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Abstract: Guaranteeing safety of navigation within the Netherlands Continental Shelf (NCS), while
efficiently using its ocean mapping resources, is a key task of Netherlands Hydrographic Service
(NLHS) and Rijkswaterstaat (RWS). Resurvey frequencies depend on seafloor dynamics and the
aim of this research is to model the seafloor dynamics to predict changes in seafloor depth that
would require resurveying. Characterisation of the seafloor dynamics is based on available time
series of bathymetry data obtained from the acoustic remote sensing method of both single-beam
echosounding (SBES) and multibeam echosounding (MBES). This time series is used to define a
library of mathematical models describing the seafloor dynamics in relation to spatial and temporal
changes in depth. An adaptive, functional model selection procedure is developed using a nodal
analysis (0D) approach, based on statistical hypothesis testing using a combination of the Overall
Model Test (OMT) statistic and Generalised Likelihood Ratio Test (GLRT). This approach ensures that
each model has an equal chance of being selected, when more than one hypothesis is plausible for
areas that exhibit varying seafloor dynamics. This ensures a more flexible and rigorous decision on
the choice of the nominal model assumption. The addition of piecewise linear models to the library
offers another characterisation of the trends in the nodal time series. This has led to an optimised
model selection procedure and parameterisation of each nodal time series, which is used for the
spatial and temporal predictions of the changes in the depths and associated uncertainties. The model
selection results show that the models can detect the changes in the seafloor depths with spatial
consistency and similarity, particularly in the shoaling areas where tidal sandwaves are present. The
predicted changes in depths and uncertainties are translated into a probability risk-alert map by
evaluating the probabilities of an indicator variable exceeding a certain decision threshold. This
research can further support the decision-making process when optimising resurvey frequencies.

Keywords: bathymetry; time series; statistical hypothesis testing; sandwaves; prediction; decision-
making

1. Introduction

The bathymetric surveying necessary for accurate nautical charts and adequate main-
tenance dredging is a joint responsibility of the Netherlands Hydrographic Service (NLHS)
and Rijkswaterstaat (RWS). The seabed mapping is conducted using the active, acoustic
remote sensing method of single-beam echosounding (SBES) and multibeam echosounding
(MBES). This continuous mapping is a national responsibility and adheres to the SOLAS
(Safety of Life at Sea) V convention developed by the International Maritime Organisation
(IMO) and is also in accordance with the International Hydrographic Organisation (IHO),
Special Publication No. 44 (S44) hydrographic survey standards. The Netherlands has
developed and refined its own survey policy, designed to complement the set of standards
provided by the IHO S44 standards [1,2].

The Dutch economy is heavily reliant on the activity in the Ports of Rotterdam and
Amsterdam and safe navigation in the waterways to these ports, particularly for deeper
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draught vessels, is considered crucial to prevent risk to vessel grounding. The fundamental
knowledge of seabed dynamics in relation to the changes in depths is therefore an impor-
tant factor to consider for safety of navigation, maintenance of channels and hence for
optimising the resurvey policy where the overall aim is to provide timely and accurate
predictions of the changes in seafloor depths as a resurvey decision-making tool. This
can also ensure more cost-effective and efficient use of the mapping resources given the
extensive use of the NCS and the nature of the oceanographic and seafloor properties
which make it a complex marine environment.

The NCS is characterised as being a shallow sea, average depth 40 m with a sandy
seafloor (typical grain sizes of 0.4 mm, though the spatial distribution of the grain sizes
differ) and results in regions of the NCS with varying seabed dynamics i.e., sandbanks
which are aligned parallel to the current flow and sandwaves and smaller megaripples
which are transverse to the flow [3,4]. Previous research [5–8], emphasised that character-
istics of sandwave features are of the greatest concern in the North Sea since sandwaves
vary in amplitudes up to tens of meters, wavelengths in the order 100–1000 m and have
migration rates of up to 10 m per year. The migration of the sandwaves are caused by
residual currents [4] and tidal asymmetry [9].

For optimisation of resurvey frequencies based on the available time series of
bathymetry data, this paper considers an area where tidal sandwaves present challenges to
safety of navigation. The library of functional models is characterised to estimate the main
parameter of interest, changes in seafloor depth. This required defining the functional and
stochastic models using the time series of available bathymetry data. The development
of the methodology uses statistical hypothesis testing applied to a library of functional
models, to arrive at the most likely model which can be used for predicting the changes
in the depths with associated confidence intervals. This method of deformation analysis
using time series was also previously studied in [7,10–12]. Studies by [7,12] analysed
areas in the 0D (zero-dimensional, per grid node or a nodal analysis), 1D (one-dimensional,
line analysis in the directions of maximum and minimum variability) and 2D (planar
analysis). A 0D, nodal analysis was also conducted by [8]. These studies concluded that
the disadvantage of the 1D and 2D analyses, both required an assumption of the sandwave
dynamics in the area of study and hence limited to a fixed area definition.

For this paper, a 0D spatial analysis was chosen to determine the most likely functional
model to avoid any spatial assumptions on the seafloor dynamics when defining the library
of functional models. An advantage of the choice of 0D analysis is that the patterns related
to temporal trends in the changes in depths can be revealed for different nodes (e.g., the
crests and the troughs) whereby a distinction can be drawn since they may exhibit different
behaviours. In deformation studies such as in [10,13] a 0D approach was also taken and
in the case of ground deformation in [14] using Interferometric Synthetic Aperture Radar
(InSAR) point scatterers, adding flexibility to the applicability of the 0D approach.

The choice of parameterisation of the spatial and temporal dynamics is achieved by
defining a minimal set of model parameters to describe and predict the changes in the
depths and associated uncertainties. This primary problem required defining a library
of simple, functional models to determine whether changes in depths can be detected
by testing mutually exclusive alternatives. Due to the morphological characteristics and
migration of sandwaves and hence the time of increase or decrease in the depth within a
time series, the parametric models aim to estimate the changes in shallowest likely depth
(for the case of safety of navigation which is depicted on nautical charts).

The method is developed to automatically select from the library the most likely
model for a reliable prediction. To find a functional model that accurately describes the
characteristics of the changing seafloor, it was necessary to take into account the variability
of the observations with an a priori stochastic model based on the measurements and
gridding process. This functional model selection procedure has been developed based
on statistical hypothesis testing and can be viewed as an adapted version of the Detection,
Identification and Adaptation (DIA) procedure from [15,16].
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Additionally, the functional models selected and the prediction of the changes in
depth are used to develop an approach for a risk-alert system for different applications
such as safety of navigation, exposure of pipelines and cables on the seafloor [4] and the
regeneration of sandwaves after human intervention such as maintenance dredging [17].
This is done by translating the predicted uncertainties of the changes in the depths to
estimated probabilities and further evaluating when depth change exceeds a decision
threshold. The choice of threshold levels serves as the basis for determining risk-alert levels
using quality indicators as a tool for decision-making when improving the planning of
resurvey frequencies in the NCS.

