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Abstract: Hard-chine boats are usually intended for high-speed regimes where they operate in the
planing mode. These boats are often designed to be relatively light, but there are special applications
that may occasionally require fast boats to be heavily loaded. In this study, steady-state hydrodynamic
performance of nominal-weight and overloaded hard-chine hulls in calm water is investigated with
computational fluid dynamics solver program STAR-CCM+. The resistance and attitude values of a
constant-deadrise reference hull and its modifications with more pronounced bows of concave and
convex shapes are obtained from numerical simulations. On average, 40% heavier hulls showed
about 30% larger drag over the speed range from the displacement to planing modes. Among the
studied configurations, the hull with a concave bow is found to have 5–12% lower resistance than
the other hulls in the semi-displacement regime and heavy loadings and 2–10% lower drag in the
displacement regime and nominal loading, while this hull is also capable of achieving fast planing
speeds at the nominal weight with typical available thrust. The near-hull wave patterns and hull
pressure distributions for selected conditions are presented and discussed as well.

Keywords: boat hydrodynamics; hard-chine hulls; computational fluid dynamics

1. Introduction

Fast planing boats usually employ hard-chine hulls to ease water separation at high
speeds from their hulls, which leads to drag reduction. Relatively small areas on hull
surfaces need to stay in contact with water to provide a hydrodynamic lift sufficient for
carrying the boat weight. To achieve high speeds, power requirements for fast boats with
hard chines are still much greater than those of displacement boats moving at low speeds.
Therefore, to keep planing boats reasonably economical, they are usually designed to be
relatively light. The weight W of a fast boat can be normalized by the hull beam B, forming
a beam-based loading coefficient,

CB =
W

γB3 , (1)

where γ is the specific weight of water. This coefficient is usually limited by 0.9 for planing
hulls, while most fast boats are much lighter. However, hard-chine hulls operating with
CB > 1 also exist.

When describing different speed regimes of boats and ships, a non-dimensional
Froude number is commonly used,

Frc =
u
√

gc
(2)

where u is the speed, g is the gravity constant, and c is the characteristic length. Vari-
ous length parameters are utilized for Froude number in ship hydrodynamics, including
the hull length, L, waterline length, hull beam, and a cubic root of the volumetric dis-
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placement, 3
√

V. The planing regime usually corresponds to the Foude length number

FrL = u/
√

gL > 1–1.2 or the volumetric Froude number FrV = u/
√

gV1/3 > 3–4 [1–3].
Although not very common, there are applications demanding heavily loaded fast

marine transports. For example, during rescue missions, a boat may have to carry a higher
payload than it was designed for. There are also a variety of special operations when boats
with relatively small footprints need to transport heavy cargo at high speeds. To assess
the hydrodynamic performance of boats in such conditions, namely to estimate achievable
speeds (which will be of course lower than at normal loading), thrust requirements and
other parameters, one needs to know the hull drag and attitude behavior in a broad range
of speeds and loadings. However, the literature on the hydrodynamics of hard-chine
planing hulls is essentially limited to conditions with the beam loading coefficient around
0.9 at moderate Froude numbers.

Among the approaches used for predicting hydrodynamics of usual planing hulls,
empirical correlations, such as the Savitsky’s method [2], are still very popular, but due to a
small number of involved parameters and a broad range of possible conditions, they can be
applied only for initial approximate estimations. A review of empirical methods and illus-
trations of hull forms intended for different high-speed regimes, including relatively heavy
hard-chine hulls, is given by Almeter [4]. A variety of potential-flow modeling methods
that can account for specific hull geometries have been developed in the past [5–7], but they
ignore viscous effects and are often applicable only at sufficiently high Froude numbers.
With the growth of available computational power, numerical methods accounting for vis-
cosity and flow non-linearities are becoming widely used for ship hydrodynamics studies,
including fast boats [8–11]. These computational fluid dynamics (CFD) tools can, therefore,
be applied for modeling heavily loaded hard-chine hulls in the entire speed range. In the
present study, one such CFD program (STAR-CCM+) is utilized. The authors of this paper
have previously conducted a validation study of planing hulls employing a similar CFD
approach [12].

The present paper has several objectives. One is to show validation of CFD for a
relatively heavy constant-deadrise planning hull with CB ≈ 0.9, for which experimental
data are available. Secondly, an overloaded (by 40%) condition of this and other hull
forms is simulated to expand the knowledge base of heavy hard-chine hulls in the range
of speeds from the displacement to planing states. In addition, more practical hulls with
extended bow portions that have convex and concave shapes are also generated, and
their hydrodynamic characteristics are quantified as well. Most simulations are conducted
here with one common location of the longitudinal center of gravity (LCG), at 45% of the
hull length from the transom. Several simulations of overloaded hulls in the transitional
regime are also carried out with LCG = 40% to compare the performance of concave and
convex bows.

