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Abstract: Monitoring systems for the early detection of diabetes are essential to avoid potential
expensive medical costs. Currently, only invasive monitoring methods are commercially available.
These methods have significant disadvantages as patients experience discomfort while obtaining
blood samples. A non-invasive method of blood glucose level (BGL) monitoring that is painless
and low-cost would address the limitations of invasive techniques. Photoplethysmography (PPG)
collects a signal from a finger sensor using a photodiode, and a nearby infrared LED light. The
combination of the PPG electronic circuit with artificial intelligence makes it possible to implement
the classification of BGL. However, one major constraint of deep learning is the long training phase.
We try to overcome this limitation and offer a concept for classifying type 2 diabetes (T2D) using a
machine learning algorithm based on PPG. We gathered 400 raw datasets of BGL measured with PPG
and divided these points into two classification levels, according to the National Institute for Clinical
Excellence, namely, “normal” and “diabetes”. Based on the results for testing between the models,
the ensemble bagged trees algorithm achieved the best results with an accuracy of 98%.

Keywords: diabetes; blood glucose levels; photoplethysmography; machine learning; ensemble
bagged trees

1. Introduction

Diabetes is a medical emergency that can cause various complications or even death
in adults. Diabetes is often referred to as the “Silent Killer” [1,2] if it is not diagnosed in
its early stages. It causes many people to ignore their diabetes and not realize its severity
or presence until their blood sugar is above standard. A 2017 report by the International
Diabetes Federation stated that the prevalence of diabetes would continue to increase
globally [3].

The two major types of diabetes, type 1 (T1D) and type 2 (T2D) have the same symp-
toms. The types of diabetes are distinguished by their cause. T1D is caused by a deficiency
of insulin-secreting β-cells in the pancreas and cannot be cured, but the patient’s qual-
ity of life can be maintained. T2D is characterized by insulin resistance which develops
throughout the patient’s life. As T2D is an acquired metabolic condition, people have a
higher probability of having T2D than T1D [4]. T2D can be avoided or reduced by a better
understanding the risks and lifestyle changes. Effective prevention by regularly monitoring
blood glucose levels (BGL) is necessary for diabetes management [5–7].

Currently, only invasive methods for monitoring BGL are commercially available.
Blood glucose laboratory tests and glucometers are the only commercial options. Both
ways are painful for the patient, as they use either a syringe or a finger prick procedure.
However, the invasive methods provide a high degree of accuracy [8].
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Non-invasive methods can be developed to overcome the limitations of invasive pro-
cedures [9]. A painless, easy to operate, and low-cost will improve patient compliance
with routine blood glucose monitoring and early detection of diabetes [8,10]. Non-invasive
methods to monitor or predict BGL have been developed using different techniques, as
shown in Figure 1 [1,8,10–14]. The preferred approach is based on sensors and optical
techniques [11,15–17]. However, these non-invasive methods are still in the early stages
of development [18]. Various research studies with new techniques have emerged, re-
quiring constant updating of the available information. One of these new methods uses
photoplethysmography (PPG), as shown in Figure 1.
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Figure 1. Blood Glucose Measurement Techniques.

PPG is a non-invasive optical technique that measures changes in blood volume
based on variations in the intensity of light that passes through or is reflected by human
organs [19–21]. The PPG signal is collected from a finger sensor that uses a photodiode as
an optical sensor to capture light from an infrared LED, as shown in Figure 2.
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The Prototype of PPG signals is an easy and inexpensive optical technique measure-
ment method that could monitor BGL in diabetes [14,17,19]. Many academics have devel-
oped prototypes with optical sensor-based data-acquisition systems. The prototypes are
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supported by the development of embedded system technology and relatively affordable
sensor prices.

PPG signals contain a lot of information about blood [18]. The PPG signal can be
explored in assessing vital signs such as blood pressure, cardiac output, respiration, and
the presence of diabetes. PPG can easily capture sequential heartbeats, making it possible
to measure not only heart rate (HR) but also heart rate variability (HRV) [22,23]. Derivation,
HRV signal from electrocardiogram (ECG), is calculated from R–R interval. In contrast,
the calculation of the HRV signal from the PPG signal uses the inter-beat interval (IBI) or
pulse interval (PPI) [24], as shown in Figure 3. HRV measures the time duration varies
between successive heartbeats, and this method has been widely used as an indicator of
various disease conditions. The HRV strongly reflects the parasympathetic and sympathetic
branches of the autonomic nervous system (ANS) [25]. ANS regulates the body’s metabolic
system, which plays an essential role in regulating blood glucose levels [26].
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Previous studies identified several associations between HRV and blood glucose
level (BGL). These associations were only found in type 2 diabetes (T2D). Meanwhile,
BGL of type 1 diabetes (T1D) does not significantly correlate with HRV parameters [27].
Parasympathetic and sympathetic activity is decreased due to the detrimental effects of
glucose metabolism. It can be monitored via PPG morphology by calculating HRV [28].

