS + kbbS + kccS = (kaηaa, kbηbb, kcηcc)

In addition, it is immediate to generalise Equation (17) for the multiplicity of dK as

µdK
= (Ma − |ka|)(Mb − |kb|)(Mc − |kc|). (24)

The total distance between two point scatterers belonging each to one of the two NC
centered at the M and M ′ SL nodes must also take into account the difference between
respective position vectors n = (na, nb, nc) and n′ =

(
n′a, n′b, n′c

)
in the generic NC lattice

g ≡ n− n′. It results in

dK,g = dK + dg = dK + gaa + gbb + gcc = (kaηaa, kbηbb, kcηcc) + (gaa, gbb, gcc) (25)

If we consider instead the η parameters to follow a probability density with all finite
moments, we can repeat the calculations in Section 4.1 component by component. We
have to add an assumption—that the joint distribution is the product of the single variable
distributions, or

Pηa ,ηb ,ηc(Xa, Xb, Xc) = Pηa(Xa)Pηb(Xb)Pηc(Xc)

This will cause the covariance to be diagonal. Removing this assumption is straightforward,
but it leads to far more complex bookkeeping.

We then have the vector average〈
dK
〉
= (ka〈ηa〉a, kb〈ηb〉b, kc〈ηc〉c) (26)

The NC-related distance vector dg in Equation (25) is constant; therefore, it adds to the
average and does not contribute to the variance. The averages result in being〈

dK,g

〉
= ((ka〈ηa〉+ ga)a, (kb〈ηb〉+ gb)b, (kc〈ηc〉+ gc)c). (27)
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In addition, we have a diagonal covariance matrix VdK,g
that is actually independent

from g:

VdK,g
=

 |ka|Vηa 0 0
0 |kb|Vηb 0
0 0 |kc|Vηc

 (28)

We cannot be too specific on the form of the 3D distribution of dK ; however, it is not
wrong to assume it being a 3D Gaussian with specified averages and covariance matrix.
Then, we would have

P
(

dK,g

)
=

1

(2π)3/2
√

detVdK,g

exp
[
−1

2

(
dK,g −

〈
dK,g

〉)
·VdK,g

(
dK,g −

〈
dK,g

〉)]
(29)

4.3. Powder Diffraction Signal: Powder Average

Powder average is the average of the diffraction pattern over all possible orientations
in space with a uniform distribution. The result will be a function only of q =

∣∣∣q∣∣∣, and it
will depend only on the lengths of the interatomic distances.

For a system of N atoms (simplified as point scatterers) with coordinates r j,
j = 1, . . . , N, each with scattering length bj, the powder averaged intensity (differential cross
section) can be written by means of the the Debye scattering equation [21] (hereafter DSE) as

I(q) =
N

∑
j,k=1

bjbksinc
(

2πq
∣∣∣r j − rk

∣∣∣) =
N

∑
j=1

b2
j +

N

∑
j 6=k=1

bjbksinc
(

2πqdjk

)
(30)

with sinc(x) = sin(x)/x is the sine cardinal function and where we set djk ≡
∣∣∣r j − rk

∣∣∣. For
periodically ordered systems, where many of the distances djk will be the same, and the
scattering lengths pair is also the same. Then, we can group terms in the left sum, leaving
Md distinct d-values, each with a multiplicity µ. Then, we can write

I(q) =
N

∑
j=1

b2
j +

Md

∑
`=1

b2
`µ`sinc(2πqd`) (31)

If the system is slightly disordered, the `-indexed groups of µ` distances might become
slightly spread in value. If the spread is relatively small, we can refrain from breaking the `-
groups and instead evaluate the group average 〈d`〉 and its variance Vd` . Then, an effective
way of modifying Equation (31) has been derived [22], with excellent approximation (see
also [23,24]; this case corresponds to a paracrystalline type of disorder with no cross-
interactions and with positive full correlation (value 1) along each axis. Correlation values
below 1 would mean that the NC and the spacer would deform elastically to try to partially
accommodate differences in size. This is a possible generalisation of this work, but we will
not pursue it here as we deem it likely to be of minor importance). The modified DSE reads

I(q) =
N

∑
j=1

b2
j +

Md

∑
`=1

b2
`µ`sinc(2πq〈d`〉) exp

(
−2π2q2Vd`

)
(32)

The exponential factor is the Fourier transform of a Gaussian with variance Vd` .
We recall briefly that the DSE is just the spherical average (over all possible orientations,

with uniform distribution) of the 3D scattering equation

I(q) =
N

∑
j=1

b2
j +

M′d

∑
`=1

b2
`µ′` cos

(
2πq · 〈d`〉

)
exp

(
−2π2q ·Vd`

q
)

