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Abstract: The long-term prediction of morphological bed evolution has been of interest to engineers
and scientists for many decades. Usually, process-based models are employed to simulate bed-level
changes in the scale of years to decades. To compensate for the major computational effort required
by these models, various acceleration techniques have been developed, namely input-reduction,
model-reduction and behaviour-oriented modelling. The present paper presents a new input-reduction
method to obtain representative wave conditions based on the Shields criterion of incipient motion and
subsequent calculation of the sediment pick-up rate. Elimination of waves unable to initiate sediment
movement leads to additional reduction of model run-times. The proposed method was implemented
in the sandy coastline adjusted to the port of Rethymno, Greece, and validated against two datasets
consisting of 7 and 20 and 365 days, respectively, using the model MIKE21 Coupled Model FM.
The method was compared with a well-established method of wave schematization and evaluation
of the model’s skill deemed the simulations based on the pick-up rate schematization method as
“excellent”. Additionally, a model run-time reduction of about 50% was observed, rendering this
input-reduction method a valuable tool for the medium to long-term modelling of bed evolution.

Keywords: input reduction; wave schematization; pick-up rate; MIKE21 CM FM; long-term
morphological modelling

1. Introduction

The prediction of morphological bed evolution and ultimately the shift of the shoreline position
due to the complex sediment transport processes that take place in the nearshore area has been of
interest for coastal engineers and scientists for many decades. Considering bed and shoreline evolution,
two distinct model types can be considered [1], namely the 2DH area models concentrating on the
morphological evolution of a given area and the shoreline evolution models, where the changes in
shoreline position are modelled through the calculation of the longshore sediment transport rates.
The first category of models is used to determine the morphological changes of rather detailed coastal
features (such as dunes, or rip channels) based on the simulation of the waves, hydrodynamics and
sediment transport rates over a large area (in the scale of many km). The drawback of these models is
that they are generally not suited for long-term morphological modelling, in part due to the fact that
the simulation run-time is often too large for engineering purposes and their performance diminishes
when executing long-term simulations without introducing some type of recalibration of the coastal
profile. Their main drawback stems from the fact that the morphological evolution of complex coastal
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features of interest to engineers and the public usually occurs at time scales several orders of magnitude
larger than the time scale of the hydrodynamic fluctuations that drive the sediment transport [2].

This potential separation of the time scales between the hydrodynamics and the morphological
changes has been the basis for a large number of morphological acceleration techniques. On this
subject, de Vriend et al. [3] highlight three distinct approaches in order to accelerate morphological
modelling:

• Input reduction, which is based on the principle that the long-term effects of smaller-scale processes
can be obtained by applying models of those smaller-scale processes forced with “representative”
inputs able to reproduce the aforementioned long-term effects accurately [4].

• Model reduction, in which details of the smaller scale processes are omitted while the model
simulation is performed at the scale of interest. The most commonly used acceleration technique of
this type in 2-D area models is the morphological acceleration factor (Morfac, [5], which multiplies
the bed level change at each time step by this factor, reducing the simulation time while
simultaneously predicting the long-term evolution of the morphology.

• Behaviour-oriented modelling, which attempts to model the phenomena of interest without
attempting to fully analyze and describe the underlying processes (shoreline sediment processes [6],
wetting-drying [7] etc.).

Often, coastal engineers are in possession of a large number of input wave conditions, stemming
from model predictions from various databases across the world and the widespread usage of satellite
observations (e.g., [8,9]. This collection of data can be utilized to predict morphological bed evolution
in a variety of time scales. In the present paper we consider a few days to be the defining scale
for short term morphological modelling, a few months for medium-term and years to decades for
long-term bed level predictions. It is apparent, that for the medium and long-term prediction of the
bed evolution of a rather large area, performing a simulation through hourly changing boundary
conditions can be very time consuming [4]. For this purpose a number of input-reduction or wave
schematization techniques have been developed based on the principle of selecting representative
wave conditions able to accurately predict the long-term morphological bed evolution. As a general
principle, these techniques concentrate on dividing the wave climate into wave height and directional
bins and calculating a representative sea state for each bin. The evaluation of the performance of
an applied input-reduction method is ultimately based on a comparison of the long-term predicted
morphology using the reduced and the full set of conditions, as stated in [10].

Over the years, several studies have been carried out to implement various methods of wave
input reduction enabling the simulation of the morphological evolution of coastal features from years
to decades [2,4,10,11]. Most input-reduction methods are based on the calculation of the net sediment
longshore transport rate (e.g., energy-flux method, CERC method and energy-flux method with extreme
events) which is the main quantity used to select the representative sea states. Roelvink et al. [4]
presented a novel method based on executing short-term modelling simulations and determining the
subsequent sediment transport rates. Then, the conditions that have the smallest contribution in the long
term to the morphodynamic evolution of the bed are eliminated and the process is repeated. The result
of this so-called “Opti” routine is a set of 5 or 10 wave conditions that have a major contribution in
shaping the sediment transport rates and the morphodynamic pattern. Benedet et al. [12] implemented
five different wave schematization techniques, including the “Opti” method for a beach nourishment
project and concluded that for the particular case study, an annual wave climate can be represented
accurately by 12 distinct wave conditions. Trough sensitivity analysis the authors stated that minimal
improvement in model results was demonstrated when selecting more than 30 wave representative
conditions, whereas when choosing less than 6 representatives, model results deteriorated significantly.
Lastly, they concluded that the best performing method for 12 representative conditions was the
energy-flux method followed by the “Opti” routine, which turned out to perform comparatively better
when desiring a smaller number of representative conditions (e.g., 6 or less). Recently, Karathanasi et
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al. [13] proposed an input-reduction method based on the concept of incipient motion, dividing the
wave climate into two distinct wave classes, depending on each individual wave component’s ability
to initiate sediment motion.