Figure 1 graphically illustrates some practical motivations that guided the present
study. One of the intentions is to determine a suitable hull form that would be economical
at the nominal weight in the semi-displacement mode at cruise speed uc (Figure 1), i.e.,
it will have reasonably low resistance Rc within FrL ∼ 0.5–0.8 or FrV ∼ 0.7–1.7. At
the same time, this hull at the nominal weight should be able to reach a planing speed
up ( FrL ∼ 1.2, FrV ∼ 3.0) with full thrust typical for planing hulls Tf . The specific
characteristic of most interest in the present study is the boat’s ability to archive the highest
speed uh (among the considered hulls) under the same available thrust in the overloaded
condition. It should be noted that only steady-state forward motion in calm water was
analyzed here. Other important hydrodynamic characteristics, such as seaworthiness and
maneuvering, are beyond the scope of this paper. Studies on those topics with applications
to semi-displacement and planning hulls can be found in [3,9,13].
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Figure 1. Typical resistance curves of nominal-weight hull (solid line) and overloaded hard-chine
hull (dashed line). Approximate full thrust curve is indicated by dotted line. Symbols are explained
in the text.

The novelty and contributions of this work include results for hydrodynamics of
heavily loaded hard-chine hulls that are not available in the literature, so the practitioners
can use these data to quickly access the performance of overloaded planing hulls. A
systematic comparison of hydrodynamic performance is presented for various bow shapes,
so a specific bow form can be used as a starting point in designing a heavy hull for intended
speed regimes. Contributions are also made to the computational methodology for fast
boat hydrodynamics. A three degree of freedom unsteady approach used to achieve steady
states has been described. Comparisons are presented for different turbulence models and
computational times at various speeds and loading conditions.

The rest of the paper is organized as follows. In Section 2, a description is given
for the hull geometries, as well as speed and loading conditions. Section 3 elaborates on
computational aspects, including the numerical domain, grid specifics, governing equations
and modeling of the hull dynamics in transient regimes. The verification and validation
studies, involving a comparison with experimental data, are shown in Section 4. The
results of extensive parametric studies performed in this work for various hull geometries,
loadings and speeds are presented and discussed in Section 5, which is followed by
the conclusions.

2. Hull Geometries and Studied Conditions

The hull geometries studied in this work are relatively basic (Figures 2 and 3). Three
different bow shapes were analyzed: constant-deadrise, concave, and convex hull shapes.
Only two locations of the center of gravity were investigated, 40% and 45% of the hull
total length from the transom. Two loading conditions were looked at, CB = 0.912 and
CB = 1.276. The lower value corresponds to a relatively heavy planing hull, but within a
common range of loadings. The higher value, obtained by increasing the hull weight by
40%, imitates an overloaded state or a special compact fast boat intended for heavy cargo.
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Figure 3. Transverse hull lines of three studied configurations.

The constant-deadrise basis hull with the selected loading CB = 0.912 comes from the
family of hulls experimentally studied by Fridsma [13]. Its length-to-beam ratio is 5, and
the deadrise angle is 10◦. The experimental hull was 1.143 m long, and the length of the
non-prismatic bow section was 0.229 m or 20% of the hull length (Figure 2).

Two modified hull shapes were numerically generated in this study with the purpose
to improve hydrodynamic characteristics in the semi-displacement regime. They have
convex and concave bow shapes, shown in Figure 3, while the curved bow portion was
extended to 40% of the fore part of the hull. (Initially, hulls with curved bows of 20%
length overall (LOA) were also tried in this work, but due to the bow exit out of water
with increasing speeds, their performance difference from the original hull was limited to a
narrow range of relatively low speeds.) The aft body of hulls with curved bows was kept
prismatic and identical to the constant-deadrise hull.

In most simulations, the longitudinal center of gravity (LCG) was placed at 45% of the
overall length, as measured from the stern (Figure 2), although a limited set of simulations
was also conducted with LCG at 40%. The vertical position of the center of gravity was
47% of the hull height or 5.9% of LOA, counted up from the keel line on the prismatic
hull portion.

The lines plan for hulls of the three different bow shapes are shown in Figure 3.
The geometry of hulls with curved bows was parameterized with three equally spaced
transverse splines in the bow region such that the convexity and concavity were arced by
the same amount, but in different directions. The maximum arc for the three splines, going
from bow to stern were 4.44%, 1.11%, and 0.56% of the hull beam, respectively.

An additional hull feature in experiments of Fridsma [13] was a very small strip
positioned at the chine along the prismatic portion of the hulls. This thin strip was used to
prevent wetting of the hull side walls at sufficiently high speeds on the model scale that
would likely not be seen if the hull was operating in full-scale conditions. This thin strip
was modeled in all simulations in the same manner as described by Wheeler et al. [12].