(33)
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where the multiplicities may differ (coincidences in 3D space are more rare). This equation
is usually obtained as the square modulus of the direct Fourier transform (FT) of the
scattering density:

F(q) =
N

∑
j=1

bj exp(2πiqr j) (34)

Suppose now that we have a distribution for 3D vector distance with a vector average
and a covariance matrix (as in Equation (29)). Knowing

〈
dK
〉

(Equation (27)) and the
covariance VdK

(Equation (28)), and being

dK,g =

√〈
dK,g

〉
·
〈

dK,g

〉
=
(
(ka〈ηa〉+ ga)

2a2 + (kb〈ηb〉+ gb)
2b2 + (kc〈ηc〉+ gc)

2c2
)1/2

where the leftmost expression comes from Equation (27), we must evaluate the latter’s
average and variance over the 3D distribution Equation (29).〈

dK,g

〉
=

∫
R3

d3dK,g P
(

dK,g

)
dK,g ; (35)

VdK,g =
∫
R3

d3dK,g P
(

dK,g

) (
dK,g −

〈
dK,g

〉)2
(36)

The integrals are not analytic, but a series expansion of the integrands to the second order
around the averages by component of dK,g yields

〈
dK,g

〉
= dK,g +

d2
K,g AK,g − BK,g

2d3
K,g

; (37)

VdK,g =
BK,g

d2
K,g
−

(
d2

K,g AK,g − BK,g

)2

4d6
K,g

(38)

where

AK,g ≡ Tr
(
VdK,g

)
= |ka|Vηa + |kb|Vηb + |kc|Vηc ; (39)

BK,g ≡ dK,g ·VdK,g
dK,g = |ka|3〈ηa〉2a2Vηa + |kb|3〈ηb〉2b2Vηb + |kc|3〈ηc〉2c2Vηc (40)

We only then have to plug the
〈

dK,g

〉
and VdK,g from Equations (37) and (38) in Equation (32)

in place of 〈d`〉 and of Vd` , respectively. The multiplicity µ` is given in Equation (24).

5. Superlattice of Misaligned Objects

We also explore—partly—the case when the NCs arranged on the SL are all equal
sized (no SDE) but not perfectly aligned with each other. This we name the alignment
disorder effect (ADE).

We develop this case very briefly because of the extensive theoretical analysis involved
that suggests dedicating a specific manuscript to it. However, we want to give at least a
feeling of the effect on diffraction of alignment disorder.

Take two SL sites separated by K = (Ka, Kb, Kc) nodes, the actual displacement vector
being KaaS + KbbS + KccS. One NC at one end of K is held fixed, an identical one at the
other end is subjected to a general rotation. A general rotation in 3D space can be described
as three subsequent rotations along three non-coplanar directions; for convenience, we
choose the directions of aS, bS, cS as axes, in the order. The rotations are quantified by three
angles φaS , φbS

, φcS , respectively.
As for the size disorder case, we imagine an equivalent mechanism where nearest-

neighbour only interactions are involved. As such, every NC has a small rotational degree
of freedom with respect to its nearest neighbours. The variances of the rotation angles then
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increase linearly with the number of steps in each SL direction between two SL sites. It
is reasonable that each SL direction influences differently the rotation angle around itself
than the other SL directions. Then, we have a simple matrix equation for evaluating the
angular variances:  VφaS

VφbS
VφcS

 =

 ξ χ χ
χ ξ χ
χ χ ξ

 Ka
Kb
Kc

 (41)

We require also to have no net rotation, or equivalently zero angle averages〈
φaS

〉
=
〈
φbS

〉
=
〈
φcS

〉
= 0.

The two NC spaced by K each have a diffraction amplitude FNC(q) described by
Equation (10). For the one NC that is rotated, FNC(q) will also be rotated; we indicate it
simply as F′NC(q). The total diffraction amplitude is then

FNC(q) + exp
(

2πiq · (KaaS + KbbS + KccS)
)

F′NC(q) (42)

The intensity will be its square modulus

F2
NC(q) + F′2NC(q) + 2FNC(q)F′NC(q) cos

(
2πq · (KaaS + KbbS + KccS)

)
(43)

The term containing the product FNC(q)F′NC(q) will be greatly reduced because the rotation
will cause peaks of F′NC(q) to rotate out of the corresponding peaks of FNC(q) (except the
origin peak, which is only relevant for SAXS, of course). The most dramatic effect will be
when even the lowest lying peaks are totally decoupled. Supposing a = b = c (cubic NC
cell) and Na = Nb = NC (cubic NC), as the footprint of a peak in each direction extends
from −(aNa)−1 to (aNa)−1, the rotation angle necessary to maximally suppress the first
(100) peak located at q = 1/a will be Φ ≈ arctan (2/Na). This gives us a criterion for
understanding when a rotation is small or disruptively large. Cumulative effects will be
explored in future studies.