It should be stated that input-reduction methods alleviate some numerical burden from the
simulation and facilitate post-processing of results and model evaluation. On the other hand, in order
to produce accurate results, one has to carry out a simulation with reduced wave input in exactly the
same time frame as the full dataset of conditions. As was previously mentioned, the most common way
of accelerating 2DH morphological simulations is by utilizing model-reduction techniques through
the Morfac approach. However large values of Morfac can lead to erroneous results, especially for
coasts that are dominated by highly varying wind and wave conditions [5,14,15]. For the long-term
morphological evolution of the bed, usually both input-reduction and model-reduction techniques are
employed in tandem, in order to alleviate numerical burden and accelerate the simulations. Taking into
account that the hydrodynamic simulation is restricting in regards to the stability of the 2DH area
model and that Morfac values should not exceed a certain critical value as shown in [16], there remains
a need to develop methodologies to further accelerate morphological modelling.

In the present paper, an input-reduction method able to achieve some form of model reduction,
thus reducing the required numerical effort even further is presented. This method concentrates
on the reduction of the offshore wave data based on the criterion of initiation of sediment motion,
through the calculation of the Shields parameter. The reduced waves that are considered adequate to
initiate sediment motion are then schematized by computing the sediment pick-up rate [17,18] of each
individual wave.

The input-reduction method developed for the purpose of this research, hereafter denoted as
the pick-up rate method, was applied for the coast in the close vicinity of the port of Rethymno
in the island of Crete and was validated using wave data time-series from the Copernicus Marine
Environment Monitoring Service (CMEMS) [8] as forcing conditions. The method was implemented
for three distinct cases, a time-series of 7, 20 and 365 days composed of hourly changing wave data,
to investigate the sensitivity of the method on longer datasets. The process-based numerical model
MIKE 21 Coupled Model FM [19] was applied for the detailed description of waves, hydrodynamics
and sediment transport since it has been used extensively in coastal engineering studies and research
for decades. A parabolic mild slope model incorporating non-linear dispersion characteristics, namely
MARIS-PMS [20] was also utilized for the purpose of this research to obtain wave characteristics
in the nearshore area in order to ultimately reduce the input wave data. Ultimately, in order to
evaluate the performance of the newly developed method, the results obtained by the pick-up rate
method where compared with the ones stemming from implementation of the widely used energy-flux
schematization method.

2. Materials and Methods

2.1. Proposed Method of Wave Schematization Based on the Sediment Pick-Up Rate

2.1.1. Theoretical Aspects

For flows with very low velocity over a sandy bed the sand layer generally tends to stay immovable.
However, if the flow velocity slowly increases some grains begin to move. This process is called the
initiation of sediment motion or incipient motion [21]. The most precise and commonly used measure
of the threshold of motion is expressed in terms of the ratio of the force exerted by the bed shear stress
acting to move the sediment grains on the bed layer, to the submerged weight grain resisting to this
action. This approach was developed by [22] and the threshold Shields parameter θcr can be calculated
by the following expression proposed by [23]:

θcr =
0.3

1 + 1.2D∗
+0.055

[
1− e−0.02D∗

]
(1)
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where D∗ is the non-dimensional grain diameter given by:

D∗ =
[

g(s− 1)
ν2

]1/3

d50 (2)

where g [m/s2] is the acceleration of gravity, s =
ρs
ρw

[-] is the ratio of the sediment (ρs) to the water (ρw)

density, ν [m2/s] is the kinematic viscosity of the water and d50 [m] is the median sediment diameter.
Waves constitute one of the major contributing factors in stirring sediments from the sediment

bed as well as generating longshore currents and the undertow that are able to transport sediments.
Another aspect that causes the net sediment transport is the wave asymmetry and skewness beneath
the crest and the trough of the waves. Waves in relatively shallow areas (approximately at depths
h < 10Hs, with Hs denoting the significant wave height) [21], generate an oscillatory velocity at the
sea-bed which is the main factor setting the sand grains into motion. The amplitude of the wave orbital
velocity above the bed for the case of a monochromatic wave can be approximated through the linear
wave theory as:

Uw =
πH

Tsinh(kh)
(3)

where: H [m] is the wave height, T [s] is the wave period, and k [rad/m] is the wavenumber.
Regarding random waves, where the wave climate is represented by a sea-state spectrum composed

of different frequencies, amplitudes and directions, the wave orbital velocity near the bed (denoted as
Urms) can be computed according to [24] by summing the velocity contributions from each frequency
(derived from the linear wave theory) over the whole frequency range. Soulsby et al. [25] proposed the
following approximate formula to compute Urms:

UrmsTn

Hs
=

0.25

(1 + At2)
3 (4)

where: Urms [m/s] is the root-mean square signal of the orbital velocity near the bed, Tn =
√

h
g

[s] is the natural scaling wave period, Hs [m] is the significant wave height, and A [-] and t [-] are
non-dimensional quantities defined as:

A =
[
6500 + (0.56 + 15. 54 t)6

]1/6
(5)

and:

t =
Tn

Tz
=

√
h
g

1
Tz

(6)

where Tz [s] is the zero-up crossing wave period. The above approximation is valid in the range of
0 ≤ t ≤ 0.54.