In the parametric simulations of this study for LCG = 45% conditions, the speed
range was selected between 0.25 and 1.50 of length-based Froude numbers defined by
Equation (2). Given the limitation of accessible computational resources, only the model-
scale hulls were investigated, corresponding to experimental dimensions [13]. The range
of length-based Reynolds numbers in the chosen speed range was between 5.4 × 105 and
3.2 × 106. For the LCG = 40% conditions, the parametric calculations were carried out only
in the transitional speed regime at heavy loading and in a wider speed range at nominal
loading for validation purposes.

3. Computational Approach

The present study consisted of a number of simulations, and in order to ensure similar
numerical accuracy for all cases, a mesh template was employed such that all geometries
and simulated conditions had as similar computational grids as possible. For the reference
length in the meshing procedure, a base size of L/25 (L being the hull length) or 4.6 cm in
dimensional units was selected, and all meshing parameters were based on this length.
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There were two primary fluid domains used in the computations. The first region was
a larger, background region, which consisted of octree-formed hexahedral cells (Figure 4).
Mesh refinements were implemented in the area near the free surface and in the areas in
the wake region of the hull. The domain used an anisotropic refinement in the Z (vertical)
direction of 25% of base size throughout those zones. In addition, isotropically refined cells
of 25% base size were used in the areas near the hull and the area of the expected near-field
wave generation. Only half of the fluid region on the port side from the hull centerplane
was considered. The dimensions of the fluid domain were based on the hull length and
were selected as 10 L × 4 L × 8 L (Figure 4).
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The second (overset) region encompassed the vessel and used an octree formed
trimmed cell mesh with five prism layers along the surface of the hull. The size of this
region was chosen by using both length and beam, with the dimensions being 2L × 2B × 2B
as shown in Figure 5. Special care was used in the prism layer generation process to ensure
the wall Y+ was within the acceptable range. All simulations had surface averaged Y+
values in the range between 30 and 100; therefore, empirical wall functions were used to
approximate the flow turbulence. The near wall cell size of the hull was set to 6.25% of the
base size. In addition, the prism layer thickness and number of layers were carefully chosen
such that the cell size in the outermost layer of the prism layer mesh matched the cell size
in the near-wall trimmed mesh (Figure 6). This matching produced a more uniform mesh,
which, together with moderate Reynolds numbers used in this study, helped eliminate
numerical ventilation. Numerical ventilation is known to be a challenging problem arising
in ship hull simulations that rely on the volume-of-fluid (VOF) approach. To address this
problem, a common recommendation is to employ very fine numerical grids and very
small time steps which, however, may be very computationally prohibitive. Alternative
methods include the artificial suppression of the ventilation, such as the phase replacement,
corrections to the interface capturing scheme and more gradual transitions between the
prism mesh and the volume mesh [12,14,15].

The two regions (background and overset) were then interfaced together using overset
interfaces with the linear interpolation scheme. The overset region was placed 3 L behind
the inlet and 4 L above the domain bottom as shown in Figure 7. A three-degree-of-freedom
(3-DOF) unsteady approach was used to find the steady-state resistance, trim, and sinkage
of the vessel. The three degrees of freedom of the vessel were surge, pitch, and heave, or in
other words, translation in X and Z directions and rotation about the Y axis passing through



J. Mar. Sci. Eng. 2021, 9, 184 6 of 18

of the hull’s center of gravity. The background and overset region moved in surge, but
only the overset region pitched and heaved. The vessel was initially at rest in a calculated
hydrostatic equilibrium state. The vessel was then artificially accelerated from rest using
an assumed constant acceleration (1 m/s2) via a point force attached to the hull’s center
of mass. The force applied was equal to the drag of the vessel plus the mass of the hull
multiplied by the assumed acceleration. This force was exerted until the vessel reached
the speed of interest, at which the applied point force became simply equal to the vessel’s
instantaneous drag force. The reason for using this approach in lieu of the more traditional
2-DOF approach with the constant incoming flow was due to significant hull motions when
the simulation was started with at-rest initial conditions. It was found that some hulls
would initially exhibit severe motions due to the abrupt (unrealistic) start of the flow if the
starting conditions were far from the steady-state conditions at speed. These oscillating
motions would then require a long time to dampen out in the simulation. Since the final
steady-state condition was not known beforehand, but it was the main objective in these
simulations, the 3-DOF method was used. The hydrostatic resting position of the hull can
be calculated quickly and accelerating it from rest provides a natural and more realistic
evolution of the vessel’s sinkage and trim. This approach proved to have a much faster
turnaround for this study than the traditional 2-DOF method [10,16].
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The STAR-CCM+ segregated flow solver employing the SIMPLE (Semi-Implicit
Method for Pressure Linked Equations) algorithm with second-order convection terms was
utilized in this study. The first-order implicit stepping in time was conducted until the time-
averaged flow characteristics were no longer evolving. The Eulerian multi-phase method
with constant-density air and water, properties of which were consistent with experimental
conditions [13]. The high-resolution interface capturing the (HRIC) approach within the
volume-of-fluid (VOF) method was employed for resolving the air–water interface. The
main fluid mechanics equations used by the solver include the continuity, momentum and
VOF equations,