There are still many things that have not been explored from PPG morphology. PPG
morphology shows a different pattern between healthy and diabetic subjects of the same
age in three different age ranges [28]. While healthy subjects have a slightly prolonged
shape in the diastolic phase, people with diabetes usually have a bell-shaped PPG signal
wave without a secondary peak. The arterial stiffness is caused by diabetes [29–31]. Stiffness
index (SI) is a standard marker for significant arterial stiffness. SI value is calculated as
subject height divided by peak-to-peak time (PTT) [32], as shown in Figure 4. Diabetic
patients have significantly higher SI than non-diabetes patients [33]. A strong correlation
with blood pressure, body mass index, and age was noted [33].
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There are several potential sources of error in BGL estimation based on PPG morphol-
ogy, including:
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A. PPG is very sensitive toward being made unstable by movement, which can cause
errors in measurement [34–36].

B. The quality of the PPG waveform depends on the quality of the blood circulation.
C. Characteristics of the PPG waveforms vary according to blood viscosity, vascular

elasticity, and fluctuations in peripheral vascular resistance [37].

The combination of PPG data collected by near-infrared sensors with artificial intel-
ligence (AI) makes it possible to predict BGL. Machine learning (ML) or deep learning
(DL) approaches are equally good at predicting BGL using PPG [14,38–44]. A common
challenge in implementing ML or DL is limited test samples. Currently, no data-source
website contains the digital records of physiological signals, time series, and related data
needed in this biomedical research.

Our proposed method is very relevant to obtaining a BGL classification in real-time.
Most of the previous studies of PPG focused on estimating the BGL value [18,45,46]. The
drawback of this estimation method is that clinical supervision is required. Meanwhile, the
classification method helps patients to self-monitor for diabetes detection independently.
Here are our main contributions:

A. With our proposed method, users can immediately know the condition of their blood
BGL. We focus on a BGL classification based on the PPG signal. Therefore, in this
study, two BGL levels were established: “normal” and “diabetes”.

B. A particular process is not needed to establish the PPG signal’s quality with our
proposed method. We have used electronic filter circuits instead of filter algorithms
such as wavelets.

C. Our proposed method uses ML instead of DL to achieve a faster training time. Deep
learning uses extensive computing power and takes a long time to train, making it
difficult to validate and repeat extensively to improve results [47].

This article proposes a non-invasive classification of BGL for early detection of diabetes
based on a PPG signal by utilizing a combination of electronic circuits with a machine
learning algorithm (MLA). The classifier model to be used is chosen from the results of a
comparative analysis between models, such as subspace K-nearest neighbor, RUS boosted
trees, ensemble bagged trees, decision trees, support vector machine, gaussian support
vector machine (GSVM), bagged trees, K-nearest neighbor (KNN), fine gaussian support
vector regression (FGSVR), support vector regression quadratic, and enabled boosted trees.

This study included 80 subjects and collected 400 original PPG signals from students
at the Indonesian Defense University and patients at the Wocare Diabetes Clinic. Fea-
ture extraction of the PPG signal was carried out point-by-point, so the physiological
data contained in the PPG signal could be explored. Each PPG data segment consists of
2100 sampling points. After all the data were collected, the datasets were divided into a
training set (300 PPG signals) to train the classifier and a test set (100 PPG signals) to test
the accuracy of the classifier. Datasets were added to avoid bias by duplicating signal data
from each classification level to give each group the same number of training datasets
(150 normal subjects and 150 diabetes subjects).

This paper is structured as follows: Section 2 defines the materials and methods;
Section 3 explains the measurement and verification results; Section 4 discusses the results;
Section 5 concludes the study.