Near the bed, due to turbulence and friction effects, an oscillatory wave boundary layer is
generated in which the wave orbital velocity rapidly increases from 0 at the sea-bottom to the value of
Uw (or Urms when referring to spectral wave conditions) at the top of the boundary layer. It can be
derived that the most important hydrodynamic property of waves contributing to sediment transport
is the bed shear stress they produce. This stress is usually dependent on the wave orbital velocity Uw

at the bottom and the wave friction factor fw and is computed via the following relationship:

τb,w =
1
2
ρ f wU2

w (7)

where τbw [kg·m/s2] is the bed shear stress due to the wave effect, ρ [kg/m3] is the water density and fw

[-] is the wave friction factor.
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The wave friction factor, as is the case with currents, is dependent on the status of the flow,
namely if it is laminar, smooth turbulent or rough turbulent [21], which in turn is related to the wave
Reynolds number Rw and the relative roughness r. The latter quantity is calculated by:

r =
UwT
2πks

(8)

where T [s] is the wave period and ks [-] is the Nikuradse equivalent sand grain roughness.
For rough turbulent flows, as is generally the case for a beach dominated by waves, there exist

many formulae in literature for the calculation of the skin friction factor fw [21,26,27]. They are
all a faction of the relative roughness r and the wave orbital velocity excursion at the sea bed.
Swart’s formulation [26] reads:

fw =

 0. 24, r < 2.0
e−5.997+5.213 r−0.194

, r ≥ 2.0
(9)

Ultimately, the Shields number θ for each wave condition can be calculated through:

θ =
τb,w

gd50(ρ s−ρ)
(10)

where ρs [kg/m3] is the sediment density.
The criterion of incipient sediment motion orders that sediment movement occurs only if the

Shields parameter θ calculated through Equation (10) is greater than the critical Shields parameter θcr

calculated through Equation (1). This forms the basis of the input-reduction method discussed in the
present paper, as waves with rather small wave orbital velocities unable to initiate sand grain motion
near the bed are disposed of, since it is considered that these waves have a very small contribution in
the medium or long-term shaping of the morphological bed evolution.

A quantification of the eroding capacity of individual waves can be achieved by calculating the
sediment pick-up rate E. [17,28] studied the pick-up process for various flow velocities (in the range of
0.5–1.5 m/s) and sand diameters (100–1500 µm). Recently, [18] extended the pick-up rate function for
high flow velocities (in the range of 2–6 m/s) by introducing a damping factor fD incorporating all the
additional effects on sediment movement in high velocities, the most important being the damping of
turbulence (turbulence collapse) in the near-bed area where sediment concentrations are rather large.
Ultimately, the new pick-up rate function reads:

E = 0.00033ρs

[
(s− 1)gd50

]1/2
D0.3
∗ fD

[(
θ− θcr

θ

)]1.5
(11)

where E [kg/m2/s] is the sediment pick-up rate, and fD = 1/θ is a damping factor for high velocity
conditions (θ > 1.0). It becomes apparent from Equation (11) that E is zero if θ < θcr.

We take advantage of this in our deployment of the wave schematization method, utilizing
the sediment pick-up rate as the quantity that determines the representative wave conditions,
while simultaneously disposing of those conditions that are unable to initiate incipient sediment motion.

2.1.2. Layout of the Wave Schematization Method

In this subsection the distinct steps to determine the representative wave conditions, utilizing the
pick-up rate input-reduction method are presented. The larger portion of this method is rather simple
in conceptualization and execution and can be reproduced either by employing a simple computer
code or a spreadsheet. The distinct steps of this method are as follows:

1. Wave characteristic time-series (either by buoy measurements, or hindcast/forecast simulations)
are obtained for a desirable time range Ttot on a single point offshore coinciding with the open
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boundary of the computational domain. The minimum wave characteristics that are required by
the input-reduction method are Hs, Tp (or another characteristic wave period) and MWD (mean
wave direction).

2. The wave time-series are then filtered by disposing of wave data that do not contribute in shaping
the bed evolution, namely wave components exiting the computational domain.

3. Calculation of the critical Shields parameter θcr through Equation (1).
4. Wave characteristics at a characteristic depth (at around h = 8–10 m, set as h = 8 m at the present

study) are obtained. For this purpose, either a wave ray model (e.g., [29], a spectral wave model
(e.g., [30–32], or a mild slope wave model [33,34] can be used. Here we use the parabolic mild slope
model with non-linear dispersion characteristics MARIS-PMS. The reason for utilizing this model
is the accuracy in prescribing the wave field in mildly sloping beaches due to incorporation of
non-linearity and the saving of considerable computational time relatively to the time-dependent
formulations of the aforementioned categories of models. After obtaining the wave climate in the
nearshore area a “1-1” correspondence between each wave component offshore (Hs, Tp, MWD)
and the wave characteristics at the characteristic depth (Hin, Tin, MWDin), is established.

5. Calculation of the depth of closure (hin) for the particular time-series through the following
equation, which is defined as the seaward limit of the littoral zone [35]:

hin= 8.9 Hs (12)

where hin [m] is the depth of closure and Hs [m] is the mean significant wave height at a
characteristic depth h = 8–10 m, utilizing the wave characteristics calculated at step 4. The depth
of closure was considered for the purpose of this research the critical depth after which no net
sediment movement takes places. Consequently this depth will be later set for the calculation of
the wave orbital velocity since the larger proportion of sediment transport takes place between
hin and the shoreline.

6. Calculate the wave orbital velocity signal near the bed through Equation (3) for monochromatic
or Equation (4) for spectral waves setting h = hin.