∇ · v = 0, (3)

∂

∂t
(ρv) +∇ · (ρv⊗ v) = −∇ · (pI) +∇ · (T + Tt) + fb, (4)

∂c
∂t

+∇ · (cv) = 0, (5)

where v is the flow velocity vector, ρ is the density of the mixture, p is the pressure, I
is the identity tensor, T is the viscous stress tensor, Tt is the Reynolds stress tensor, fb
is the gravitational body force, and c stands for the volume fraction taken by air. Then,
the effective fluid density ρ and viscosity µ are found as ρ = ρairc + ρwater(1− c) and
µ = µairc + µwater(1− c). The overbar in Equations (3)–(5) correspond to mean flow
properties. The Boussinesq hypothesis is used to model the Reynolds stresses,

− ρu′ iu′ j = µt

(
∂ui
∂xj

+
∂uj

∂xi

)
− 2

3
ρkδij, (6)

where k is the turbulent kinetic energy and µt is the turbulent eddy viscosity.
The Reynolds averaged Navier–Stokes (RANS) approach with the realizable k − ε

Two-Layer All-Y+ turbulence model available in Star-CCM+ was utilized [17,18]. The
realizable k− ε model is the most common method in CFD ship hydrodynamics [19]. Other
turbulence models were also tried in several conditions (as described in the next section),
but they produced results very similar to the Realizable k − ε model. The governing
equations of this model for the turbulent kinetic energy k and the turbulent dissipation rate
ε, as well as the expression for the turbulent viscosity µt, are given as follows,

∂(ρk)
∂t

+
∂
(
ρkuj

)
∂xj

=
∂

∂xj

[(
µ +

µt

σk

)
∂k
∂xj

]
+ Gk − ρε, (7)
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∂(ρε)

∂t
+

∂
(
ρεuj

)
∂xj

=
∂

∂xj

[(
µ +

µt

σε

)
∂ε

∂xj

]
+ ρCε1Sε− ρCε2

ε2

k +
√

νε
, (8)

µt = ρCµ
k2

ε
, (9)

where Gk is responsible for turbulent production, S is the magnitude of the mean strain
rate tensor, ν is the kinematic viscosity, σk, σε, Cε1, Cε2 are the model parameters [20], and
Cµ depends on both the mean flow and turbulence properties [21].

Following ITTC recommendations on CFD simulations [22], near and at steady-state
regimes the time step was selected as L/(250 U), where U is the hull velocity. Five inner
iterations were performed at each time step during the simulations. The initial conditions
included the undisturbed fluid at rest. The boundary conditions were specified as shown
in Figure 8. The downstream boundary is the pressure outlet with the hydrostatic pressure
gradient. The symmetry plane passed through the hull centerplane. The no-slip condition
was imposed on the hull surface. Other sides of the domain were treated as the velocity
inlets with zero flow condition since the entire mesh moves forward at a rate equivalent
to the hull speed. The wave forcing zones of 80% of hull length were applied at the port-
side boundary and the upstream and downstream boundaries. The wave forcing method
involves activation of momentum sources near domain boundaries that adapt the solution
to specified boundary conditions [20]. This way, one can minimize undesirable numerical
wave reflections and thus use more compact (economical) numerical domains.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 8 of 18 
 

 

𝜕(𝜌𝑘)

𝜕𝑡
+

𝜕(𝜌𝑘𝑢𝑗)

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝑘
)

𝜕𝑘

𝜕𝑥𝑗
] + 𝐺𝑘 − 𝜌𝜀, (7) 

𝜕(𝜌𝜀)

𝜕𝑡
+

𝜕(𝜌𝜀𝑢𝑗)

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝜀
)

𝜕𝜀

𝜕𝑥𝑗
] + 𝜌𝐶𝜀1𝑆𝜀 − 𝜌𝐶𝜀2

𝜀2

𝑘+√𝜈𝜀
, (8) 

𝜇𝑡 = 𝜌𝐶𝜇
𝑘2

𝜀
, (9) 

where 𝐺𝑘 is responsible for turbulent production, 𝑆 is the magnitude of the mean strain 

rate tensor, 𝜈 is the kinematic viscosity, 𝜎𝑘, 𝜎𝜀, 𝐶𝜀1, 𝐶𝜀2 are the model parameters [20], 

and 𝐶𝜇 depends on both the mean flow and turbulence properties [21].  