2. Materials and Methods

The essential component in this research is the PPG signal, which was collected
through an electronic circuit in a finger sensor. The resulting PPG signal cannot be directly
used for BGL classification. We have used an indirect methodology by utilizing patterns
and sampling points from PPG signals which are then processed using MLA. It takes PPG
datasets from normal and diabetic subjects to obtain PPG signal patterns associated with
BGL. The advantage of artificial intelligence is learning patterns related to the desired
results, as can be seen in Figure 5.
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Figure 5. The detailed block diagram of the classification of BGL. The proposed method presents a
system that can be used for non-invasive BGL classification based on a single PPG waveform from an
electronic circuit combined with a machine learning algorithm.

2.1. Data Collection

We collected the gold-standard dataset using an invasive glucometer. The PPG signal
was collected using a non-invasive finger sensor. Each PPG signal is classified with the
labelling “normal” or “diabetes” based on the results of the glucometer measurement.
The MLA processed the signal measured by the PPG hardware to produce a patient
classification. Once the PPG classification was complete, the result was compared to the
glucometer classification and placed into the confusion matrix. The blue cells represent
true positive (TP) or true negative (TN) signals, as shown in Figure 6.
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Figure 6. Schematic diagram of non-invasive classification of BGL for early detection of diabetes
using a machine learning algorithm based on a photoplethysmography signal. Processing steps: data
collection, data segmentation, labelling, and results (classification).

We also collected data on the basic physiology of the individual. The dataset collected
for each time point included the participant’s PPG waveform signal, blood pressure, blood
oxygen saturation levels, heart rate, and glucometer BGL, as shown in Table 1.

Table 1. The Dataset Information.

No. Subject
ID

Sex
F/M

Age
(Years)

Systolic
(mmHg)

Diastolic
(mmHg)

HR
(bpm)

Random Glucose Test
(mg/dL) Status

1 4 F 19 125 80 80 92 Normal
2 5 M 18 100 70 80 80 Normal
4 12 M 40 111 67 101 211 Diabetes
5 13 M 48 112 57 83 230 Diabetes

The measurements for each of these parameters were taken as many as five times for
each subject. The dataset includes PPG and BGL information from the subjects, divided
according to BGL values based on the National Institute for Clinical Excellence (NICE) in
2019, as shown in Table 2.

Table 2. Blood glucose level of NICE 2019.

Plasma Glucose Test Normal Prediabetes Diabetes

Random <200 mg/dL or <11.1 mmol/L N/A >200 mg/dL or >11.1 mmol/L
Fasting <100 mg/dL or <5.5 mmol/L 100–125 mg/dL or 5.5–6.9 mmol/L >126 mg/dL or >7 mmol/L

Glucometers can measure BGL using a random or fasted method. Random glucose
tests can be taken at any time and do not require preparation. Fasting plasma glucose tests
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are performed after a minimum of eight hours of fasting. In this study, we assessed BGL
using a random test method. According to the NICE guidelines, we classified participants
with a BGL of >200 mg/dL into the “diabetes” dataset.

The total duration of the experiment was approximately 15 min. The data collected
from PPG and BGL took around five minutes to obtain. We divided the data into “signals”
and “labels” groups. The signal is an array of cells consisting of a collection of PPG signals,
while the label is a description of “normal” or “diabetes” based on the NICE 2019 guidelines,
as shown in Figure 7.
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We selected the signals based on the waveform to anticipate a low-quality PPG signal.
Each PPG signal segment was manually evaluated using either an unfit, acceptable, or
excellent PPG waveform classification, as described in Figure 8 [34]. PPG waves in the
excellent category had a clear beat with a diastolic notch. The acceptable category had a clear
beat without a diastolic notch, and the unfit category contained many noisy beats without a
diastolic notch. This method is inspired by the skewness signal quality index (SSQI), which
divides the degree of asymmetry of the distribution around the mean. Positive skewness
is an asymmetric distribution towards a positive value. Negative skewness indicates an
asymmetric distribution towards a negative value [34,48].
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The PPG signal generated from the electronic circuit was processed and saved in a
comma-separated values (CSV) format using processing application software. Each PPG
data segment consisted of 2100 sampling points, which required 10 s of data access. We
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used a frequency of 190 Hz during signal acquisition, as shown in Figure 9. Processing
software allowed us to view each subject’s PPG waveform in real-time. We selected the
PPG waveforms manually and analyzed them one by one so that only PPG waveforms in
the excellent or acceptable category were stored. This process was developed to reduce
PPG segments with high motion artefacts.
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2.2. Electronic Circuits