For this research, the time series was limited to the preprocessed bathymetry data
acquired from SBES and MBES since this combination provides the most accurate measure-
ments, increased coverage and high resolution with regards to MBES, for detecting changes
in the depths for the aforementioned applications. This research provides added value
to use the methodology developed to assimilate and synthesise depth observations and
associated uncertainties derived from other remote sensing techniques such as bathymetric
LIDAR (light, detection and ranging) [18], bathymetry retrieval from synthetic aperture
radar (SAR) [19] and satellite derived bathymetry (SDB) [20–22]. For the NCS however,
the efficient use of optical remote sensing techniques such as bathymetric LIDAR and
SDB are limited due to reduced water clarity and low turbidity requirements for moni-
toring bathymetric changes for applications with high accuracy requirements as opposed
to MBES.

Although the primary research application for this paper is safety of navigation for
optimising resurvey frequencies, other related scientific research in the fields of coastal sea
level rise, coastal geomorphology, marine conservation, ocean circulation modelling and
marine infrastructure development all rely on the most recent bathymetry data as the basis
for their research where monitoring of seafloor changes is essential.

Figure 1 shows the present categorized subdivision of the NCS and the corresponding
survey frequencies (’Opnameplan’) which vary from critical areas, once every 2 years to
other areas, once every 4 years, 10 years, 15 years and 25 years, as published within the
NLHS organisation in 2017. Due to varying circumstances, the NLHS have not achieved
some of these survey frequencies over recent years [7], which makes the prediction and
hence the probabilistic risk-alert system using the available time series of bathymetry even
more relevant to resurvey planning and decision-making.

The main objectives of this research are (a) the definition of additional functional
models which can be used to describe the complex behaviour of the changing seafloor
depths especially where sandwave features are present (b) designing a more rigorous
approach to select the nominal model to be used in the testing procedure and (c) designing
the statistical hypothesis testing procedure to allow for reliable prediction and evaluation
of probabilities for risk-alert levels.

The contribution of this research is arranged first with the detailed methodology in
Section 2. This section outlines the library of functional models and the description of the
stochastic model used for the hypothesis testing procedure developed. The prediction
and validation step using the selected functional models is also described here. Section 3
presents the results and discussion of the methodology applied for a site-specific case study
area that exhibits tidal sandwave features. Section 4 presents the results of the prediction
and uncertainties using the selected models. Section 5 introduces the probability estimation
that the indicator variable will exceed a decision threshold, leading to a probability risk
map. Section 6 summarises the findings and contributions made.
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Figure 1. Map of Netherlands Continental Shelf resurvey frequencies, courtesy of NLHS 2017. The Categories are listed
from Cat 1 (red) to Cat 5 (cyan) with respective resurvey frequencies once every 2 years, 4 years, 10 years, 15 years and
25 years. The nearshore grey areas are the responsibility of RWS.

2. Methodology
2.1. Preparation of Bathymetry Time Series

Remote sensing technology of SBES and MBES systems provided the time series of
bathymetry measurements used for this research. The time series are preprocessed archived
data retrieved from the digital Bathymetric Archive System (BAS) of the NLHS and RWS.
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NLHS is responsible for the mapping of deeper areas greater than 10 m isobath and
RWS, the shallower waterways, nearshore coastal zones and the maintenance of approach
channels to port areas [8].

The quality of the archived data is assumed to be at least precise as the IHO S44
standards Order 1 at the 95% confidence level and have been preprocessed and cleaned
to remove gross errors and to correct any systematic errors introduced [23]. The high
resolution MBES datasets provide an observation at a minimum resolution of 3 m × 5 m.
For SBES datasets, there is a minimum line spacing of 50 m and can increase up to 125 m
and for this reason interpolation of the SBES surveys for gridded digital elevation model
(DEM) generation is necessary. The available time series of bathymetry is in the geodetic
datum WGS84 in the UTM Zone 31N projection and the depths are reduced to Lowest
Astronomical Tide (LAT).

For the preparation of the time series, there are options for the original data to be
gridded on a uniform grid (for e.g., 5 m × 5 m) or using a new quadtree approach [24]
for creating a multi-resolution DEM, taking into account the heterogeneity of the data in
space and time and the variability of the depths. This allows for optimal use of the time
series of data available without loss of details in the final, resulting DEM [25]. Previous
research [25] suggested the optimal criteria and standard deviation threshold (measure of
variability within a grid cell), σth values for this application. These suggestions are still
flexible depending on the end-users’ requirements. The quadtree approach also uses a
time ordered approach to store the depths for each epoch or survey moment [25]. Figure 2
shows an example of a single epoch decomposition with σth = 0.3 m.

Figure 2. Example of a single epoch quadtree decomposition for creating a multi-resolution DEM.
Inset image shows a subset area of larger depth variability (sandwave features) where a minimum
grid cell size of 5 m is obtained near the crest of the sandwaves.

The input data are therefore gridded so that each grid node represents the mean depth,
its variance value and the time of survey defined by the year and month. The variance
of each gridded depth value is a combination of the measurement uncertainty (provided
by the standards [1]) and the spatial uncertainty (which takes into account the number of
observations per grid cell). In [7] the size of the grid cells was limited to 50 m × 50 m and
in [8] 25 m × 25 m. For SBES data that requires interpolation, the stochastic interpolation
method of Universal Kriging [26] is applied which provides the gridded depth values d
and the uncertainty, σd. Previous studies of [8,27] applied a vertical nodal analysis using
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linear regression for each node, excluding an uncertainty analysis of the estimated vertical
trend as opposed to this contribution. The time series analysis requires the following input:

1. Fixed grid node positions using quadtree DEM, p(x, y).
2. Time series of surveys, t = 1, 2, 3, · · · , n where n is the total number of epochs.
3. Observed depths values, d for each grid node, p for each epoch.
4. Variances of depths, σ2

d per grid node p(x, y), per epoch.

2.2. Specification of Stochastic Model

The quality of the input bathymetry is a source of uncertainty that can affect the
quality and reliability of the DEM and hence the prediction. There are several sources of
uncertainties in depth and position measurements since the system of measurement has a
combination of its own uncertainties e.g., GPS, gyro and motion sensor. Additionally envi-
ronmental factors such as sound speed profile, tides and draft. In addition, the uncertainty
due to the spatial and interpolation errors needs to be taken into account.