7. For each wave component (Hin, Tin, MWDin) the friction factor fw (Equation (9)), the bed shear
stress due to waves τb,w (Equation (7)) and ultimately the Shields parameter θ (Equation (10)),
are calculated

8. If the θ < θcr the wave component is eliminated since it does not contribute in sediment motion.
Through the “1-1” correspondence established at step 4, dispose the relative wave condition of
the offshore time-series. The total number of wave components offshore N is thus reduced using
the criterion of the initiation of motion at a total of Ns (with Ns ≤ N)

9. Calculation of the sediment pick-up rate Ein through Equation (11) for each wave component at
the depth of closure. Also the cumulative pick-up rate E for the aforementioned wave conditions
is determined.

10. The number of representative wave conditions Nr that will replace the full wave climate
(e.g., 12 representative conditions) are determined. The number of representative conditions is
based on discretion, however it is advised that a number between 6 and 30 conditions is chosen
for sufficiently accurate model results regarding yearly wave climates [12]. Then, the wave
components are divided in classes with respect to wave direction and wave height. The boundaries
of each class in both direction and wave heights are determined the same wave as the energy-flux
wave schematization method (see Section 2.2 for details). Each representative class is characterized
by an equal fraction of the cumulative pick-up rate E (E/Nr) and can be described by a set of wave
characteristics (Hr,in, Tr,in, MWDr,in). Thus, it can be derived that each class consists of a different
number of wave components, Ncl.

11. Utilizing again the “1-1” correspondence of wave characteristics offshore and nearshore, we can
obtain a set of representative conditions (Hr, Tr, MWDr) in the offshore wave boundary by
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considering that the bounding limits of each representative class in the depth of closure coincide
with the respective ones in deep water. A small numerical extrapolation error stems from the fact
that each representative class in the offshore boundary might not be characterized by exactly equal
fraction of sediment pick-up rate, since the pick-up rate was calculated for the corresponding
wave conditions at shallower water. However, since the proposed input-reduction method
concerns medium to long-term morphological bed changes, this error is considered to have a
very small effect in shaping the ultimate bed evolution and thus can be neglected.

12. The frequency of occurrence f = Ncl
Ns for each representative class is calculated, based on the wave

components of each class relatively to the full set of conditions.
13. Finally the simulation is executed with a 2D morphological area model using the representative

wave conditions as forcing input. The total model run-time Ttot,r is a fraction of the full time
series, denoted as Ttot,r =

Nr
N Ttot, since wave components unable to initiate sediment movement

are eliminated in step 8 and have little to no contribution in shaping the bed evolution.

The flowchart of the wave schematization methodology based on the sediment pick-up rate is
illustrated in Figure 1.
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Through the use of this method one can obtain a set of representative conditions able to describe
the morphological evolution of the bed in medium and long term, while also simultaneously reducing
the simulation run-time. Thus, this method can be characterized as a bridge between input-reduction
and model-reduction techniques, since it can lead in the considerable reduction of computation effort.
It should be noted however that the total time that is saved is highly dependent on the wave climate
that dominates the coast. For instance, in rather extreme offshore wave conditions where a large
portion of waves contribute in initiation of sediment motion, the total number of disposable wave
components can be rather small, leading in simulating a representative field for time equal to that of
the full time-series. For morphological modelling of years to decades, however, one can assume that a
rather large number of wave components will have little effect in the bed evolution, rendering the
pick-up rate schematization method a valuable tool to coastal engineers and scientists.

2.2. The Energy Flux Wave Schematization Method (Benchmark Reduction Method)

The energy-flux wave schematization method is based on the concept of obtaining representative
wave conditions which are separated at “equal energy intervals” [12,36]. For long-term morphological
evolution simulations this concept is beneficial since the longshore sediment transport rates are
proportional to the energy flux of the waves. The layout of the energy-flux input-reduction method is
presented briefly below:

• Calculation of the wave energy flux
(
E f

)
for each wave component of a time-series,

E f =
1
8
ρgH2

s Cg (13)

where ρ [kg/m3] is the water density, Hs [m] is the significant wave height and Cg [m/s] is the
wave group celerity in deep water,

• Calculation of the total wave energy flux of the full wave time-series through:

Etot =
∑

E f (14)

• Division of the wave components in wave direction bins. For a predefined number of directional
bins (Nd) the time series are separated in bins, each consisting of an equal fraction of the total
energy flux (Etot/Nd). Further division of the data in wave height bins. Separation is carried out
for a predefined number of wave height bins (Nh) with each bin characterized by an equal fraction
of the total energy flux (Etot/(Nd·Nh).

• A representative wave height for each bin is derived from the mean energy flux of the bin along
with a mean energy-flux direction. The representative wave period is then defined as the mean
period of the bin.

The energy-flux input-reduction method is easy to apply (calculations can usually be carried out
within a spreadsheet) and as shown in [12] and [36], for long-term morphological bed evaluations in
the order of years the obtained results are satisfactory. For the reasons stated above, the energy-flux
method was used in the framework of this research as a “benchmark reduction method”, in order to
assess how the newly developed pick-up rate schematization method fares not only in comparison to
the bed evolution obtained through the full-time series, but also to the results obtained by a widely
used wave schematization method.