In this study, we used the Easy Pulse design by Embedded Lab, an open-source pulse
sensor, to measure cardiovascular pulse waves by detecting changes in blood volume in
blood vessels close to the skin, which generate PPG signals [49]. The hardware configuration
includes the finger sensor, the filtering circuit, the amplifier circuit, and the analog-to-digital
converter circuit. The finger sensor uses HRM-2511E which consist of near-infrared and
photodiode [49]. This configuration will detect changes in the blood volume during
the systolic and diastolic phases in the form of a PPG waveform. The PPG signal from
the photodetector is still fragile and noisy, so it requires a signal amplifier circuit and a
filter to suppress noise. Technically there are two stages of signal processing. In Stage 1,
blocking the DC component of the PPG signal through a passive high-pass filter (HPF) is a
combination of a resistor (68 kOhm) and a capacitor (4.7 uF), resulting in a cut-off frequency
of 0.5 Hz. The PPG signal from the HPF is still noisy, so it still needs to be processed further
through an active low-pass filter (LPF) based on an operational amplifier (op-amp) in a
non-inverting mode that has a gain of 48 and a cut-off frequency of 3.4 Hz. At the negative
input, the op-amp uses a reference voltage (Vref) of 2.0 V coming from the Zener diode
so that the PPG signal can reach full swing at the op-amp output. The active LPF goes
to Stage 2, which is a replica of the Stage I circuit. The PPG analog signal from Stage 2 is
converted into a digital signal by an analog-to-digital converter circuit as raw data input in
ML models, as shown in Figure 10.

2.3. Classifier

We used MATLAB (version R2021b) as a platform to choose the best machine learning
classifier. The platform enables the algorithm to perform BGL classification based on PPG
signals with an optimal level of accuracy. All models were tested on the same dataset, as
shown in Figure 11.
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Ensemble Classification

The ensemble is a method that combines many single classifiers so that the predicted
results of each classifier are integrated into the final prediction through a majority voting
process. The ensemble method was developed to improve classification prediction accuracy.
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The ensemble technique that relies on bagging and boosting variations can provide pre-
dictions with excellent accuracy. Bagging works by making ensemble composing models
so that various possibilities can be accommodated to the maximum while boosting works
iteratively so that cases that are not easily predictable are no longer a problem. Based on
what is currently developing, the ensemble approach in the predictive algorithm is the right
choice for those who want to obtain satisfactory results that are very easy to work with.

The number of split parameters in the ensemble algorithm determines the accuracy of
the results [50]. The model will perform better when there is an increase in splits. However,
increasing the number of splits that are too large creates the possibility of overfitting. In
addition, the number of parameters studied further increases the accuracy of the model, but
the process becomes very time-consuming. This study selected an ensemble bagged trees
model for non-invasive BGL classification based on a single PPG waveform. The ensemble
bagged trees algorithm (EBTA) is a method that can improve the results of machine learning
classification algorithms by combining prediction classifications from several models. It is
used to overcome instability in complex models with relatively small data sets. Bagging is
best suited for problems with relatively small training datasets. Bagging adopts bootstrap
distribution to generate different base learners, to obtain subset data. Bagging also adopts
a base learner output-aggregation strategy, namely the voting method for the classification
case and averaging for the regression case [50], as shown in Figure 12.
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3. Results

When a finger is inserted into the finger sensor, the raw PPG waveforms can be
observed at Test Point 1 (TP1) using an oscilloscope. The voltage generated from the finger
sensor is very low and noisy, only about 80 mV, as described in Figure 13. The raw PPG
signal from TP1 enters the second stage. The raw signal is then filtered to reduce noise in the
second stage. The first stage output signal (TP2) still contains a significant DC component
and small pulsatile amplitude. The output from the HPF goes to an active LPF where the
op-amp amplifies the PPG signal so that the rated PPG signal voltage is 0.8 V. The noise in
the signal can be eliminated in this phase, which is shown in Figure 14. The PPG signal on
TP2 coming from the second stage is amplified by an op-amp circuit with amplification
between the reference voltage ranges (V reference = 2.0 V), as shown in Figure 15.

The PPG signal from the second stage circuit is still analog and must be converted
to digital in the analog-to-digital converter (ADC) circuit. The resulting digital signal is a
series of digital pulses synchronized with the heart rate monitor on the digital output pin,
as shown in Figure 16.
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We compared the testing performance based on the accuracy values. The results show
that the EBTA had a better accuracy score than any other classification method, as shown
in Table 3. A confusion matrix is used to visualize the performance of the classifiers for the
data sets where the true value is known. The confusion matrix from the testing process of
each model is shown in Figure 17.