2.2.1. Multibeam Echosounding Variances

The MBES datasets are considered full coverage with a minimum spatial resolution
of 5 m × 3 m for each depth measurement, essentially requiring no interpolation. This
suggests that the propagation of the MBES uncertainties are a combination of the measure-
ment uncertainties which are derived from the IHO specifications Order 1 and the spatial
variability from the gridding technique where the variance of the mean as the estimator
is considered.

A main contribution to the DEM uncertainties is thus the measurement uncertainties.
This is provided by the IHO standards which suggest the maximum allowable vertical and
horizontal uncertainties for each depth measurement resulting from the data collection
process [1]. The specifications suggest the maximum, vertical uncertainty for different
survey orders depending on the survey priority (which is depth dependent for risk-alert
management and safety of navigation) is computed using:

σ2
noise = (a2 + (bd)2)/1.962 (1)

Here, a is the coefficient representing the uncertainty that does not vary with depth, b is
the coefficient representing the uncertainty that is depth dependent and d is the reduced
depth [1]. Sources of errors for the depth measurements and their variances can be used
as in [7] where it includes the errors introduced by the echo sounder, sound velocity
measurements, static draft measurement, dynamic draft, water level or tidal reduction,
heave, pitch and roll. For MBES surveys, variances of the depths are assumed to be at least
as precise as the IHO S44 standards of Order 1 uncertainty at the 95% level. Survey Order
1 specifies the depth precision for MBES data as in Equation (3) where the coefficients for
computing σ2

noise in Equation (1) are a = 0.5 m and b = 0.013 respectively.
Other errors are the spatial variability of the depths within a specific grid cell size.

The grid cell depth is calculated as a (weighted) average of observations in that cell,
and uncertainties due to different interpolation or gridding techniques when the data are
sparse [28,29]. The spatial uncertainty is therefore attributed to the grid cell size and the
number of observations per grid cell. Hence, the grid cell uncertainty footprint can be
estimated using:

σ2
spatial = σ2

th +
1
N ∑(σ2

noise) (2)

where σspatial is the spatial uncertainty, σth is the standard deviation threshold and N,
the number of observations within a grid cell. It is assumed that the underlying seafloor is
flat or has a stationary mean. This is done during the quadtree decomposition phase as
in [25] where the criteria for creating a multi-resolution grid are discussed. Three options
are considered when storing the mean depth value for each quadtree grid cell. Spatial
homogeneity is assumed when the number of observations is greater than 5 and the sample
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variance of the depth observations within each grid cell is less than the variance threshold
value of σ2

th = 0.01 m2. The total vertical uncertainty of each stored, mean depth value is
computed using Equation (2). This estimation is also applied to grid cells where there are
less than 5 observations and the grid cell size is considered to be small (less than or equal
to 10 m). If, however, there are instances where there are not enough observations within
a grid cell, the search area is increased by doubling the current grid size and applying
Equation (3).

In general, the combination of propagated errors can be computed using the total
propagated uncertainty equation:

σd =
√

σ2
noise + σ2

spatial + σ2
krige (3)

where we need to use Equations (1) and (2). The kriging variance σkrige is added, but in
general for MBES no interpolation is required and hence the value will be zero.

2.2.2. Single-Beam Echosounding Variances

For SBES surveys performed between 1991 and 2003, the total propagated uncer-
tainty in the depth measurement is also a function of various stochastic influences. These
stochastic influences include the effect of sound speed velocity, heave, positioning and tidal
reduction [7,23] resulting in a posteriori estimate of the variances. For SBES measurements
the variances are predominantly due to the interpolation errors, since SBES techniques
do not provide full coverage mapping of an area. The geostatistical method of Universal
Kriging [30] is used which was adopted from [7] and the DIGIPOL algorithm in [31]. This
method models the spatial variability of the seafloor using a Gaussian covariance function.
The expected similarity of the observations and the interpolated positions are therefore
modelled as a function of distance and direction [23]. The universal kriging provides both
the gridded depths and their variances. The total propagated variance for SBES surveys is
computed using:

σ2
d = 1.4 · 10−6d2 + 0.0114 + σ2

krige (4)

as in [7].

2.3. Estimated Parameters

The method of Best Linear Unbiased Estimation (BLUE) was used for the estimation
of seafloor parameters of the areas selected and the associated uncertainties. Previous
studies made assumptions to allow for one-dimensional analyses (1D). The 1D analysis
approach required a fixed definition of the areas that are considered uniform in sandwave
dynamics and that the depths be gridded using a regular gridded structure. This was a
requirement for the 1D analysis used in [7,12] to allow for the characterisation and detection
of sandwave dynamics per grid line, in the direction of maximum spatial variability.

For the 0D analysis of an area, there are no a priori assumptions about the areas being
homogeneous or exhibiting uniform morphodynamics. Because of this, the size of the
areas to be analysed is only limited due to computational time (typically 25–30 min per
3 km × 3 km sub-area). Nodal parameter estimation of seafloor dynamics was studied
by [10] and point wise estimation of other deformation parameters applied to geophysical
processes and infrastructure using InSAR was studied by [14]. This choice of analysis is
based on the available time series data and how we choose to parameterise the changes
in depths. This parameterisation is a crucial step that is reliant on the changes that are
important in relation to the applications. The advantages of this approach in comparison
to the 1D and 2D approaches is that the vertical nodal dynamics will be able to capture the
temporal changes in the depth.
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The application of deformation analysis for predicting the changes in seafloor depths
uses mathematical models as the expression of the relationship between the depths at
the gridded locations to the unknown parameters of the model that describe the seafloor.
The mathematical model is therefore a combination of the functional and stochastic model:

d = Ax + e and E{d} = Ax; E{e} = 0; D{e} = D{d} = Qyy (5)

Here d is the m-vector of depth observables, x is the n-vector of unknowns, A is the m× n
design matrix describing the assumed linear relation between d and x, Qyy is the m×m
variance matrix, e the m-vector of random measurement errors. E{·} and D{·} are the
expectation and dispersion operators, respectively.

Since it is common to assume the observations are normally distributed, the estimators
or library of functional models, with d being a linear function of x is also a general linear
Gauss-Markov Model for computing the BLUE of d:

d ∼ N(Ax, Qyy) (6)

The principle of BLUE implies that the estimator must ensure minimum variance and
must be unbiased. The BLUE [32] of the unknown parameters x̂, the adjusted observations
d̂ and the residuals ê are obtained by:

x̂ = (ATQ−1
yy A)−1 ATQ−1

yy d; d̂ = Ax̂; ê = d− d̂ (7)

The precision of the estimator is given by:

Qx̂x̂ = (ATQ−1
yy A)−1 (8)

from which can be seen that it depends on the precision of the observations Qyy, the de-
sign matrix A and therefore also on the redundancy or the degrees of freedom (DOF)
(m − n). The estimated residuals in relation to the variance matrix Qyy affect the deci-
sion on the choice of the most likely model and the estimated parameters used for the
seafloor estimation.