Following ITTC recommendations on CFD simulations [22], near and at steady-state 

regimes the time step was selected as 𝐿/(250 𝑈), where 𝑈 is the hull velocity. Five inner 

iterations were performed at each time step during the simulations. The initial conditions 

included the undisturbed fluid at rest. The boundary conditions were specified as shown 

in Figure 8. The downstream boundary is the pressure outlet with the hydrostatic pressure 

gradient. The symmetry plane passed through the hull centerplane. The no-slip condition 

was imposed on the hull surface. Other sides of the domain were treated as the velocity 

inlets with zero flow condition since the entire mesh moves forward at a rate equivalent 

to the hull speed. The wave forcing zones of 80% of hull length were applied at the port-

side boundary and the upstream and downstream boundaries. The wave forcing method 

involves activation of momentum sources near domain boundaries that adapt the solution 

to specified boundary conditions [20]. This way, one can minimize undesirable numerical 

wave reflections and thus use more compact (economical) numerical domains. 

 

Figure 8. Boundary conditions used in simulations. The front, top, and bottom of the domain are 

set to velocity inlets. The rear of the domain enforces hydrostatic pressure at the outlet. The sides 

of the domain are modeled as symmetry planes and the hull surface is treated as a no slip wall. 

4. Verification and Validation 

Solution verification study was conducted at two conditions with 𝐶𝐵  = 0.912, for 

which experimental data [13] are also available. Condition (1) involves LCG = 45% and 

FrV = 1.67 (transitional regime), whereas condition (2) corresponds to LCG = 40% and FrV 

= 2.68 (close to planing regime). To perform the verification, solutions were obtained on 

three mesh levels with different characteristic cell size. The base size was changed by fac-

tors of √2 for three mesh levels. The corresponding time step was also changed by a fac-

tor of √2 as well to keep the Courant number the same between grids. As an indicator of 

the solution convergence, the drag coefficient based on beam [23] was used,  

Figure 8. Boundary conditions used in simulations. The front, top, and bottom of the domain are set
to velocity inlets. The rear of the domain enforces hydrostatic pressure at the outlet. The sides of the
domain are modeled as symmetry planes and the hull surface is treated as a no slip wall.

4. Verification and Validation

Solution verification study was conducted at two conditions with CB = 0.912, for
which experimental data [13] are also available. Condition (1) involves LCG = 45% and
FrV = 1.67 (transitional regime), whereas condition (2) corresponds to LCG = 40% and
FrV = 2.68 (close to planing regime). To perform the verification, solutions were obtained
on three mesh levels with different characteristic cell size. The base size was changed by
factors of

√
2 for three mesh levels. The corresponding time step was also changed by a

factor of
√

2 as well to keep the Courant number the same between grids. As an indicator
of the solution convergence, the drag coefficient based on beam [23] was used,

CR =
R

0.5ρu2B2 , (10)
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where R is the total hull resistance, ρ is the water density, B is the hull beam, and u is the
hull speed. Expressed in this form, the resistance coefficient becomes directly proportional
to the actual resistance for hulls with the same beam, as in this work. The results for CR
obtained in the verification study are given in Table 1, showing monotonic convergence.
The finest mesh had 4.3 million cells, and this mesh template was used in the rest of
the study.

Table 1. Resistance coefficient obtained at three mesh levels and two operating conditions.

Mesh Type

Resistance Coefficient, CR

Mesh Size

Condition (1) Condition (2)

LCG = 45% LCG = 40%

FrV = 1.67 FrV = 2.68

Fine 4.32 Million 0.110 0.0458
Medium 2.04 Million 0.111 0.0469
Coarse 1.48 Million 0.114 0.0506

Numerical uncertainty 0.006 0.006

To estimate the numerical uncertainty, first the Richardson extrapolation was used to
determine the solution corrections [24],

δRE =
∆21

βp − 1
, (11)

where ∆21 is the difference between solutions found on fine and medium grids, β =
√

2
in this study, and p is the observed order of accuracy. Then, these corrections were
multiplied by the factors of safety following one of the standard methods [25]. The
numerical uncertainties came out as 5.7% and 13.6% for conditions (1) and (2), respectively.
These and percentage uncertainties given below are evaluated with respect to the solution
values obtained on the fine grids.

The total validation uncertainty UV combines both the experimental UD and numerical
UNS uncertainties as follows,

UV =
√

UD2 + UNS
2. (12)

Although the experimental uncertainty was not specified, it is assumed to be about 8%,
common for this type of test. Then, the validation uncertainties for the two cases become
9.8% and 15.8%, respectively. The corresponding differences between the numerically
calculated and experimental values are about 4.9% and 14.9%. Since these differences are
within the validation uncertainties, the CFD models can be considered as validated at these
two conditions.