2.3. Theoretical Background of Numerical Models

For the purpose of this research, a highly robust 2D composite model, namely MIKE21 Coupled
Model FM [19] is utilized for the simulation of wave propagation, hydrodynamic circulation, sediment
transport and morphology. In addition, for the calculation of nearshore wave characteristics at the
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depth of 8 m (see step 4, Figure 1) a mild-slope model of parabolic approximation, namely MARIS-PMS,
is utilized in the present paper. A first noteworthy aspect of a parabolic approximation model is
that it can be rapidly solved [34], which is essential for the pick-up rate input-reduction method in
order to keep computational effort at a minimum when utilizing a large set of input wave conditions.
Moreover, the specific model considers nonlinear amplitude dispersion effects and thus can produce
significantly more accurate results than linear models. Nevertheless, it should be mentioned that
parabolic approximation models are restricted to cases with negligible wave reflection and weak wave
diffraction due to the lack of simulating back scattering. Therefore, the range of applicability is reduced
for these models, rendering them suitable only for open coastal areas. In the following sections the
governing equations and main features of the aforementioned numerical models are presented.

2.3.1. The MIKE21 Coupled Model FM Suite

For the long-term estimation of the bed evolution the process-based numerical model MIKE 21
Coupled Model FM [19] was used for the detailed description of hydrodynamics, waves, and sediment
transport rates. The model has been used extensively in a variety of coastal engineering applications,
with and without the presence of coastal protection structures (e.g., [1,13,37,38].

The MIKE21 Coupled model FM suite includes several complementary numerical models and
tools three of which were used for the purpose of this research:

• MIKE21 SW, a 3rd generation spectral wave model based on the conservation of the wave action
balance, suited for the propagation and transformation of waves in the coastal zone.

• MIKE21 HD, a depth-averaged hydrodynamic model based on the Reynolds-averaged
Navier–Stokes equations of motion (RANS), for the description of the nearshore circulation.

• MIKE21 ST, a sand transport and morphology updating model, used to calculate sediment
transport rates and ultimately the morphological bed evolution.

The models are directly coupled, allowing for the interaction between waves and currents
and the effect of bed level changes in waves and hydrodynamics. The calculations are performed
in an unstructured finite element mesh, allowing for flexibility in calculations and a more precise
representation of the coastline and complex topography features. The governing equations of each
respective model will be presented briefly below. The MIKE 21 SW model [39] is a 3rd-generation
spectral wave model suited for the propagation of waves in the oceanic scale and in nearshore
areas. The governing equation of the model is based on the principle of conservation of the wave
action-balance [40] which reads in Cartesian coordinates:

∂N
∂t

+cx
∂N
∂x

+cy
∂N
∂y

+cσ
∂N
∂σ

+σθ
∂N
∂θ

=
S
σ

(15)

where N (x, y,σ, θ, t) is the wave action density, cx, cy are the propagation velocities in the spatial
domain, cσ is the propagation velocity in the frequency domain and cθ is the propagation velocity
in the directional domain. All the aforementioned transfer velocities are computed according to the
linear wave theory [40]. In the rhs of Equation (15), the term S denotes the source and sink terms of the
energy balance equation (e.g., generation due to wind, white-capping dissipation, non-linear wave
interactions, depth-induced breaking etc).

The hydrodynamic model MIKE21 HD [41] is based on the solution of the depth-integrated
shallow water equations, expressed by the continuity and momentum equations in the Cartesian space:

∂h
∂t

+
∂hu
∂x

+
∂hv
∂y

= hS (16)
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∂hu
∂t + ∂hu2

∂x + ∂huv
∂y = fvh− gh∂η∂x −

h
ρ

∂pa
∂x −

gh2

2ρ
∂ρ
∂x + τsx

ρ −
τbx
ρ −

1
ρ

(
∂Sxx
∂x +

∂Sxy
∂y

)
+ ∂

∂x (hTxx) +
∂
∂y

(
hTxy

)
+ husSx

(17)

∂hv
∂t + ∂huv

∂x + ∂hv2

∂y = fuh− gh∂η∂y −
h
ρ

∂pa
∂y −

gh2

2ρ
∂ρ
∂y + τsx

ρ −
τbx
ρ −

1
ρ

(
∂Sxy
∂x +

∂Syy
∂y

)
+ ∂

∂x

(
hTxy

)
+ ∂

∂y

(
hTyy

)
+ hvsSxx

(18)

where h [m] is the total depth of the water column, u and v [m/s] are the depth-averaged velocity
components in the x and y direction, respectively, η [m] is the surface elevation, f [-] is the Coriolis
parameter, ρ [kg/m3] is the water density, Sxx, Syy, Sxy, are components of the radiation stress tensor,
pa [N/m2] is the atmospheric pressure, S [m3/s] being the magnitude of point sources, with us, vs. [m/s]
being the velocity vectors of the point discharge and Txx, Tyy, Txy [N/m2] denoting lateral stresses
including viscous, turbulent friction and differential advection.

The MIKE 21 ST model [42] calculates the sediment transport rates and the morphological bed
evolution either in a pure current case, or under the combined effect of waves and currents.

For the case of wave and current induced sediment transport, the rates are calculated by
linear interpolation on an externally formed sediment transport table. The core of this utility is a
quasi-three-dimensional sediment transport model (STPQ3D). The model calculates the instantaneous
and time-averaged hydrodynamics and sediment transport in the two horizontal directions.

The determination of the bed level evolution is the rate of bed level change ∂z
∂t at the element

cell centers. This parameter is obtained by solving the well-known equation of sediment continuity,
denoted as the Exner equation:

∂z
∂t

= −
1

(1− n)

(
∂Sx

∂x
+
∂Sy

∂x
−∆S

)
(19)

where n [-] is the sediment porosity, Sx, Sy [m2/s] is the total load sediment transport rates in the x
and y direction respectively and ∆S [m/s] is a sediment source or sink term. The new bed level is then
obtained by a forward in time differential scheme.