2.4. Functional Model Selection

To characterise the spatial and temporal change of the depths, this behaviour is mod-
elled as a function of the available observations per epoch, t, per grid node. To determine
the most appropriate characterisation and hence the model to be used to best describe and
predict the behaviour, we apply statistical hypothesis testing in linear models [15]. Prior
to applying the hypothesis testing procedure developed, a w-test is performed as a check,
for any large errors within the observational data sets, i.e., any outlying survey within the
time series [16].

This procedure then starts with a general, goodness of fit approach by defining a
library of functional models or multiple hypotheses H(i) where i = 1, 2, 3, 4, .., m where m
is the number of hypotheses per time series. This library selection was designed during
the exploratory data analysis [33] of the time series of the depths per node (0D) to identify
patterns. In addition, empirical studies on the formation and analysis of sandwaves such
as [27,34,35] were reviewed. Additionally, the purpose of the predictions was defined
i.e., for the purposes of risk-alert management since the extreme changes in the depths
pose a concern for safety of navigation, stability of offshore structures and exposure of
pipelines and cables on the seafloor.

The seafloor characterisation in time, ds f consists of a library of models using four
levels of complexity (refer to Figure 3). The number of hypotheses in the library can be
expanded with newly defined characterisations depending on the purpose of each case
study. In this instance, the characterisations are kept simple to avoid over-fitting and
additional parameter estimations which do not add to the understanding of the behaviour
of shoaling depths in NCS. Additionally, the current library considers physically realistic
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characterisations that can detect and identify significant changes in seafloor depths at any
given epoch in the time series. To identify the changes in depth before and after dredging
moments, i.e., human intervention, the piecewise linear model characterisation would also
prove useful.

The simplest characterisation is represented by a horizontal line where d0 is constant
and is the only unknown parameter. The estimated constant depth is also the mean:

H1 : E{ds f (t)} = d0 (9)

Another characterisation, adds the additional slope parameter, creating a constant
velocity model with two unknown parameters, initial depth, d0 and slope, v0:

H2 : E{ds f (t)} = d0 + v0t (10)

The quadratic model has three unknown parameters where a is the acceleration and
d0 and v0 are the estimated, initial depth and slope parameters respectively:

H3 : E{ds f (t)} = at2 + v0t + d0 (11)

For the piecewise linear characterisation, the model consists of two separate line
segments, i.e., for each node, depending on the length of the time series, several piecewise
linear models are constructed with a breakpoint at each epoch with the restriction that
there is a minimum of two observations at the start and end of each line segment creating
the piecewise linear model, refer to Figure 3c. The piecewise linear characterisation consists
of four unknown parameters, an initial depth and slope for each line segment respectively,
d0, v0, d1 and v1:

Hi : E{ds f (t)} =


d0 + v0t for t ≤ tend

d1 + v1t for t ≥ tend+1

where, i = 4, . . . , 4 + np

(12)

Here np is the number of piecewise linear models, where np = m− 2, where m is the
number of observations. Figure 3 shows the illustrated representation of the characterisa-
tions for each model equation.

Figure 3. Temporal seafloor characterisations (updated from [7]).
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The total number of hypotheses listed in Table 1, is expanded to include the varying
number of piecewise models, np per time series and therefore the total number of models
is more than four per time series.

Table 1. List of hypotheses for nodal analysis and unknown parameters.

Hypothesis Number, i Hypothesis Unknown Parameters

1 Stable d0
2 Constant Velocity d0 , v0
3 Quadratic a, d0, v0

4 . . . , 4 + np Piecewise Linear d0, v0, d1, v1

Similar to previous research studies such as [7,14], this approach does not a priori
assume that one hypothesis is more likely than the other, as is the common approach in
classical hypothesis testing [15].

To describe the overall model inconsistency separately, for each of the functional
models, the general expression of the Overall Model Test (OMT) statistic is first applied
and defined as Tq(i,j) in Equation (13), where i represents the model number and j the
node. The OMT statistic gives the quality of the model approximation by observing the
relationship between the residuals, ê, which is the difference between the observations and
the adjusted observations using the estimated parameters of the model and the uncertainty
of gridded depth values σ2

d defined by the diagonal of the variance-covariance matrix Qyy.

Tq(i,j) = êT
(i,j)Q

−1
yy ê(i,j) (13)

The OMT statistic is computed separately for all competing models and is compared
to a critical value, kα(i,j). The OMT statistic follows a central chi-squared distribution with
(q = m− n) DOF as in Equation (14). This test statistic is computed by defining a critical
value kα(i,j), where α is the probability of falsely rejecting the OMT. This is also referred to as
the probability of a false alarm or a Type I error, which should be low to unnecessarily reject
a valid hypothesis and therefore the choice of α, or level of significance, is usually chosen to
be a small number [16] and can also vary depending on the goal of the analysis [7]. For this
contribution the choice of α is 0.001 for step 1(a) as in Figure 4.

kα(i,j) = χ2
α(m− n, 0) (14)

Since the library of models vary in complexity and hence has different dimensions,
these models will follow different χ2 distributions. This implies that when comparing
the goodness of fit of these models, Equation (13) cannot be used. Instead, to account for
the varying complexity of the models (more unknown parameters could result in over-
fitting), the test statistic in Equation (13) can be normalised by dividing by the critical value,
denoted by the statistical significance, α. The test ratio value for each node is defined in
Equation (15).

R(i,j) =
Tq(i,j)

kα(i,j)
(15)

Based on Equation (15) there can be three outcomes for the nodal analysis:

1. Only one model M(s,j) results in R(i,j) ≤ 1. Then, that model is selected for that
particular node.
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2. More than one model can result in R(i,j) ≤ 1. Among the competing models, for each
node j, find

s = arg min
∀i

(R(i,j)) ≤ 1 (16)

Then M(s,j) is selected for that node.
3. If no model is accepted based on Equation (16), then none of the models is selected

for that node.

The limitations of selecting the most likely model per node, M(s,j), using these criteria
only, are as follows:

1. The values of two or more of the test ratios can be quite close to each other. Hence the
associated models fit almost equally well.

2. Due to irregularities in the data it can occur that the piecewise linear model is accepted,
although in reality the constant velocity model should be selected. Additionally,
the length of the time series and the larger number of unknown parameters in the
piecewise linear model can result in over-fitting.

3. The spatial correlation between the nodes is not accounted for and hence the selected
models in the neighbouring nodes can show inconsistency, especially in areas of
high variability.

Figure 4. Testing procedure for the functional model selection using time series per grid node.

