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Abstract: The potential toxicity of titanium dioxide nanoparticles (TiO2 NPs) to mammals has become
a widespread concern. Young individuals exposed to TiO2 NPs have a higher risk than adults. In
this study, the protective effects of Lactobacillus rhamnosus GG (LGG) on liver toxicity in young rats
induced by TiO2 NPs were explored. Results show that the four-week-old rats that underwent
LGG after the oral intake of TiO2 NPs could prevent weight loss, reduce hematological indicators
(WBC and NEUT) and serum biochemical indicators (AST, ALT, AST/ALT, and ALP). Moreover, it
alleviated the pathological damage of the liver (as indicated by the disordered hepatocytes, more
eosinophilic, ballooning degeneration, and accompany with blood cells), but it did not reduce the
Ti contents in the liver. In addition, RT-qPCR results indicated that LGG restored the expression of
anti-oxidative stress-related genes, such as SOD1, SOD2, CAT, HO-1, GSH, GCLC, and GCLM in the
liver. In summary, the hepatotoxicity of TiO2 NPs in young rats is closely related to oxidative stress,
and the antioxidant effect of LGG might protect the harmful effects caused by TiO2 NPs.
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1. Introduction

Recently, nanomaterials have been widely used in various fields such as the chemical
industry, food industry, cosmetics, and textiles [1]. In addition, nanomaterials play an
important role in clinical and experimental medicine [2–4], which made huge impacts
on our daily life. Titanium dioxide nanoparticles (TiO2 NPs) possess unique physical
and chemical properties and have been extensively used in various fields, such as paint,
printing ink, rubber, paper, cosmetics, sunscreen, medicine, food additives, and automotive
materials [5–9]. Thus, human exposure is likely during the handing and use of freely
dispersed TiO2 NPs [10], causing concerns about its possible health effects. An increasing
number of researches have confirmed the harm of TiO2 NPs. In vivo studies have pre-
sented that TiO2 NPs can induce lung injury, brain injury, liver toxicity, nephrotoxicity,
embryotoxicity, and neurotoxicity [11–15].

Notably, young individuals exposed to TiO2 NPs are more sensitive than adults [16–18].
In addition, American adults are currently exposed to about 0.2–0.7 mg Ti/kg/day, while
a child potentially consumes 2–4 times as much Ti as an adult amounting to 1–2 mg
Ti/kg/day. Similarly, the UK population is exposed to 2–3 mg Ti/kg/day for children
and approximately 1 mg Ti/kg/day for adults [19]. Hence, children are more exposed to
TiO2 NPs than adults. Research on the toxicity of TiO2 NP to young people are lacking.
Therefore, relevant studies are urgently needed.

The mechanisms of the toxicity of these NPs should be determined. The oxidative
stress (OS) induced by NPs has become one of the toxic mechanisms of NPs [20,21].
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OS refers to the excessive production of highly active molecules in the body, including
active oxygen free radicals when responding to various harmful stimuli, and the level of
oxidation exceeds the antioxidant capacity of the cell to remove oxides. The oxidation
system and the antioxidant system are out of balance, resulting in tissue damage [22,23].
Probiotics have antioxidant activity and can reduce damage caused by OS. The supernatant
extract of cultured Bifidobacteria can scavenge hydroxyl free radicals and superoxide anions
and enhance the antioxidant enzyme activity of mice [24]. The high-fat diet fed with
Lactobacillus plantarum P-8 to the mice raised the antioxidant capacity, thus reducing liver
fat accumulation while protecting liver function [25]. Lactobacillus rhamnosus GG (LGG)
is a widely studied probiotic [26], and the previous research of our group confirmed that
LGG has a certain repair effect on intestinal injury [27], also it possesses strong antioxidant
capacity [28,29].

The liver is an organ with major metabolic function in the body and plays an important
part in the metabolism and biotransformation of toxic substances [30,31]. Thus, regardless
of the type of injury or functional impairment, hepatotoxicity occurs, leading to health
complications. Therefore, the liver is also particularly vulnerable to TiO2 NPs.

Accordingly, the protective effect of LGG on the liver toxicity caused by TiO2 NPs in
young rats was explored in this work. The physiological status of liver effects of TiO2 NPs
with and without the LGG was assessed by analyzing the hematology, serum biochemistry,
and Ti contents in the liver plus the changes in liver morphology. The mechanism of the
toxicity effects of TiO2 NPs was further explored from the molecular by detecting the gene
expression related to OS by using RT-qPCR assay.