2.3.2. The MARIS-PMS Wave Model

In order to calculate the nearshore wave characteristics a Parabolic Mild Slope model is
implemented, utilizing its accuracy in prescribing the wave field in mildly sloping beaches and
the saving of considerable computational time. In particular, the wave model MARIS-PMS [34]
presented herein is based on the work of [43] who derived a parabolic equation, in the form of a cubic
Schrödinger differential equation, governing the complex amplitude, A, of the fundamental frequency
component of a Stokes wave. Darlymple et al. [44] improved the parabolic equation and its range of
validity by developing approximations based on minimax principles in order to allow for large-angle
propagation and rendering the approximation suitable for large scale applications, thus proposing the
following governing equation:
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2 D|A|2A + w
2 A = 0 (20)

where the parameter D is given by D =
(cos h4kh+8−2 tan h2kh)

8 sin h4kh
, the complex amplitude A is related to

the water surface displacement by η = Ae−i(kx−ωt), k the local wave number related to the angular
frequency of the waves,ω [rad/s], and the water depth, h [m]. k [rad/m] is a reference wave number
taken as the average wave number along the y-axis, C [m/s] is the phase celerity, Cg [m/s] is the group
celerity and w is a dissipation factor. Finally, coefficients a0, α1 and b1 depend on the aperture width
chosen to specify the minimax approximation [45]. The combination of a0 = 0.994733, α1 = −0.890065,
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and b1 = −0.451641 was found in [45] to give reasonable results for a maximum angular range of 70◦

and is applied in the MARIS-PMS model.
MARIS-PMS takes into account energy dissipation due to bathymetric breaking following the

formulation of [46], and bottom friction, which is modelled through the formulation of [47].
MARIS-PMS incorporates non-linear dispersion characteristics, in order to improve model results

in the nearshore area, which can be obtained by introducing an approximate non-linear amplitude
dispersion relationship, such as that presented in [48].

Instead of utilizing a unique mathematical expression over the entire numerical domain, combined
models can be applied (e.g., [49,50] in order to incorporate high nonlinearity at any depth. Utilizing
this approach, the wave celerity is assumed to vary spatially within the simulation, and the nonlinear
dispersion relation to be applied is subject to the local Ursell number Ur = HL2/h3 and wave steepness
s = H/L, in relation to the valid regions of analytical wave theories.

Therefore, for s > 0 and Ur > 4000 and H/h < 0.78 a modified cnoidal equation is adopted:

ω2= gk2h(1 + f(m)H/h) (21)

where f(m) a function of the parameter m, the modulus of the elliptic functions. Bell et al. [51] assumed
a constant value f(m)= 0.4 which is adopted in the model formulation.

Conversely, for s > 0 and Ur > 4000 and H/h > 0.78 the solitary wave dispersion relation is
used:

ω2= gk2h(1 + H/h) (22)

In the surf zone, the aforementioned solitary wave relation behaves similarly with the simple
approach to model wave celerity through a modified shallow water approximation [52]:

ω2= a2gk2h (23)

where a typical value of the coefficient a is set to 1.3.
In order to tackle numerical discontinuities at the coupling boundaries, due to variation across

Stokes, cnoidal and solitary divisions, a weighted moving average (WMA) technique is incorporated to
smooth the values of celerity in the transition windows from one theory to another [34]. The analytical
method was utilized in the present study to calculate significant wave heights, periods and directions,
at a characteristic depth of 8 m (see step 4 of Section 2.1.2.). It is considered that this method can
achieve a fine compromise between robust and time-efficient calculations while attaining non-linear
dispersion characteristics in the shallow water area. Besides, for the calculation of wave characteristics
and the subsequent calculation of the depth of closure, [53] proposed the use of linear wave models.
We consider the use of a parabolic mild slope wave model for this purpose to be an improvement
on the methodology improving the accuracy of the estimation of wave heights in the nearshore,
while simultaneously keeping simulation times at reasonable levels [34].

3. Method Implementation

3.1. Study Area

The input-reduction method based on the sediment pick-up rate was implemented using the
MIKE21 Coupled Model FM suite in the coast located in the close vicinity of the port of Rethymno,
in the island of Crete, Greece. The area of interest, shown in Figure 2, includes the aforementioned port,
located in the northern end of Crete within the homonymous bay and the adjacent coastal area at the
east and a coastline of approximately 4 km in length. The aforementioned coastline comprises mostly
fine sand, with a median sediment diameter of d50= 0.15 mm, which was used for the morphological
simulations. Being a highly urbanized area, commercial, administrative, cultural and tourist activities
are concentrated along the north coast where the city is located. Consequently, a medium to long-term
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prediction of the bed evolution and ultimately the displacement of the shoreline, is of particular interest
to engineers/scientists and the public.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 12 of 26 
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extending at about 250 m offshore the western coastline. For the solid boundaries, a vertice-adaptive 
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boundaries, allowing for the more detailed description of the bathymetric variations in shallow water 
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3.3. Offshore Wave Data 

To force the 3rd generation spectral wave model MIKE21 SW time series of wave characteristics 
were obtained at the north boundary of the computational mesh, namely spectral wave height, peak 
wave period and mean wave direction from CMEMS [8] database for a time range covering 02/2012–
02/2017. For this purpose, the regional package MEDSEA_HINDCAST_WAV_006_012 [57], a multi-
year wave hindcast product composed of hourly wave parameters at 1/24° horizontal grid resolution 
was utilized. The dataset is produced by the corresponding Mediterranean Sea Forecast package 

Figure 2. The island of Crete (left) and the study area of the coastal zone of Rethymno (right) where
the MIKE21 Coupled Model FM was implemented. Adapted from [54], with permission from Google
Earth, 2020.