A comparison between numerical and experimental results in the range of speeds for
two LCG values is shown in Figure 9. The agreement at transitional speeds, which are the
primary interest in this study, is very good. The numerical results show somewhat higher
drag than test data in the planing regimes. As stated above, the numerical and experimental
uncertainties can be responsible for part of these differences. It is also noted that previous
CFD simulations with planing hulls, which employed a much higher number of numerical
cells than the present study, produced results demonstrating similar discrepancy with
the experimental data [9,10]. Insufficiently accurate modeling of spray at high speeds
is a possible cause for this discrepancy. Numerical grids of very high resolution or the
development of different models for spray may be needed to address this issue.



J. Mar. Sci. Eng. 2021, 9, 184 10 of 18J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 10 of 18 
 

 

 

Figure 9. Experimental and numerical results for constant-deadrise hull, CB = 0.912 and two LCG conditions: (1) LCG = 

45%, (2) LCG = 40%. Red circles, experimental data; blue crosses, numerical results. 

The computational times needed to achieve steady states for the hulls used in the 

validation study have been assessed as well. The central processing unit (CPU) times, de-

fined as the actual time multiplied by the number of employed processors, is given in 

Figure 10 for the range of Froude numbers. The heavier hulls and intermediate Froude 

numbers, which correspond to semi-planing regimes, required longer CPU times. 

 

Figure 10. Central processing unit (CPU) times spent to achieve steady-state results for constant-

deadrise hulls with LCG = 45% in light (blue crosses) and overloaded (red circles) conditions. 

Additional simulations have been conducted here with different turbulence models 

on the fine mesh. These models included the 𝑘 − 𝜔 SST (shear stress transport) and the 

Reynolds stress turbulence (RST) models. The simulations were carried out for both LCG 

and Froude numbers used in the verification study. Results for the resistance coefficient 

are summarized in Table 2. The differences in the resistance values were less than 1% for 

the transitional case, so accuracy of all three turbulence models is about the same at this 

condition. In the planing regime, the experimental value for 𝐶𝑅 was about 0.4, so the error 

between the experiment and the RST model result was larger and, therefore, the RST 

model was not used. The realizable 𝑘 − 𝜀 model was chosen since it was closer to the 

experimental data point and showed lower oscillations in the monitored values compared 

to the 𝑘 − 𝜔 SST values. 
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(2) LCG = 40%. Red circles, experimental data; blue crosses, numerical results.

The computational times needed to achieve steady states for the hulls used in the
validation study have been assessed as well. The central processing unit (CPU) times,
defined as the actual time multiplied by the number of employed processors, is given in
Figure 10 for the range of Froude numbers. The heavier hulls and intermediate Froude
numbers, which correspond to semi-planing regimes, required longer CPU times.
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Figure 10. Central processing unit (CPU) times spent to achieve steady-state results for constant-
deadrise hulls with LCG = 45% in light (blue crosses) and overloaded (red circles) conditions.

Additional simulations have been conducted here with different turbulence models
on the fine mesh. These models included the k− ω SST (shear stress transport) and the
Reynolds stress turbulence (RST) models. The simulations were carried out for both LCG
and Froude numbers used in the verification study. Results for the resistance coefficient
are summarized in Table 2. The differences in the resistance values were less than 1% for
the transitional case, so accuracy of all three turbulence models is about the same at this
condition. In the planing regime, the experimental value for CR was about 0.4, so the error
between the experiment and the RST model result was larger and, therefore, the RST model
was not used. The realizable k− ε model was chosen since it was closer to the experimental
data point and showed lower oscillations in the monitored values compared to the k−ω
SST values.
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Table 2. Resistance coefficient obtained with different turbulence models at two operating conditions.

Turbulence Models

Resistance Coefficient, CR

Condition (1) Condition (2)

LCG = 45% LCG = 40%

FrV = 1.67 FrV = 2.68

Realizable k− ε 0.110 0.0458
k−ω SST 0.110 0.0466

Reynolds Stress Turbulence 0.110 0.0485

5. Parametric Results

Since the focus of this study is on heavy hulls that perform well in the transitional
speed range, the initial parametric calculations were carried for three hull geometries at
the loading coefficient CB = 1.276, two centers of gravity LCG = 40% and 45%, and speeds
corresponding to FrV = 1.0–1.6. To present results in the non-dimensional form, three
metrics are used: the resistance coefficient defined by Equation (10), the hull trim, τ, and
the rise of the center of gravity (in comparison with the rest position) normalized by the
hull beam, H/B.