2. Materials and Methods
2.1. Preparation and Characterization of TiO2 NPs

TiO2 NPs were obtained from Aladdin Industrial Corporation (Shanghai, China). The
size and morphology of this material were evaluated via a scanning electron microscope
(SEM), and the hydrodynamic diameter in water was evaluated via dynamic light scattering
(DLS). Before the experiment, TiO2 NPs were weighed and mixed with 1% phosphate
buffer saline (PBS). The mixture was ultrasonically treated for 30 min and then vortexed
for 5 min by an analog vortex mixer to ensure that TiO2 NPs were evenly dispersed in an
aqueous solution.

2.2. Probiotics Preparation

LGG was cultured in sterile de Man Rogosa Sharpe broth (MRS, Solarbio Science and
Technology Co. Ltd., Beijing, China) in an anaerobic circumstance at 37 ◦C, for 16 h. Then
the compound of LGG and MRS broth was centrifuged at 12,000 rpm for 2 min to remove
the supernatant of the broth, the pellet washed, and then resuspended in 1% PBS. The LGG
was adjusted to 108 CFU/mL 200 µL.

2.3. Animals Administration

Female Sprague Dawley (SD) rats (4-week-old, 60 ± 5 g) were obtained from the
Jiangxi University Experimental Animal Center of Traditional Chinese Medicine. All
animal procedures in this work follow the requirements of the Institutional Animal Care
Committee guidelines and have been allowed by the Animal Care Review Committee
(approval number 0064257) of Nanchang University, Jiangxi province, China. The female
rats were provided adequate food and distilled water, kept in plastic cages in animal rooms
at 22 ± 1 ◦C and relative humidity was 60 ± 10% for. The rats were sorted into 4 groups
(n = 6), randomly: the control group (treated with 1% PBS), TiO2 NPs (150 mg/kg) group,
TiO2 NPs (150 mg/kg) + LGG (108 Colony-Forming Units/mL (CFU/mL)) group, and
LGG (108 CFU/mL) group, rats in groups TiO2 NPs and TiO2 NPs + LGG were orally
gavaged with TiO2 NPs, two hours later, rats of groups TiO2 NPs + LGG and LGG were
gavaged with LGG (dissolved in 1% PBS). The dosage of TiO2 NPs is according to the
study of Wang Y et al. [17]. The four groups of rats were given intragastrically for 7 days,
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rats were weighed and body weight was recorded daily. On the first day after the end of
gavage, the rats were weighed and euthanized, the blood samples were obtained through
eyeball extraction, the organs and tissues were collected, weighed, next kept at −80 ◦C for
further analysis.

2.4. Organ Coefficient

The collected organs including heart, liver, spleen, lung, kidney, brain, thymus, ovary,
and uterus were washed with 4 ◦C saline, dried with filter paper, weighed, and organ
coefficients measured.

2.5. Analysis of Hematology

The collected blood for hematology analysis. The indicators were detected include
white blood cells (WBC), lymphocytes (Lymph), monocytes (Mon), neutrophils (NEUT),
red blood cells (RBC), hemoglobin (HGB), and platelets (PLT), which were determined by
Adicon clinical laboratories (Nanchang, Jiangxi, China).

2.6. Evaluation of Serum Biochemistry

The blood collected in the centrifuge tube was centrifuged at 1000 rpm for 10 min at
4 ◦C to take the supernatant, and the liver function-related indicators including aspartate
aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphate enzymes
(ALP) were measured. These steps were carried out according to the standard procedures
of the reagent test kit (Jiancheng Institute of Bioengineering, NanJing).

2.7. Analysis Contents of Ti

Approximately 0.05–0.1 g samples of the liver were dissolved with 1 mL of hydrogen
nitrate and 200 µL of Neoprene Rubber, respectively. And heated to 280 ◦C until the
digestion solution was nearly dried out after cooling to ambient temperature, and every
sample was blended with ultrapure water, leading to a final volume of 5 mL. Inductively
coupled plasma-mass spectrometry (ICP-MS, Varian 820-MS, Palo Alto, CA, USA) was
used to analyze the element Ti contents.