Table 3. Comparison of testing performance.

Classifier Accuracy
(%)

Prediction
Speed

(Observation/s)

Training Time
(s) Total Cost

Ensemble Bagged Trees 98.00 ∼ 330 8.02 2
Weighted KNN 93.00 ∼ 160 8.87 7

Ensemble Subspace KNN 93.00 ∼ 95 15.00 7
Fine Trees 93.00 ∼ 310 24.00 7

Medium Trees 93.00 ∼ 310 24.00 7
Fine KNN 92.00 ∼ 170 8.00 8

Three-layered Neural
Network 92.00 ∼ 370 16.18 NA

Narrow Neural Network 91.00 ∼ 370 7.09 NA
Coarse Gaussian SVM 90.00 ∼ 360 5.17 9

Ensemble Boosted Trees 91.00 ∼ 310 27.00 10
Ensemble RUS Boosted

Trees 87.00 ∼ 270 48.08 13

Logistic Regression 76.00 ∼ 120 19.03 NA

We performed a comparative study between our method and the results of previous
studies. Table 4 presents a performance comparison to prior studies.

Table 4. Classification performance comparison.

Year PPG Signal Invasive
Methods Classifier Features

Extraction
Evaluation

Metric Characteristic

2009 Finger sensor [40] Not
mentioned

Auto-Regressive Moving
Average (ARMA) Not Mentioned

Specificity =
0.9

Sensitivity = 1
Classification

2017 Pulse Oximeter
[14] HbA1c Test

Random Forest 9 ROC = 0.7 Classification
Gradient Boosting 9 ROC = 0.7 Classification

Linear Discriminant Analysis 9 ROC = 0.6 Classification
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Table 4. Cont.

Year PPG Signal Invasive
Methods Classifier Features

Extraction
Evaluation

Metric Characteristic

2019
Smartphone

Camera
[41]

Glucose meter

Subspace KNN 67 Accuracy =
86.2%. Classification

RUS Boosted Trees 67 Accuracy =
85.0% Classification

Bagged Trees 67 Accuracy =
86.0% Classification

Decision Trees 67 Accuracy =
80.1% Classification

2019 Finger sensor
[42]

Blood
Glucose Lab Test Support Vector Machine 37 Accuracy =

97.9% Classification

2020 Finger sensor
[43] HbA1c Test Logistic Regression Not Mentioned Accuracy =

92.3% Classification

2020 Smartphone
[44] Glucose meter

Gaussian Support Vector
Machine (GSVM) 28 Accuracy =

81.5% Classification

Bagged Trees 28 Accuracy =
74.0% Classification

K-Nearest Neighbor 28 Accuracy =
71.0% Classification

2021 Finger sensor Glucose meter
Ensemble bagged trees

(Proposed method in this
study)

2100 Accuracy:
98.0% ClassificationInformation 2022, 13, x FOR PEER REVIEW 13 of 18 
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Figure 17. (A) Ensemble Bagged Trees, testing accuracy: 98%; (B) Ensemble Subspace KNN, testing
accuracy: 93%; (C) Fine Trees, testing accuracy: 93%; (D) Coarse Gaussian SVM, testing accuracy: 90%;
(E) Ensemble Boosted Trees, testing accuracy: 91%; (F) Logistic Regression, testing accuracy: 76%.

4. Discussion

The quality of the finger sensor needs to be considered because it is related to the PPG
principle, which is a non-invasive method that functions to measure variations in blood
volume in tissues using a light source and detector. The signal quality will significantly
affect the final classification results of ML in general. This PPG signal quality assurance is
the main reason for using an electronic filter circuit instead of filtering algorithms such as
wavelet transform. As shown in Figure 18, an analysis of PPG signal quality demonstrates
a difference in PPG signal quality between electronic circuit filtering and wavelet transform.
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The quality of the PPG signal from the filtering of the electronic circuit is better, marked
by the visible diastolic notch. The feature points on each PPG signal contain essential
information related to the accuracy of an ML classification process results. If filtered
through a wavelet transformation, it is possible to remove important information from the
PPG signal during the derivation process.
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Figure 18. Comparison of PPG signal filtering from the electronic circuit (hardware) with wavelet
transform (software).