To avoid misinterpretation, an area-wide assessment is done to make a decision on the
choice of H0. This is done by selecting the most frequently, acceptable model, according to
the OMT statistic, where the choice is between Mi=1 and Mi=2 as the default models for
the initial assumption of general, area-wide dynamics. Between Mi=1 and Mi=2, the model
resulting in the maximum number of grid nodes is set as the H0 model. This approach
effectively makes the choice of H0 more adaptable according to the sub-area of interest.
This is different from current practice and previous research studies such as [7,14,36,37]
where the OMT statistic is applied to a steady-state assumption of H0.
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Where there are nodes for which the alternative model, Ha is preferred instead of the
null assumption, H0, this could imply that there are errors (disturbances or anomalies).
This is another way of testing for large errors in the observations. We assume the m × 1
vector of observations d is normally distributed with known variance matrix Qyy:

d ∼ N(E{d}, Qyy) (17)

The following two hypotheses for two competing models are

H0 : E{d} = Ax (18)

and
Ha : E{d} = Ax + Cd∇ (19)

For the alternative hypothesis, number of additional unknown parameters ∇ (∇ 6= 0),
with vector length q is introduced and is related to the expectation of d by the m × q matrix
Cd [15]. The General Likelihood Ratio Test (GLRT) provides a decision on whether or not
the additional variables in ∇ as in Equation (19) should be taken into account [15].

The GLRT in step 1(b) as in Equation (20) is then applied for each grid node separately
using the two competing models where the null assumption H0 and the alternative model,
Ha, is set as the assigned model, M(s,j) per grid node after step 1(a). H0 is rejected in favour
of Ha if the GLRT value is greater than the critical value, kα(i,j):

{êT
0 Q−1

yy ê0 − êT
a Q−1

yy êa} > kα(i,j) (20)

The choice of α for step 1(b) is 0.05 and is moderately larger than the choice of α for
step 1(a) which was chosen as 0.001. This tradeoff is needed to minimize the effects of a
missed detection and to thus maintain the probability of a correct decision after applying
the GLRT in step1(b). This implies that if an alternative model, Ha is preferred according
to the level of significance 0.05 and the degrees of freedom (DOF), then the detection of
a deviation from H0 will be correctly detected and hence H0 will be rejected when H0 is
false. This is done by keeping the choice of α for step1(b) small to ensure that γ is high.
The power of test γ is defined as:

γ = P(Tqa(i,j) > kα(i, j)|Ha) (21)

The least squares residuals for the null hypothesis, H0 and the alternative hypotheses,
Ha are defined as:

ê0 = d− Ax̂0, êa = d− [A Cd]

[
x̂a
∇̂

]
(22)

2.5. Prediction and Validation Using Selected Functional Model

Once the final selected model, M(i,j) has been selected as the most likely model using
the procedure outlined in Figure 4, this model can be used to describe the evolution of the
depths in time, t. The present resurvey frequency map defines the next expected resurvey
time, though in practice, it may not always be possible to resurvey according to the planned
resurvey frequency. In [7], to predict the depths, the next epoch (in years) is denoted as
tS+1 as:

tS+1 = tS + T, T = (tS − t1)/(S− 1) (23)

where the average period between surveys, T was used as the predicted time and tS as the
last available epoch.

For this research, the average period T used is two years for the results presented
in Section 3. T is a flexible input parameter to ensure the use of short- and long-term
prediction times, without the use of predetermined resurvey frequency times.
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The predicted depths are represented as an M × 1 vector d̂p(S+1) as:

d̂p(S+1) = Ap(t)x̂ (24)

Ap(t) is the known M × N matrix and x̂ is the estimated unknown parameter vector
representative of the selected model, M(i,j). The precision of the predictions is obtained
from the variance-covariance matrix Q p̂ p̂ by converting the main diagonal into a column of
variances, σ2

d̂p(S+1)
, once the precision of the estimated parameters Qx̂x̂ is also defined, as:

Q p̂ p̂ = Ap(t)Qx̂x̂ Ap(t)T , σ2
d̂p(S+1)

= diag(Q p̂ p̂) (25)

An example of this principle is given in Figure 5 where the 95% and 99% confidence
interval around the estimated trend and the predicted trend have been constructed.

Figure 5. Example showing the principle of the observed depth, d in relation to the estimated trend
(BLUE) and predicted trend, including the 95% and 99% confidence interval around the estimated
trend and the predicted trend.

To provide insight about the reliability and hence the predictive performance of the se-
lected functional models, cross-validation is necessary. The leave-one-out cross-validation
(LOOCV) approach [38,39] has limitations due to the short length of the time series and
the modelled temporal trends between observations in the time series. To preserve this
time ordered dependency during the functional model selection and to ensure a validation
procedure, an approach is implemented whereby the time series is extended and hence
DEMs and the associated uncertainties are created using simulated observations at the
predicted times. To achieve this, the final selected model, M(i,j) was used to solve the
forward model using the estimated parameters of M(i,j). The error distribution, εz, for the
simulated observations, z(S+1), is defined as:

εz ∼ N (0, σ2) (26)
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where σ2 is defined as the variance of the last observation in the time series. This is derived
as the square root of the last element of the variance matrix Qyy. We assume that the
simulated observations z(S+1) at different prediction times tS+1 (refer to Equation (23)) can
be obtained by simulating the random error εz which is added to the predicted observations
as in Equation (24), based on the forward model and is given by:

z(S+1) = Ap(t)x̂ + εz (27)

With the simulated DEMs, several options can now be applied to assess the cross-
validation error, CVe for an area, i.e., the mean absolute errors for the total number of
nodes per area J. First, for the prediction time tS+1, the average period T used is two
years, therefore, the absolute errors between the predictions d̂p(S+1), two years after the
last survey moment and simulated observations z(S+1) are computed to obtain the CVe as:

CVe =
1
J ∑

∣∣∣d̂p(S+1) − z(S+1)

∣∣∣ (28)

Figure 6 gives an example of the simulated observations, z(S+1) at the last survey
moment tS and different predicted times, tS+1 where T (years) is [1 2 3 4 5 10 15 30] using
the forward model or estimated trend (BLUE) and predicted trend, including the 95%
confidence interval.

Figure 6. Example showing the simulated observations z(S+1) at last survey moment tS and predicted
times, tS+1 where T (years) is [1 2 3 4 5 10 15 30] using the forward model or estimated trend (BLUE)
in relation to the observed depths, d and predicted trend, including the 95% confidence interval.