2.8. Histopathological Examination of Liver

The liver was assessed for histopathological changes. The liver was transferred to 4%
formalin solution immediately after harvest. Each sample was embedded in paraffin, sliced
into 5 µm thick sections, next put on the slide and stained with hematoxylin and eosin
(HE). Histological images were acquired by a Nikon Ti optical microscope (Tokyo, Japan).

2.9. Analysis of Gene Expression

According to the manufacturer’s protocol, the AxyPrep Multisource Total RNA
Miniprep Kit (Axygen Scientific, CA, US) was used to extract the total RNA of the liver
from each group, which was reverse transcribed of total mRNA (1 µg) into cDNA through
a Takara PrimeScript TM RT reagent kit (Cat#RR047A, Lot#AK2802). Then the real-time
quantitative polymerase chain reaction (qPCR) with TB Green™ Premix Ex Taq™ II (TIi
RNaseH Plus, TAKARA Cat#RR820A) was carried out on the CFX Connect™ Real-Time
PCR Detection System (Bio-Rad Laboratories, Inc. Louisville, KY, USA). The sequences of
primers as presented in Table 1 with glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
as the internal reference gene. The results were calculated via the 2−∆∆Ct method.
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Table 1. Genes and primers selected for RT-qPCR.

Gene Primer Sequence (5′-3′)

SOD1 Forward TTTTGCTCTCCCAGGCCG
Reverse ACCGCCATGTTTCTTAGAGTG

SOD2 Forward ACTTGAAACGTGTAACTAGGC
Reverse CTTTCATACAATACACAGTCGG

HO-1 Forward TTTTCACCTTCCCAGCAT
Reverse TTAGCCTCTTCTGTCACCCT

CAT Forward ATAGCCAGAAGAGAAACCCACA
Reverse CCTCTCCATTCGCATTAACCAG

GSH Forward ATCCCACTGCGCTCATGACC
Reverse AGCCAGCCATCACCAAGCC

GCLC Forward GAGCGAGATGCCGTCTTACA
Reverse TTGCTACACCCATCCACCAC

GCLM Forward TGTTTGACCAAGTGCCCAT
Reverse ATCTAAAATGCCTTCGGTGT

GAPDH Forward TCCCTCAAGATTGTCAGCAA
Reverse AGATCCACAACGGATACATT

2.10. Statistical Analysis

Statistical analyses were executed by SPSS 22.0 software (SPSS, Inc., Chicago, IL, USA)
in this work. All the data presented were the means ± SD. One-way analysis of variance
(ANOVA) was used to analyze the differences among multiple groups. For all tests, the
differences from the control group are represented by * means p < 0.05 and ** means
p < 0.01; the differences from the TiO2 NPs group are represented by # means p < 0.05 and
## means p < 0.01.

3. Results
3.1. Characterization of TiO2 NPs

The observations under SEM indicated that TiO2 NPs had a spherical geometry with
an average diameter of 33 nm (Figure 1A,B). Based on DLS analysis, the hydrodynamic
size of TiO2 NPs in water was approximately 71 nm (Figure 1C).
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Figure 1. Characterization of titanium dioxide nanoparticles (TiO2 NPs). (A) TiO2 NPs have a spherical geometry as
determined by SEM. (B) Particles diameter distribution at approximately 33 nm. (C) The approximate hydrodynamic size of
the particles was 71 nm as determined by DLS analysis.

3.2. Body Weight Changes in Young Rats

The changes in body weight were calculated as shown in Figure 2. The ratio of body
weight growth was decreased from the 6th day in the TiO2 NPs group than the control
group (p < 0.05 or p < 0.01). Meanwhile, the ratio of body weight growth was increased in
the TiO2 NPs + LGG group than the TiO2 NPs group from the 6th day (p < 0.05 or p < 0.01).
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3.3. Organ Coefficient

Based on the results of the organ coefficients presented in Figure 3, no significant
changes were observed in each organ among all the experimental groups.
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3.4. Hematology

As shown in Table 2, the WBC was 5.57 ± 2.39 × 109 /L and the NEUT was
0.55 ± 0.15 × 109/L in the control group; the WBC was 9.7 ± 1.5 × 109/L and the NEUT
was 1.07 ± 0.68 × 109/L in TiO2 NPs group, the latter values were higher than the former
(p < 0.05). The WBC was 6.17 ± 1.05 × 109/L and the NEUT was 0.6 ± 0.1 × 109/L in
the TiO2 NPs + LGG group, and these values were less than those in the TiO2 NP group
(p < 0.05).