Data distribution is a function that shows all the data values and how often these
values occur. The data distribution includes parameters that need to be considered to
ensure that there are no data outliers to provide the optimal level of accuracy of the results,
as shown in Figure 19.
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After getting a high-quality, raw PPG signal, the next step is to choose an MLA that
best fits the non-linear character of the PPG signal. Algorithm selection was based on
training time, total misclassification cost, and accuracy of results. The top three were
obtained after conducting several tests between several MLAs with the same dataset. The
highest-ranked algorithm was the EBTA with 98% accuracy, a training time of 8 s, and
a total misclassification cost of 2. The second-best algorithm was weighted KNN with
93% accuracy, a training time of 8.87 s, and a total misclassification cost of 7. The third
algorithm was ensemble subspace KNN with 93% accuracy, a training time of 15 s, and
a total misclassification cost of 7. While the algorithm Coarse Gaussian SVM had the
fastest training time of 5 s, the accuracy of the results was only 91%, as shown in Table 3.
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The total misclassification cost is an essential parameter for evaluating the classification
performance of unbalanced data sets [51]. The cost of misclassification is a penalty for
errors in the classification process. The cost acquisition caused by different errors may
be further in binary classification problems. The smaller the total misclassification cost
obtained, the better the classifier’s performance. We have shown that the EBTA has a
total misclassification cost of 2, so it is the best algorithm compared to other machine
learning algorithms. We chose the EBTA to classify BGL using non-invasive PPG based
on these results.

We conducted a comparative study between our method and the results of previous
studies. The results of the comparative study show that the model we propose achieves
a better accuracy score and overall outcome. In general, conclusions from quantitative
research in previous studies can be different even though they use the same classifier,
as shown in Table 4. We focus on comparing the results with two previous researchers,
Zhang et al. [41] and Nirala et al. [42]. Nirala et al. proposed the Gaussian SVM method
with a final accuracy value of 97.8%, which had the highest accuracy before this study.
The SVM algorithm is trained to label the input data into two categories divided by the
most expansive possible area between categories. Due to the large area between these
category labels, SVM is also known as a large margin classifier. However, the SVM model
is a linear classifier and cannot map non-linear functions without kernel usage, while the
PPG signal is a non-linear function. When the EBTA produces a decision, it comes from
several different models to reach a single conclusion. Technically, the classification process
will be simplified by implementing voting. The EBTA uses a configuration of trees to be
combined when voting on each test case. One class is considered valid if it receives more
votes than the other. Voting results are more consistent if more votes are used. The EBTA
produces composite models which usually perform better than single models such as SVM.

Zhang et al. research [41] is a meaningful comparison because it uses the same en-
semble algorithm as our proposed algorithm. However, the results produced by Zhang
et al. have lower accuracy than our proposed model. The difference in accuracy values
occurs due to differences in the quality of the PPG raw signal and the number of sample
points used. Each PPG signal has been extracted into 2100 features, and feature extrac-
tion is performed point-by-point so that the physiological data in the PPG signal can be
explored optimally.

5. Conclusions

ML is the best solution to replace the conventional extracting PPG morphological
features related to BGL. Our proposed method combines hardware with software to create
a reliable system for BGL classification based on PPG. This classification method has
advantages over other BGL estimation methods. Users can immediately find out the
condition of their BGL to ensure early detection of diabetes using our proposed method.
This method can speed up the treatment process and reduce the risk of death. We chose
an electronic component-based PPG signal filtering process instead of an algorithm to
preserve every information point contained in the PPG signal. The selection of electronic
circuit filtering is an advantage of the proposed method compared to previous studies. By
maintaining the quality of the PPG signal from the beginning, a more optimal accuracy
value of ML classification results will be achieved. Our proposed method also does not
require the extraction of the morphological features of the PPG signal; therefore, this
method can be easily applied to many situations. Our proposed method (EBTA) achieves
higher accuracy than subspace K-nearest neighbor, RUS boosted trees, ensemble bagged
trees, decision trees, support vector machine, Gaussian support vector machine (GSVM),
bagged trees, K-nearest neighbor (KNN), fine gaussian support vector regression (FGSVR),
and support vector regression quadratic. In addition, increased sample sizes could further
improve the performance of BGL classification based on PPG signals. We will use an
embedded system to unite the electronic circuit section with ML algorithms to realize
handheld equipment in future research.
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