6. Example Calculations

Here, we want to show some numerical calculations of SC diffraction patterns with
size disorder effect (SDE). We will start with a system that produces truly 1D scattering
(a set of parallel planes does that). Then, we will have SCs with small NCs and different
degrees of disorder and also different SL dimensionality (rods, planes, and true bulk SC).

6.1. 1D Chain of Parallel Planes with 1D Scattering

This case represents the practical case of a set of parallel planes whose diffraction
is measured in q-space along the direction orthogonal to the planes. This case has a
great importance first of all theoretically, as sets of parallel and equispaced planes are
quintessential in the definition of Bragg peaks and Bragg’s law [25]; secondly because it
corresponds to lamellar order, a very common situation for soft matter systems. In fact,
lamellar systems show a very similar decoherence effect, with a paracrystalline type of
order range limiting effect, either stronger as in polymers with bending chains [23], with
the variance of the interplanar distances proportional to the squared variance due likely to
the concomitant effect of rotation, or weaker (the Caillé model [26,27], where the variance
increases logarithmically instead because elastic deformations reduce the effect) than the
one we present here (see [28] and references therein).

It is noteworthy that the dimensions orthogonal to the stacking direction (that is
normal to the planes) can be ignored.

The scattering equation of this system reads

I(q) =

∣∣∣∣∣ Ma

∑
m=1

exp (2πiqzm)

∣∣∣∣∣
2

= Ma +
Nstack

∑
m 6=m′=1

cos (2πq|zm − zm′ |)



Nanomaterials 2022, 12, 1781 10 of 17

where zm are the coordinates along the stacking axis z, q is the scattering vector along the
same axis, and Ma the total number of planes. It is similar to the DSE Equation (30) where
the sinc function is replaced by a more mundane cosine.

Each bunch of planes is equispaced, so we can write, for an isolated bunch of height
Na and spacing a, (the latter we suppose to be the same for all bunches, the former we let
be variable)

Ibunch(q, Na) =
Na−1

∑
k=−Na+1

(Na − |k|) cos (2πqka)

If we average over a bunch size distribution on a finite discrete range

P(Na), Na = 1, . . . , N̂a

∣∣∣∣∣∣
N̂a

∑
Na=1

P(Na) = 1

with

〈Na〉 =
N̂a

∑
Na=1

NaP(Na); VNa =
N̂a

∑
Na=1

(Na − 〈Na〉)2P(Na),

then we can write, for the average bunch,

Ibunch(q) =
N̂−1

∑
k=−N̂+1

 N̂a

∑
Na=1

P(Na)max (0, Na − |k|)

 cos (2πqka) ≡
N̂−1

∑
k=−N̂+1

µk cos (2πqka) (44)

The average SL is the periodic average of the arrangement of bunches, with an average
spacing aηa = a(Na + sa). The scattering from an SL of Ma plane bunches then results in

I(q) =
Ma−1

∑
m=−Ma+1

N̂a−1

∑
k=−N̂a+1

µk (Ma − |m|) cos (2πqa|(k + m(〈Na〉+ 〈sa〉))|)×

× exp
[
−2mπ2q2a2(VNa + Vsa)

]
Example 1D patterns. We consider bunches of equispaced planes (representing the

NCs) stacked with dead space on top of each other, see Figure 2. The distribution is nonzero
only at two values:

1 < Na < 5 → P(Na) = 0
Na = 5 → P(5) = 0.713384
Na = 6 → P(6) = 0.286616
Na > 6 → P(Na) = 0

resulting in
〈Na〉 = 5.286616
VNa = 0.204467√

VNa

〈Na〉
= 0.0855331 (≈ 8.5%)

As we see, this case results in a “narrow” distribution with 8.5% relative dispersion.
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Figure 2. This is a representation of a system with 1D SDE. It consists of a stacking of parallel planes,
sub-ordered in bunches of different height. Planes (orthogonal to the figure) are represented by their
traces; the vertical direction is the stacking direction, normal to the planes. The spacing between

planes in a bunch is a, inter-bunch spacing a
(
〈sa〉 ± V1/2

sa

)
; each bunch consists of a number of planes

that on average is 〈Na〉 with a dispersion V1/2
Na

.