Table 2. Effects of oral exposure of TiO2 NPs on blood routine indexes in the young rats.

Indexes Control TiO2 NPs TiO2 NPs + LGG LGG

WBC (109/L) 5.57 ± 2.39 9.7 ± 1.5 * 6.17 ± 1.05 # 6.43 ± 2.01
Lymph (109/L) 4.8 ± 2.11 6.17 ± 2.67 5.3 ± 1.19 4.85 ± 1.75

Mon (109/L) 0.1 ± 0.08 0.18 ± 0.15 0.12 ± 0.02 0.13 ± 0.05
NEUT (109/L) 0.55 ± 0.15 1.07 ± 0.68 * 0.6 ± 0.1 # 0.7 ± 0.22
RBC (1012/L) 2.33 ± 1.08 2.44 ± 0.77 2.12 ± 0.26 2.26 ± 0.15

HGB (g/L) 85.67 ± 22.51 94.5 ± 17.64 81 ± 15.9 92 ± 13.93
PLT (1012/L) 930.33 ± 340.19 687.67 ± 121.5 1072.5 ± 25.5 896.5 ± 85.5

* p < 0.05 versus the control group; # p < 0.05 versus the TiO2 NPs group. n = 3, values are presented as mean ± SD.
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3.5. Serum Biochemistry

Significantly higher AST, ALT, AST/ALT, and ALP levels were found in the TiO2
NPs group than the control. Meanwhile, the AST, ALT, AST/ALT, and ALP levels in the
TiO2 NPs + LGG group exhibited an obvious decrease compared to the TiO2 NPs group
(p < 0.05) (Figure 4).
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3.6. Ti Contents in the Liver

In comparison with the control group, rats exposed to TiO2 NPs, with or without LGG,
exhibited higher Ti contents in the liver (p < 0.05) (Figure 5).
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3.7. Histopathological Evaluation

The results of the histopathological evaluation in the liver of rats are presented in
Figure 6. After TiO2 NPs treatment, hepatocytes appeared in a disordered arrangement,
accompanied by many eosinophils, ballooning degeneration, and blood cells. In the TiO2
NPs + LGG group, hepatocytes were tightly arranged and accompanied by blood cells.
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3.8. Levels of Gene Expression

To assess the effect of liver injury in young rats exposed to TiO2 NPs, we set the genes
of OS expression levels, including SOD1, SOD2, HO-1, GSH, CAT, GCLC, and GCLM for
RT-qPCR analysis. The results are shown below.

The levels of SOD1, SOD2, HO-1, GSH, CAT, GCLC, and GCLM were obviously
downregulated in the TiO2 NPs group than the control (p < 0.05 or p < 0.01). After the
young rats exposed to TiO2 NPs were treated with LGG, the above genes were significantly
increased compared to the TiO2 NPs group (p < 0.05 or p < 0.01) (Figure 7).
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4. Discussion

TiO2 NPs have a wide range of applications and are prone to human exposure. In
comparison with adults, children are more exposed to NPs. The oral administration of TiO2
NPs in young rats is more toxic than in adult rats [17]. Therefore, in this study, the effect
of TiO2 NPs on the hepatotoxicity of four-week-old rats was explored. In addition, the
protective effect of LGG on the hepatotoxicity of TiO2 NPs in young rats and its possible
toxicity mechanism were clarified.

The general and physiological conditions including the body weight, organs coef-
ficients, and hematological indexes were evaluated. After the young rats were orally
administrated to TiO2 NPs for 7 days, which showed that the ratio of body weight growth
was significantly decreased (Figure 2) and the organ coefficients had no significant changes
(Figure 3). The hematological analysis presented that the levels of WBC and NEUT were
significantly increased (Table 2). Similar studies have found that acute administration
to TiO2 NPs can cause inflammation in mice [32]. Serum biochemical indicators of liver
damage [33–35] results showed that the TiO2 NPs treatment remarkably increased the
level of AST, ALT, ALP, and the AST/ALT ratio (Figure 4), indicating the liver damage
induced by TiO2 NPs. LGG treatment of rats exposed to TiO2 NPs obviously reduced the
parameters of liver function (AST, ALT, and ALP), indicating that LGG has a protective
effect on liver function [36,37].
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Hepatocyte degeneration and other pathological changes also verified that TiO2
NPs lead to liver damage (Figure 6), thus supporting that TiO2 NPs lead to pathological
changes in the liver. Our research results are similar to previous researches [38,39]. This
phenomenon might be caused by the damage leading to the accumulation of NPs in the
liver (Figure 5). A similar study reported the distribution of TiO2 NPs in mouse tissues
and organs, causing damage [40]. After LGG treatment, the liver damage of young rats
was relieved, but the Ti contents in the liver did not significantly decrease (Figure 5), which
indicated that LGG did not reduce tissue damage by inhibiting Ti content, while it might
enhance the body’s resistance to TiO2 NPs. LGG can be used as a stable protectant to
prevent body damage [41].