3.2. Mesh Generation

In order to simulate the morphological bed evolution of the Rethymno coast, an unstructured
finite element mesh was constructed. Three mesh density levels were used for the discretization of
the domain, with the coarser area being near the offshore and the lateral wave boundaries, and the
denser one covering an extend of 3.5 km long and 10.0 km wide. A third density level was established
extending at about 250 m offshore the western coastline. For the solid boundaries, a vertice-adaptive
mesh generation scheme allowed the construction of relatively small finite elements in the solid
boundaries, allowing for the more detailed description of the bathymetric variations in shallow water
areas. Regarding the dimensions of the interior triangular elements, they are comprised of a mean
nominal length of about 100 m, with the largest element size being 293 m and the minimum 0.71 m.
The bathymetry was digitized using QGIS software [55], utilizing nautical maps from the Navionics
web application [56] as input. The final bathymetric mesh for the study area is presented in Figure 3.
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3.3. Offshore Wave Data

To force the 3rd generation spectral wave model MIKE21 SW time series of wave characteristics
were obtained at the north boundary of the computational mesh, namely spectral wave height,
peak wave period and mean wave direction from CMEMS [8] database for a time range covering
02/2012–02/2017. For this purpose, the regional package MEDSEA_HINDCAST_WAV_006_012 [57],
a multi-year wave hindcast product composed of hourly wave parameters at 1/24◦ horizontal grid
resolution was utilized. The dataset is produced by the corresponding Mediterranean Sea Forecast
package which in turn is a wave model based on the well-established spectral wave model WAM Cycle
4.5.4 [58]. The extracted offshore time series were also fed to the MARIS-PMS model, in order to obtain
wave characteristics at the depth of 8 m seaward the sandy coastline near the Rethymno port, to be
used in the calculations of the depth of closure. The input-reduction method was implemented for
three distinct scenarios, firstly a wave time series at hourly intervals for 7 days, from 19/12/2012 to
26/12/2012, secondly a wave time series for 20 days from 17/08/2012 to 06/09/2012, and lastly for a time
series covering a full year (365 days) of wave records, from 01/01/2012 to 01/01/2013. A Morfac of 1, 20
and 100 was used for the three separate cases respectively, in order to validate the input-reduction
method without and with the effect of the morphological acceleration factor and assess its effect on the
method’s sensitivity. For each case, 3 set of simulations were performed, namely:

• A simulation consisting of the full time series at the offshore boundary, hereafter denoted as
Reference simulation

• A simulation using 12 representatives as forcing parameters calculated with the pick-up rate
method, hereafter called pick-up rate simulation

• A simulation using 12 representatives calculated with the energy-flux input-reduction method,
hereafter denoted as energy-flux simulation, to assess how the pick-up rate method fares against a
well-established wave schematization technique.

The time series, especially that covering the extent of 7 days, was desirable to contain wave height
conditions with significant variation, in order to assess the performance of the pick-up rate simulation
in a rather diverse wave climate. The rose plot of wave heights for the time series comprising 7 and
20 days are shown in Figure 4. It can be observed that low, mild and moderate wave conditions,
in terms of wave height, are present in both datasets. Nevertheless, certain differences can be observed
regarding the distribution of wave heights, since the dataset of 7 days is consisted of more extreme
wave conditions (maximum wave height Hmo = 3.2 m) while the dataset of 20 days was characterized
by milder wave conditions with a maximum wave height Hmo = 2.35 m. Regarding the dataset
covering the extend of the year, the wave climate was more diverse, with a minimum wave height of
0.09 m and a maximum wave height of 4.66 m. From the initial filtration of the waves that exit the
computational domain and therefore have no effect on the morphological bed evolution, the dataset
was reduced from 8762 hourly changing wave records to 8219. The vast majority (over 70 %) of the
incident waves are entering the computational domain from the north sector, as shown in Figure 4.



J. Mar. Sci. Eng. 2020, 8, 597 14 of 25J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 14 of 26 

 

  

(a) (b) 

 
(c) 

Figure 4. Wave height rose plot for the dataset containing records of 7 days (a), 20 days (b) and a year 
of data (c). 

3.4. Obtained Representative Wave Conditions 

A total of 12 conditions were chosen to represent the input wave data for all datasets according 
to [12], who considered them to be adequate to accurately describe the morphological bed evolution 
induced by yearly wave climates. Thus, we consider 12 conditions to be able to represent satisfactorily 
the wave climate of the smaller datasets that were used for the purpose of this research, as well as the 
dataset covering a full year. In Table 1 the representative wave conditions (defined by the spectral 
wave height Hmo, peak wave period Tp, mean wave direction MWD and frequency of occurrence) 
obtained by implementing the pick-up rate method, along with those stemming from the energy-flux 
method are presented for the dataset of 7 days.  

Figure 4. Wave height rose plot for the dataset containing records of 7 days (a), 20 days (b) and a year
of data (c).

3.4. Obtained Representative Wave Conditions

A total of 12 conditions were chosen to represent the input wave data for all datasets according
to [12], who considered them to be adequate to accurately describe the morphological bed evolution
induced by yearly wave climates. Thus, we consider 12 conditions to be able to represent satisfactorily
the wave climate of the smaller datasets that were used for the purpose of this research, as well as the
dataset covering a full year. In Table 1 the representative wave conditions (defined by the spectral
wave height Hmo, peak wave period Tp, mean wave direction MWD and frequency of occurrence)
obtained by implementing the pick-up rate method, along with those stemming from the energy-flux
method are presented for the dataset of 7 days.
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Table 1. Representative wave conditions from the time series of 7 days, using the pick-up rate and the
energy-flux wave schematization methods.