The resistance coefficient and attitude data obtained for heavy hulls in the transitional
regime are shown in Figure 11. As one can notice, the hulls with LCG = 45% consistently
outperform those with LCG = 40% (Figure 11a). The trim angles of the configurations
with the rearward CG are noticeably higher (by 3–4 degrees) than trims of the hull with
more forward CG (Figure 11b). At moderate speeds, excessive trim angles result in larger
pressure drag, while the hydrodynamic lift is not yet developed to raise these hulls to
higher positions. On the contrary, the dynamic suction at these speeds increases the hull
submergences. Differences between sinkages of hulls with different CG locations are not as
pronounced as differences in drag and trim (Figure 11c). Thus, the hull configurations with
LCG = 45% were selected for further studies in a broader speed range.
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Figure 11. Comparison of hydrodynamic characteristics in the transitional regime of overloaded hulls (CB = 1.276) with
LCG = 45% (blue smaller symbols) and LCG = 40% (red larger symbols). (a) Drag coefficient, (b) trim angle, (c) normalized
rise of the center of gravity. Circles and stars, constant-deadrise hull; squares and crosses, concave hull; triangles and
diamonds, convex hull.
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Both nominal and heavy hulls with CB = 0.912 and 1.276 and three bow geometries
were computationally simulated in FrV interval from 0.5 up to 3.5, covering all important
regimes from the displacement to planing modes. Starting from zero speed, hulls were
accelerated at 1 m/s2 till their speeds reached required values. An example of time-
dependent hull characteristics, demonstrating attainment of a steady-state regime, is
shown in Figure 12 for one of the studied hulls. The steady-state results for the resistance
coefficient, trim and CG rise for all hull configurations are summarized in Figure 13.
General shapes of the resistance coefficient curves (Figure 13a) are rather common to
hard-chine hulls. There is a steep drag increase at the transitional speeds, followed by
the resistance coefficient peak around FrV = 1.2 and some reduction of resistance at the
post-hump planing speeds. As expected, heavy hulls demonstrate higher drag, and the
drag increase is roughly similar to the relative increase of hull displacements.
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Figure 12. Time histories of hull speed, resistance coefficient, trim and relative sinkage for convex-bow hull with LCG = 45%
and CB = 0.912 at Froude number 1.25.

The trim angles generally increase with speed (Figure 13b), demonstrating faster
growth at the transitional speeds and saturation at the high planing speeds. However, the
hulls with curved bows (both nominal-weight and heavy) exhibit a significant drop in trim
at FrV = 2.2. This is caused by earlier exits of finer bows at this speed (in comparison with
the original constant deadrise hulls), accompanied by the loss of lift at the front portion of
the hull, which results in the bow-down adjustment.

The vertical positions of the hulls’ centers of gravity initially descend due to dynamic
suction near FrV = 1.2 but, later, with increasing trim and speed, the hulls rise due to
higher hydrodynamic lift (Figure 13c). Again, at FrV = 2.2, the hulls with finer bows do
not experience significant elevation increase (as the constant-deadrise hulls) due to trim
reduction and some loss of hydrodynamic lift. At higher speeds, resistance and attitude
characteristics of hulls of different geometries approach each other, since the bows almost
exit the water and the rear prismatic-type hull portions are identical for all three hulls
studied here.

When comparing the performance of different hull forms in the overloaded condition,
one can notice that the hull with concave bow has consistently lower resistance in the
transitional regime, FrV= 1.0–1.7. Its finest bow shape (Figure 3), among those of the hulls
studied here, helps this hull cut through the water more efficiently at semi-displacement
speeds. At the nominal (lighter) loading and lower speeds, FrV < 1.0, the hull with concave
bow is also superior in terms of resistance, which will allow it to operate more economically
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in that regime. When a high speed is needed at the nominal loading, the concave-bow
hull will be able to reach planing speeds FrV > 2.5 with the available thrust-weight ratio
of 0.2. Thus, the hull with the concave bow would be the best performer for the specific
operational regimes of interest to this study. It should be noted that only calm-water
conditions were considered here, and additional studies will be needed if operations in
rough seas are taken into consideration.
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The convex-bow hull (Figure 3), while inferior to the concave counterpart in calm wa-
ter, slightly outperforms the constant-deadrise hull in the transitional regimes (Figure 13).
However, the hull with convex bow exhibits the largest peak of the actual drag force near
FrV = 2.2 in both nominal and heavy loadings. The constant-deadrise hull is superior at
the planing speeds due to its pronounced prismatic hull surfaces. Again, if operations in
waves are considered, relative performances of different hull forms may change.