To further clarify the effect of LGG on the liver of young rats exposed to TiO2 NPs,
we explored the TiO2 NPs toxicity mechanism. OS caused by TiO2 NPs is the main cause
of tissue damage [42,43]. Therefore, OS may cause liver toxicity induced by TiO2 NPs.
OS is a normal cellular process that involves many aspects of cell signal transduction,
while excessive OS may be harmful and cause the degree of oxidation of cells to exceed
their antioxidant capacity [44]. Superoxide dismutase (SOD) is an important antioxidant
enzyme that can eliminate superoxide anion free radicals, the intermediate product of
aerobic metabolism in organisms, and is the first line of defense against oxygen free radical
damage [45]. The production of oxidative free radicals in the human body reduces the ac-
tivity of SOD, causing peroxidative damage to membrane lipids, generating a large amount
of malondialdehyde (MDA) to further damaging cells. Heme oxygenase-1 (HO-1) decom-
poses heme into free iron, biliverdin, and nitric oxide and is considered an antioxidant [46],
which plays a significant protective role in OS injury [47]. As an important antioxidant
enzyme that exists in almost all biological tissues that utilize oxygen, catalase (CAT) uses
iron or manganese as a cofactor to catalyze the reduction or degradation of hydrogen
peroxide to molecular oxygen and water, thereby accomplishing the detoxification process
simulated via SOD [48]. Glutathione (GSH) is the major cellular defense against ROS for
it can remove both hydroxyl radicals and singlet oxygen and limit the levels of certain
reactive aldehydes and peroxides within the cell through glutathione transferases and glu-
tathione peroxidases [49,50]. The catalytic (GCLC) and regulatory subunits (GCLM) are two
subunits of glutamate-cysteine ligase (GCL), which is the first rate-limiting enzyme in GSH
synthesis [51–53]. Mice knockout in the GCLM or GCLC gene significantly reduced GSH
content in the liver [54,55]. In this study, as presented in Figure 6, the expression of SOD-1,
SOD-2, HO-1, CAT, GSH, GCLC, and GCLM in the TiO2 NPs treatment group obviously
decreased, suggesting that administration of TiO2 NPs in young rats caused the activation
of the antioxidant system, reflecting the occurrence of OS that caused liver damage.

However, after oral administration of TiO2 NPs with LGG in young rats, the expression
of the above genes was restored, indicating that LGG can resist OS. This phenomenon
occurred because the antioxidant capacity of LGG can significantly alleviate the effect on
oxidative damage induced by various stressors. Goyal et al. found that LGG possesses
antioxidative properties in Giardia-mediated tissue injury [56]. Sun et al. found that
feeding LGG can clear the activity of mice under stress, inhibit the microorganisms that
produce reactive oxygen species, and enhance the antioxidant capacity on the body [57].
Therefore, LGG could significantly improve liver damage by inhibiting OS caused by
TiO2 NPs.

5. Conclusions

The protective effects of LGG on liver toxicity in young rats induced by TiO2 NPs
were explored in this work. Treatment of the rats with LGG after oral administration to
TiO2 NPs suggests that LGG could prevent the general and physiological toxicity, and
alleviate the pathological damage of the liver in young rats. The results of the molecular
level studies suggest that the mRNA expression of anti-oxidative stress genes (SOD1,
SOD2, CAT, HO-1, GSH, GCLC, and GCLM) significantly increased. Hence, TiO2 NPs could
induce liver damage in young rats through oxidative stress. The antioxidant effect of LGG
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could have a certain therapeutic effect in preventing and relieving liver damage caused
by TiO2 NPs. However, the exact mechanism by which LGG participates in antioxidant
stress remains uncertain, and further research is needed to completely define the exact
antioxidant mechanism of this probiotic in order to achieve antioxidant effects.
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