Additionally, since the time series can be extended using the simulated observations
and the prediction time, tS+1 is a flexible input parameter, another option can be applied
whereby the simulated DEMs are used to further extend the length of the existing time series
of the model selection procedure described in Figure 4. This model selection procedure can
then be re-executed to evaluate the CVe for an area and prediction time of interest.
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3. Results of Spatial and Temporal Testing

In this section, the spatial and temporal results of the model selection procedure
developed are presented for a sub-area within the IJgeul Approach area, West of IJmuiden.
In the previous section the methodology for selecting the most likely functional models
per grid node and the specification of the stochastic model were outlined. In Section 2,
the functional models are different with respect to the specification of each design matrix,
A and the stochastic models are the same throughout the testing procedure. The initial
assumption of what is known about the general dynamics, that is the null model, H0, is
selected based on the a priori assumption that each model is equally likely and follow the
procedure step 1(a) in Figure 4 of Section 2. The resulting model after step 1(a) which is the
most frequently accepted model, gives the corresponding null assumption of the general
known dynamics of the area. This result proves to be a good assumption since the results
of the model selection show spatial similarities after the GLRT between H0 vs. M(s,j) is
applied as in step 1(b).

3.1. Area West of IJmuiden

To test the method using real observations, the area IJgeul shown in Figure 7, located
West of IJmuiden, is selected as the case study which was also analysed by [7] since it is
an area exhibiting sandwave features. This area is subdivided into 30 sub-areas each of
approximately 3 km × 3 km or less. Three sub-areas are the approach anchorage areas,
namely AA, AB and AC. A list of the surveys available according to acquisition dates
for the whole area is given in Table 2. For positioning, intentional degradation of the
GPS signals are referred to as Selective Availability (SA). The older surveys (prior to 1996)
used the terrestrial Hyperfix system, which provides the same order of uncertainty as the
differential GPS (DGPS) with SA, i.e., in the order of 10 m. All surveys after 1996 used
DGPS with SA [7]. According to the resurvey planning, the IJgeul area is resurveyed on
average once every 2 years.

Figure 7. Location of the IJgeul Approach area subdivided into 30 smaller sub-areas and 5 m
bathymetry contour. Areas AA, AB and AC are the anchorage areas.
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Table 2. List of surveys, SBES and MBES (indicated by the line spacing) survey code and the start
date. Datasets for each sub-area vary based on available overlapping survey data. Data and further
information regarding access to data source can be found at https://publicwiki.deltares.nl/display/
OET/Dataset+documentation+bathymetry+NLHO (accessed in June 2018).

Survey Code Date [yyyymm] Line Spacing [m]

sid8324 198908 50
HY71lm47-51 199003 50

HY95069 199511 125
HY99091 199903 125
HY02143 200306 125
HY05166 200505 5

021-07 200601 5
sid12808 200909 5

15602 201008 5
HY13114 201303 5
sid18294 201408 5
sid18405 201409 5

19244 201511 5

Results for Sub-Area NF

Figure 8a shows the number of epochs per grid node, which is the length of the time
series available per grid node for the sub-area NF. The majority of area NF has a time series
length per grid node of 10 available epochs which spans 24 years from 1989 to 2013. The
edges of this sub-area show a decrease in the length of the time series because of the size of
the buffer areas used to subdivide the whole area into smaller sub-areas in a preprocessing
step. However, 97% of the sub-area has a length of time series of 10 which indicates a
minimum DOF of 6. Figure 8b shows the computed test ratio, R(i,j) for the selected model
M(s,j) in step 1(a). The spatial distribution of R(i,j) shows larger values on the crests of
the sandwave features, where there is higher variability in the depths and hence larger
residuals after model fitting. Although there are spatial consistencies different models
are accepted in step 1(a), mostly M5 to M11. Close to 0% of the total number of nodes are
selected for the stable model, M1 and the constant velocity model M2 during step 1(a).

Figure 8c shows how often a certain model was accepted after step 1(a). However,
to avoid misinterpretation due to the limitations outlined in Section 2.4, it is also evaluated
which models would be accepted based on the OMT for each node (’OMT statistic only’).
From this, it follows that M2 is the most realistic model to describe the general dynamics of
the sub-area, and is therefore selected as the null hypothesis in step 1(b).

After setting the H0 assumption to M2, the GLRT is performed between H0 vs. M(s,j).
Figure 8d shows the models that are accepted after Equation (20) is applied where H0 is
accepted or rejected in favour of one of the alternative M(s,j) models. The resulting models
accepted in Figure 8d show that 93% of the nodes accepted M2 and the remaining 7%
accepted one of the alternative piecewise models, M5 to M11 where 4% of those remaining
nodes accepted M11. Model numbers, Mi=5,6,7...11 are characterised as the piecewise linear
function and the acceptance of these models is consistent along the crest of the sandwaves
where there is higher variability in the depths due to the shape of the sandwave features.

The piecewise linear models are able to identify a significant change in depth, ∆d̂,
where a stable, M1, constant velocity, M2 or quadratic model, M3 is not adequate to
identify the changes between two constrained time intervals, tend and tend+1. This is further
validated through visual inspection of the time series of the observations at selected nodes.
Figure 9 shows a zoomed-in section of area NF and the time series of the nodes selected,
numbered 1 to 6 in Figure 10.

https://publicwiki.deltares.nl/display/OET/Dataset+documentation+bathymetry+NLHO
https://publicwiki.deltares.nl/display/OET/Dataset+documentation+bathymetry+NLHO
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(a) (b)

(c) (d)

(e)

Figure 8. Results after applying testing procedure outlined in Figure 4. Showing per node (a) Number of observations,
(b) Test Ratio values, R(i,j) for selected models M(s,j) after step 1(a), (c) Selected Models, M(s,j) per sub-area after step 1(a),
(d) Final accepted models after applying step1(b) and (e)% of nodes and corresponding models accepted under step 1(a)
and step 1(b) resulting in M(s,j), and the final selected models respectively. The most frequently acceptable models under
the OMT statistic only is also shown.
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Figure 9. Zoomed-in section of sub-area NF, showing nodes numbered 1–6 where an alternative
model (piecewise linear model), M(s,j) is accepted in favour of M2 (constant velocity model).

By visually inspecting the plots in Figure 10, it shows that the accepted models are
consistent with the observations in the time series which implies that the change was not
misinterpreted as a flat or constantly sloping seafloor. Hence, the testing procedure correctly
identifies the ∆d̂ at a particular epoch where the piecewise linear models are accepted
in favour of the constant velocity model, M2. Figure 11a shows the spatial consistency
of the epoch at which the Ha models are accepted and the corresponding offsets, ∆d̂ in
Figure 11b which are of the same order and spatially consistent as well. Figure 12a,b shows
the estimated parameters, ∆d̂ and v̂ of the final selected model.