One of the interesting metrics of hulls intended for a broad speed range is the corre-
spondence between pressure and friction (shear) drag components. The fraction of the
pressure drag in the total hull resistance is shown in Figure 14. Obviously, heavily loaded
hulls have a higher pressure drag contribution in comparison with lighter hulls. The
pressure-drag fraction peaks at Froude number around 1.3. These speeds belong to the
transitional regime where the hulls experience large drag but relatively low hydrodynamic
lift. The secondary peak in the pressure-drag fraction is noticeable for heavy hulls at early
planing speeds, FrV = 2.7. As commonly known, the frictional drag becomes more pro-
nounced at the lowest (displacement) and highest (developed planing) speeds (Figure 14),
although hulls with the finer bows also tend to have a larger frictional contribution at
FrV = 2.2, when hull trim angles drop slightly (Figure 13b).
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More detailed insight on the flow characteristics near hulls can be gained from the
distribution of pressure coefficients, Cp, on the hull bottom and the water surface deforma-
tions around hulls, which are given for selected states in Figures 15 and 16, respectively.
One can notice a slightly larger wet area of a constant-deadrise hull bottom at the lower
speed (FrV ≈ 1.3) in comparison with other hulls that have finer bows (Figure 15). The
highest pressure coefficient is observed at the water impingement zone at the bow. In the
overloaded cases and lower speeds, this high-pressure zone is more pronounced for the
constant-deadrise hull (Figure 15), while Cp magnitudes in this region are the lowest for
the concave-bow hull. This is consistent with the resistance coefficient values shown in
Figure 13a, where the constant-deadrise and concave-bow heavy hulls have the highest and
lowest resistances, respectively, at FrV ≈ 1.3. On the other hand, small regions with reduced
pressure are visible near hull transoms, where pressure recovers back to atmospheric and,
therefore, does not significantly contribute to the boat lift. At FrV ≈ 2.7, pressure coefficient
values are generally smaller since the flow speeds are higher, but loadings are the same.
The wet area of the constant-deadrise hull is smaller at higher speed (FrV ≈ 2.7) than wet
areas of concave- and convex-bow hulls due to larger trim angles of the constant-deadrise
hull (Figure 13b).

The near-hull water surface elevations for the same 12 cases are illustrated in Figure 16.
At lower speeds (FrV ≈ 1.3), significant water build-up with wave breaking features
appears in front of the bow of the constant-deadrise hull, whereas the bow waves extend
further along the hulls with finer bows. The concave-hull bow nose is slightly less wet
than the convex-hull counterpart. The water depression at the transom and the following
“rooster tail” are more pronounced for heavier hulls. At higher speed (FrV ≈ 2.7), the
constant deadrise-hull has a noticeably larger trim than other hulls. The “rooster tails” of
convex and concave hulls are located closer to the transom than for a more prismatic hull.
The divergent waves generated by heavier hulls are more pronounced, since those hulls
displace more water. The wake zones of faster hulls are narrower than those behind hulls
operating at lower speeds. The water depression zones behind the transom become more
aligned with the hull centerline at higher speeds in comparison with wave hollows nearly
split in two parts behind most hulls at lower speeds.

The full-domain wave patterns behind one of the hulls at two loadings are illustrated
in Figure 17. At this high speed (FrV ≈ 2.7), the well-defined divergent waves are clearly
visible. The heavier hull sits deeper in the water and produces larger wave amplitudes.
Near the downstream boundary on the right side of computational domains in Figure 17,
the numerical forcing zone suppresses the waves, resulting in diminishing magnitudes of
water surface elevations.
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6. Conclusions

A computational study has been undertaken to evaluate the performance of basic
hard-chine hull forms in heavily loaded conditions and in the broad speed range from the
displacement to planing regimes. The resistance coefficient curves demonstrated a typical
behavior with the peaks around the displacement Froude number of 1.2. Hulls with 40%
heavier displacements manifested about 30% larger resistance than lighter hulls over the
studied speed range. In the overloaded regime and transitional speeds, the concave-bow
hull is found to have about 5% and 12% lower drag than the convex-bow hull and the more
prismatic constant-deadrise hull, respectively. The same convex-bow hull at the nominal
loading and displacement speeds showed 2–10% lower drag than the other hulls, as well
as moderate resistance up to the planing speeds. The hulls with finer bows exhibited a
significant 2–3◦ trim decrease at the hump speed. The original constant-deadrise hull with
a long prismatic portion of the hull performs better at the planing speeds, demonstrating
5–15% lower drag than other hulls.

Future research directions can involve investigating the performance of heavy hulls
in the presence of waves to provide recommendations for overloaded hard-chine hulls
intended for variable sea conditions. The present computational approach is also suitable
for determining the effects of finer geometric details on the hull surfaces, such as spray
rails, steps, and appendages, and conducting hull optimization studies at the design stage.
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