We also set a = 5.431 Å. We set the interbunch spacing to 0.38〈Na〉a. This we suppose
to have zero variance. We take Ma = 10. In Figure 3, we see calculated diffraction patterns—
switching on and off the 8.5% spacing dispersion

0.0 0.1 0.2 0.3 0.4 0.5 0.6

1000

2000

3000

4000

5000

Figure 3. Plane bunch sequence 1D diffraction pattern: Red—calculation with zero spacing dispersion;
Black—including 8.5% spacing dispersion as from the text. The 8.5% dispersion destroys the sharp
small peaks (SL interference) except in the small-angle region.
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We also calculated the diffraction pattern in the case where every plane bunch (or
NC) is substituted by a single scattering plane. This shows directly (Figure 4) the SL
scattering and the interference (or lack thereof) when the spacing is subjected to the same
8.5% dispersion.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

20

40

60

80

100

Figure 4. Basic 1D diffraction pattern of the same sequence, just substituting the plane bunches with
single plane scatterers—to see the naked decoherence effect of the spacing dispersion. Green—zero
dispersion, black—8.5% dispersion

6.2. 1D, 2D and 3D SCs

We constructed cubic NCs (lattice parameter a = 5 Å) with 7× 7× 7 unit cells (each
cell containing just one point scatterer of unitary length) and arranged them on large cubic
SLs with superlattice parameter aS = 9.73a. The SL dimensions were 20× 1× 1 unit cells
(a rod-like or 1D SC), 20× 20× 1 unit cells (a plate-like or 2D SC), 20× 20× 20 unit cells
(a cube-like or 3D SC). In all cases, the 1D powder diffraction trace was evaluated in a
wide range with different settings of the spacing dispersion (0%, 1%, 2%, 3%, 4%, 5%).
Interesting details of calculated traces are shown in Figure 5 (for the rod), Figure 6 (for
the plate) and Figure 7 for the cube. Note a general reinforcement of the SL interference
scattering (sharp features) as the dimensionality of the stacking increases, and also note
how in general a small fractional dispersion (below 5%) is always able to destroy the SL
interference on all NC Bragg peaks. In order to assess the correctness of the faster DSE
computation method here exposed, we have repeated the calculations concerning Figure 6
using the simpler, much heavier but true and tested brute-force DSE evaluation. In order
to do so, we have taken a 20 × 20 SL decorated with a majority of cubic NCs with six
cells per side and a minority of cubic NCs with seven cells per side. This emulates a very
narrow size distribution, and the chosen proportion of larger NCs is randomly assigned
on the SL. The amount of larger NCs has been chosen so that the relative size dispersion
amounts to 0% (ideal case), 1%, . . . , 5%. One hundred configurations of the SL have been
generated at random, then the distances between NCs have been relaxed in order to keep
a constant spacing between consecutive NCs along the SL axes. The DSE has been used
then to evaluate and average over all configurations the powder diffraction patterns. The
resulting plot (Figure 8) differs only slightly from Figure 6 and the residual differences can
be explained with slight but unavoidable model differences.
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Figure 5. XRPD scattering from a rod (1D SC) with various levels of relative SL spacing dispersion.
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Figure 6. XRPD scattering from a plate (2D SC) with various levels of relative SL spacing dispersion.

XRPD is a simple technique and quite well suited to perform X-ray scattering experi-
ments on SCs as a powder or floating in suspension, with real-time in-situ monitoring of
the coalescence and simultaneously measuring other properties of the system. Modeling of
SL disorder can be essential to reproduce observed features, as in Bertolotti et al. [15] and
to correlate them to photon properties. The modeling techniques here demonstrated can be
used to understand the powder diffraction signal. The information content of a 1D powder
diffraction pattern is, however, limited. Other more complex and informative scattering
geometries can be used to extract more information. To interpret that, it means being able
to calculate model scattering in 3D reciprocal space. Every experimental geometry will
explore a given subset of the full reciprocal space, so it should be easy to specialize for a
given geometry. Evaluation of full 3D diffraction patterns in reciprocal space within this
kind of SC modeling is the argument of the next section.
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Figure 7. XRPD scattering from a cube (3D SC) with various levels of relative SL spacing dispersion.
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Figure 8. XRPD scattering from a plate (2D SC) with various levels of relative SL spacing dispersion,
approximately the same as in Figure 6 but evaluated by brute force.