The results of nodal trends exemplified in Figure 10 also seem to correspond well with
a migrating sandwave passing those locations. This is also suggested in Figure 13 where
an example of cross-sections through a sandwave feature is extracted in the direction of
maximum variability θx = 59◦ in sub-area NF for the different, available epochs. This was
done using a 5 m × 5 m gridded DEM for simplicity. The nodal trends of the observations,
extracted for different x-locations (local coordinate system) show similar trends as for the
models selected in Figure 10. This indicates that the testing procedure developed resulted
in selected models that can detect a correct identification of the spatial and temporal change
in depths. This then implies that the selected models can be used for predicting the changes
in depths, which is described further in Section 4.
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(a) (b)

(c) (d)

(e) (f)

Figure 10. Visual inspection of the time series of nodes, numbered 1 to 6, as in (a–f), showing the accepted models where
Ha is accepted in favour of H0.
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(a) (b)

Figure 11. Model classification of the accepted, alternative models, Mi≥5. (a) showing the epoch at which the offset was
identified and (b) the size of the corresponding offset, ∆d̂.

(a) (b)

Figure 12. Estimated parameters of the final model selection: (a) Estimated depth, d̂ and (b) Estimated slope, v̂.

Figure 13. Example of temporal change in sand wave feature. (a) Cross-sections for different epochs
and (b) Nodal temporal trend of the observations for different x-locations shown by the vertical,
black lines in (a).
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4. Prediction Using the Models Selected: Area NF

Using the most likely models or estimators that were selected using the method
outlined in Section 2.4, a prediction with associated uncertainties can be obtained for area
NF for tS+1, two years from the last survey moment. The predictive performance of the
selected models were evaluated and the results for the CVe for the sub-area NF as defined
in Equation (28) was 0.23 m. Figure 14 shows the relationship between the predicted
variables, depth, d̂p and the predicted slope v̂ at predicted time tS+1 where the variability
of v̂ is greater for the nodes that accept an Ha model, and where d̂p values are on average
somewhat smaller than that of the nodes for which the H0 model was accepted.

Figure 14. Relationship between predicted variables using accepted H0 and Ha models, where rH0

and rHa gives the respective correlation coefficients.

Using the models that are accepted, we present the spatial results for the prediction
at tS+1, for a projection T̄ of 2 years after the last epoch, tS. The difference in the depths
between the last epoch, tS and tS+1 is computed as ĉ:

ĉ = d̂re f − d̂p (29)

and presented as a difference map in meters in Figure 15a. To account for the direction and
magnitude of the change in depth, a negative change indicates that the trend in the depths
is becoming shallower and a positive change indicates the depths are becoming deeper.

The variance of ĉ can be determined using the variance-covariance matrix Qĉĉ as:

Qĉĉ =
[
1 −1

]
Q p̂ p̂

[
1 −1

]T (30)

The main diagonal of Q p̂ p̂ in Equation (25) contains the variances σ2
d̂re f

and σ2
d̂p

of the

parameters x̂. The uncertainties σ2
d̂re f

and σ2
d̂p

propagate to σ2
ĉ where σĉ is the square root of

the variance, σ2
ĉ or standard deviation of ĉ as shown in Figure 15b. Figure 15b therefore

shows the order of magnitude of the quality of the estimated ĉ, where the less precise
estimates of ĉ are predominantly located near the crests of the sandwave features (with
the exception of very few larger values in the northern edges where the length of the
times series can be shorter, refer to Figure 8a due to the subdivision of the defined areas
during the preprocessing step as described in Section 3.1). These locations are consistent
with where the alternative piecewise linear models, Ha are being accepted in favour of the
nominal model, H0, account for 7% of the total number of nodes and are considered critical
locations for the safety of navigation. Recall that the piecewise linear models, Ha can detect



J. Mar. Sci. Eng. 2021, 9, 931 22 of 28

larger changes in depth where the second segment of the model and estimated parameters,
d1 and v1 are used for the prediction. Hence, the larger estimated slope parameter v1 and
the relatively smaller number of original observations used in the second line segment
of the Ha model as compared to the nominal model H0, introduce larger uncertainties in
predicted depth value, d̂p. However, increasing the length of the original time series when
more surveys become available can improve the precision of d̂p and hence the estimated ĉ.

(a) (b)

Figure 15. Area NF showing results of (a) ĉ and (b) σĉ.

Additionally, the σĉ does not provide information on the probability that ĉ will be
smaller or greater than a certain value. Here the concept of confidence intervals or regions
can be used [32]. Given parameter ĉ, and α as the user-defined level of significance,
the 100(1− α)% confidence interval is defined as:

CIα = {ĉ ∈ R | −εα < ĉ < εα} (31)

where εα gives the distance from which the estimated ĉ will be from the true value with
a confidence level of 1 − α [32]. Such a confidence interval is often denoted as ĉ ± εα

where commonly used intervals are the 1.96σĉ and 2.58σĉ i.e., the 95% and 99% confidence
intervals, respectively. This concept is further explained and applied in the following
Section 5 where ĉ is used at the indicator variable to evaluate the probabilities of exceeding
a particular threshold value.

5. Risk-Alert Indicator and Decision Thresholds

In this section, we introduce the problem of estimating the probability that an indicator
variable, ĉ (in this case per node, j for a sub-area) will cross an upper and lower decision
threshold. This choice of threshold level serves as the basis for determining risk-alert levels
using quality indicators as a tool for decision-making when determining the next time
of resurvey.

Under the assumption that the estimators selected for the prediction follow a Gaussian
distribution, the confidence interval for a given choice of α, denoted as a user-specified
probability, can be computed. This provides information on the predicted probability that
ĉ is smaller or larger than an upper and lower, threshold value, ε:

P[εα < ĉ(j) < −εα] = 1− α (32)

Using Equation (32), the 100(1− α)% confidence interval is defined. The α or significance
level is often set to 5% so that the associated confidence interval is 95%. This implies that
the predicted ĉ will be within a distance of εα with a confidence level of (1− α), as in
Equation (32). The choice of α used is 0.05 for the 95% confidence interval. The upper
threshold is defined as −ε and the lower threshold as ε to distinguish between a shoaling ĉ
and a deeper ĉ respectively.
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Advanced geostatistical techniques allow the uncertainty of the estimation to be
expressed in terms of risk where [40–42] used Disjunctive Kriging and other research
used an Indicator Kriging approach based on [43] for evaluating the probability, given
the observations, that the indicator variable exceeds a critical threshold. This research
contribution of developing a risk-alert indicator uses a simple count of the nodes of the
indicator variable ĉ where it crosses a decision threshold using the same sub-area of interest,
NF. The 95% confidence represent the interval that includes the true ĉ with a probability of
0.95. Varying the value of the ε for the corresponding α changes the decision threshold at
which the probability of ĉ is crossing the upper and lower threshold values.

Values for εα are provided by the NLHS as a guide for negative changes in depth
(i.e., shoaling depths and the respective decision thresholds for risk-alerts regarding safety
of navigation) for different depth ranges as in Table 3.

Table 3. Decision thresholds provided as a guide by the NLHS with specific focus on safety
of navigation.

Water Depth [m] (LAT) ĉ [m]

0 to −20 −0.1
−21 to −30 −0.5

<−30 −1.0

An example of estimated probabilities is shown in Figure 16 at the 95% confidence
interval for upper and lower threshold values set to [−0.1 m 0.2 m] and [−0.5 m 0.2 m]
respectively, where the lower threshold value is kept constant here for comparison and
absence of user guidelines. The black and red nodes tend to occur in clusters, suggesting
the spatial correlation with the areas that are shoaling and becoming deeper as a result of
the shape of sandwave features and its migration.

(a) (b)

Figure 16. Vulnerable nodes at the 95% confidence interval for predefined decision thresholds.
(a) presents the predicted probability at 95% confidence level using [0.2 m < ĉ < −0.1 m] and
(b) Predicted probability at 95% confidence level using [0.2 m < ĉ < −0.5 m].

To evaluate other applications such as pipelines and cables on the seafloor, stricter
threshold levels may be needed. As the first steps towards determining the upper and
lower decision thresholds per sub-area, a range of threshold values for ε is incorporated
and evaluated per node for sub-area NF, shown in Figure 17.



J. Mar. Sci. Eng. 2021, 9, 931 24 of 28

Figure 17. Estimated probability at 95% confidence level using a range of upper and lower deci-
sion thresholds.

The estimation of the probabilities, the choice of the indicator variable used and the
adaptable decision thresholds, need to be further evaluated. This will be done to further
evaluate the use of the uncertainty of the predictions and hence the approach towards
delimiting categorical risk-levels for survey areas of different seafloor dynamics.

6. Conclusions

An adaptable approach using time series of bathymetry data and a combination of
the OMT statistic and the GLRT to obtain the most likely functional model for evaluating
a risk-based approach towards optimisation of resurvey frequencies has been developed.
Combining the OMT statistic and the GLRT improves the selection of the estimators and
accuracy of detection of change in depths.

This library of functional models is built on empirical observations and consists of
physically realistic characterisations of the seafloor dynamics and applied to a case study
area where sandwaves are dominant, using nodal analysis (0D). The addition of piecewise
linear models offers another characterisation of seafloor changes to detect and identify
the trends in the nodal time series corresponding to the changes. This hypothesis testing
approach ensures that the assumption for the nominal model, H0 is empirically derived,
resulting in an innovative and adaptable approach on the choice of H0 for the hypothesis
testing design and model selection procedure and reliability.

The selection of the most likely functional model allows for short term prediction
in changes in seafloor depth with associated uncertainties since the results show spatial
consistency where alternative models are selected. This methodology allows for the
predictive values to be applied in estimation of the probabilities that the changes in seafloor
depths cross an upper and lower decision threshold for the purposes of risk-alert and
decision-making for determining the next resurvey moment or dredging intervention.
This functional model selection procedure is also relevant to other marine engineering
applications where detecting seafloor changes is critical to decision-making, such as buried
cables and pipelines on the seafloor.

Future research will evaluate further the choice of additional variable indicator(s)
and decision thresholds, for risk-alert assessments towards a probability map for decision-
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making regarding resurveys. The approach developed is applicable to areas that exhibit
different seafloor dynamics and when different types of remote sensing data are used
or combined. The research contribution in general, is not limited to the use of seafloor
depth data.

Author Contributions: Conceptualization, R.T. and S.V.; methodology, R.T. and S.V.; validation, R.T.
and A.D.; formal analysis, R.T.; investigation, R.T. and S.V.; resources, R.T. and S.V.; data curation,
R.T. and S.V.; writing—original draft preparation, R.T. and S.V.; writing—review and editing, R.T.
and S.V.; visualization, R.T.; supervision, S.V.; project administration, S.V.; funding acquisition, S.V.
All authors have read and agreed to the published version of the manuscript.

Funding: This project was part of the larger multidisciplinary SMARTSEA project (number 13275)
entitled ’Safe Navigation by optimising seabed monitoring and waterway maintenance using fundamental
knowledge for seabed dynamics’ which was partly financed by the Netherlands Organisation for Scientific
Research (NWO). The data used for this research was provided by the Netherlands Hydrographic
Service, Rijkswaterstaat and Deltares.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used for this research was provided by the Netherlands
Hydrographic Service, Rijkswaterstaat and archived by Deltares. Data and further information re-
garding access to data source can be found at https://publicwiki.deltares.nl/display/OET/Dataset+
documentation+bathymetry+NLHO (accessed in June 2018).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations and symbols are used in this manuscript:

0D Zero-dimensional
1D One-dimensional
2D Two-dimensional
BAS Bathymetric Archive System
BLUE Best Linear Unbiased Estimation
DEM Digital Elevation Model
DGPS Differential Global Positioning System
DIA Detection, Identification and Adaptation
DOF Degrees of Freedom
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D{·} dispersion
E{·} expectation
εz error distribution of simulated observation (Section 2.5)
ε decision threshold value (Section 5)
α probability of incorrectly accepting an alternative hypothesis or

’level of significance’
γ power of test
ê residuals
d̂ adjusted observations
x̂ estimated unknown parameters
ĉ difference in depth
d̂re f reference depth of the last survey
∇ vector of additional unknown parameters for alternative hypothesis
T average period between surveys
σ standard deviation
σ2

d depth variance
σ2

noise MBES error variance
σ2

spatial spatial variance
σ2

krige kriging variance
σth standard deviation threshold
θx azimuth East of North
d depth observables
e random measurement errors
Tq Test statistic with q degrees of freedom
d̂p predicted depth
A design matrix
a acceleration
a, b parameters of IHO S44 standards for depth uncertainty
C specification matrix of alternative hypothesis
CVe mean cross-validation error
d depth parameter
ds f seafloor characterisation in time
H0 null hypothesis
Ha alternative hypothesis
i number of hypotheses; model number
j node index
J total number of nodes
k critical value
m number of observations; number of hypotheses per grid node
m meter
M model
N number of observations per grid cell
n number of unknown parameters; total number of epochs
np number of piecewise models
p position; subscript for predicted value (Section 2.5)
q degrees of freedom
Q p̂ p̂ precision of prediction
Qx̂x̂ precision of the estimator
Qyy variance matrix of the observations
R test ratio
r correlation coefficient
S last survey moment
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S + 1 next expected survey
t time; vector of survey moments
v slope parameter
x unknown parameters (Section 2)
x, y Easting and Northing position
z simulated observation
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