6.3. Atomistic Simulations and 3D Scattering

We computed the diffracted intensity (as fromEquation (34)) in the (hk0) reciprocal
lattice plane of ideal and SDE-affected SLs. The ideal SL was constituted by an array of of
20× 20× 1 SL unit cells each “dressed” by 6× 6× 6 NC unit cells, here each NC and each
atom of the NC sits in its ideal crystallographic position. To introduce the SDE, a fraction of
0%, 2% and 5%, of randomly chosen SL nodes was assigned to host an NC of 7× 7× 7 NC
unit cells and then the node-to-node distance was optimised by the MC algorithm in order
to maintain constant the NC spacing. The diffracted intensity shown in Figure 9 has been
calculated as an average of the diffracted intensity of 100 statistically equivalent SCs “clones”
generated by the MC algorithm. For these simulations, we used the same values of the
SC’s and NC’s unit cells, NC spacing and atomic form factor as in Section 6.2. In Figure 9
atomic configurations obtained by MC simulations for the SDE of 0%, 2%, and 5% and
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the corresponding diffraction intensities in the (hk0) planes are shown. The (hk0)-patterns
shown in Figure 9d,e have been calculated at the optimal sampling step to avoid finite-size
contribution of the model crystal, showing horizontal and vertical diffuse scattering “strain-
stripes” generated by SDE. In Figure 9g–i, the (hk0)-patterns have been calculated using a
four-times finer grid to show the superposition of the domain-size with the strain effects.

Figure 9. Top row: atomic configurations 20× 20× 1 SLs with variable degree of SDE: (a) 0%, (b) 2%,
and (c) 5%. Red squares indicate sites occupied by the larger NC size. Middle row: (hk0) reciprocal
lattice planes for the degree of SDE: (d) 0%, (e) 2%, and (f) 5%. The diffracted intensities were calculated
using a sampling step of 1/20 SC’s unit cells to avoid finite size-effects contributions to the calculated
intensities. The FT of the simulated crystal can be written as F(q) = F∞(q)

⊗
Box(q), where F∞(q) is

the structure factor of the infinite crystal, and Box(q) the FT of the shape function of the finite crystal.
This shows that it is possible to avoid the contribution fo limited size effects by calculating the diffracted
intensity where the function Box(q) ≡ 0. Bottom row: (hk0) reciprocal lattice planes for the degree of
SDE: (g) 0%, (h) 2%, and (i) 5%. The diffracted intensities were calculated using a sampling step of 1/80
SC’s unit cells to display finite size-effects contributions to the calculated intensities. All intensities are
in electron units and the color maps scale is fixed to 10−2 of the strongest Bragg peak to make diffuse
effects visible. Origin (000) peak purposely masked.

7. Discussion

We have explored the peculiar disorder effects of NC-based SCs that constitute a
growing trend because the SL order introduces or modifies physical properties in ways that
are interesting for applications. To explore the underlying mechanism, a great importance
is attached to the fine structural features of the superorder. As a rule of thumb, structural
effects that modify the X-ray diffraction are also modifying the electronic properties through
the band structure. This makes it interesting to explore the quality requirements—in terms
of NC size and shape uniformity, and also in terms of co-alignment of the NCs until
their periodic arrangement on an SL truly forms an SC. To this aim, we have investigated
the diffraction footprint of SC whose constituting NCs have a small size dispersion that
must affect the quality of the periodic SL order. It turns out that a small size dispersion
(4–5%) is already able to severely affect (up to canceling) the SL coherence, whilst NC
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misalignment is also very effective at this task, but its destructive effect is higher for larger
NC sizes. Therefore, in order to achieve SL interference effects—if they are connected to
desirable changes in the electronic properties—great care must be taken to ensure a very
sharp size distribution (with relative dispersion at the % order) and a great uniformity
and regularity of shape (with the reasonable hypothesis that large flat NC facets would
hinder misalignments).

Author Contributions: Conceptualization, A.C.; Methodology, A.C. and R.F.; Formal analysis, A.C.
and R.F.; Software, A.C. and R.F.; Supervision, A.C.; Validation, R.F.; Visualization, A.C. and R.F.;
Writing—original draft, A.C.; Writing—review and editing, A.C. and R.F. All authors have read and
agreed to the published version of the manuscript.
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Abbreviations
The following abbreviations are used in this manuscript:

SC Supercrystal (superlattice of nanocrystals)
SL Superlattice whose nodes each contain a nanocrystal.

NC
A nanocrystal. Many (possibly imperfect) copies of an NC
are arranged onto an SL to form an SC.

DSE Debye scattering equation [21], Equations (30)–(32)
SDE Size disorder effect.
ADE Alignment disorder effect.
XRPD X-ray powder diffraction.
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