Class Pick-up Rate Method Representatives Energy Flux Method Representatives

Hmo (m) Tp (s) MWD (◦) Frequency (%) Hmo (m) Tp (s) MWD (◦) Frequency (%)

1st 1.78 6.96 1.30 14.94 1.23 5.87 357.57 10.84
2nd 2.77 8.20 1.65 4.60 2.55 8.09 1.46 3.01
3rd 2.51 7.63 2.35 5.75 2.53 7.63 2.31 3.61
4th 2.77 8.01 2.01 4.60 2.78 8.01 1.93 2.41
5th 2.30 7.53 3.27 8.05 1.96 7.09 3.69 6.02
6th 2.94 8.39 3.24 3.45 2.76 8.09 2.99 3.01
7th 1.74 6.99 4.85 19.54 1.44 6.38 5.14 10.24
8th 2.65 8.01 4.73 4.60 2.88 8.20 5.35 2.41
9th 1.70 7.12 8.47 18.39 1.44 6.69 8.86 10.24
10th 3.19 8.39 8.50 2.30 2.90 8.01 8.62 2.41
11th 1.88 6.89 12.78 10.34 0.52 4.77 21.63 43.37
12th 3.16 7.63 12.49 3.45 3.08 7.63 14.37 2.44

It can be observed that both methods for the larger part have similar directional bins expressed
by the representative values, although the pick-up rate method possesses larger wave heights with a
higher frequency of occurrence for these particular classes. This can be attributed to the elimination of
wave heights that are unable to initiate sediment motion, which results in the translocation of the center
of the wave height bins in higher values, when compared to the energy-flux method. Furthermore,
in Figure 5, the total dataset of 20 days along with the representative conditions is presented in a scatter
plot, for both the pick-up rate and the energy-flux method. It can be observed for the particular case
that the directional bins are quite different when comparing the two methods, due to the low-energy
wave conditions generated from a direction of 300◦–350◦ which are not capable of initiating sand
motion and consequently are not taken into consideration by the pick-up rate method.
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The obtained representatives calculated through the pick-up rate and the energy-flux
input-reduction methods for the dataset covering the extent of a year are presented as a scatter
plot in Figure 6. Once again it is evident that due to the elimination of low energy wave conditions the
representatives obtained through the implementation of the pick-up rate method have larger wave
heights compared to the ones stemming from the energy-flux method while the frequency of occurrence
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is more or less the same. An increase in both representative wave height and frequency of occurrence
for the pick-up rate signifies that the specific classes contains a large amount of wave components
that are able to initiate sediment motion. Effectively by introducing the Shield’s criterion of incipient
motion one can obtain representative wave conditions that correspond to the more energetic wave
condition of the wave climate while increasing their impact in the prediction of the morphological
bed evolution.

J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 16 of 26 

 

6. Once again it is evident that due to the elimination of low energy wave conditions the 
representatives obtained through the implementation of the pick-up rate method have larger wave 
heights compared to the ones stemming from the energy-flux method while the frequency of 
occurrence is more or less the same. An increase in both representative wave height and frequency 
of occurrence for the pick-up rate signifies that the specific classes contains a large amount of wave 
components that are able to initiate sediment motion. Effectively by introducing the Shield’s criterion 
of incipient motion one can obtain representative wave conditions that correspond to the more 
energetic wave condition of the wave climate while increasing their impact in the prediction of the 
morphological bed evolution. 

(a) (b) 

Figure 6. Scatter plot showing the full dataset of a year of data (blue markers) along with the bins (red 
rectangles) and representative wave conditions (red markers) using the pick-up rate method (a) and 
the energy-flux method (b). 

4. Results and Discussion 

In the following section, the results that were obtained by implementing the pick-up rate method 
by applying the process-based model MIKE21 Coupled Model FM are presented. In order to evaluate 
the performance of 2D morphological area models we calculate various statistical parameters which 
are described in detail in [59]. The performance of a morphological model can ultimately be assessed 
by calculating its bias, accuracy and skill. The most commonly used measure of the latter quantity is 
the Brier Skill Score (BSS) which has been applied in a plethora of morphological modelling 
applications (i.e., [15,60,61]. It is calculated through the following relationship: 

BSS=1-
MSE(Y,X)
MSE(B,X) =1-

〈(Y-X)2〉〈(B-X)2〉 (24) 

where Y denotes the predicted (modelled) quantity, X denotes a measured quantity, corresponding 
to the reference simulation for the present study due to lack of measurements, and B is a baseline 
prediction, usually referring to the initial bathymetry, assuming no alteration of the bed. 
Additionally, the square brackets denote average quantities over the whole domain. In Table 2 the 
classification scores for the BSS according to [59] in order to estimate the performance of a given 
morphological evolution model are shown: 

Table 2. Classification table for the Brier Skill Score (BSS) as proposed by [59]. (Adapted from [59], 
with permission from Elsevier, 2004). 

 BSS 
Excellent 1.0–0.5 

Good 0.5–0.2 
Reasonable/fair 0.2–0.1 

Poor 0.1–0.0 
Bad <0.0 

Figure 6. Scatter plot showing the full dataset of a year of data (blue markers) along with the bins (red
rectangles) and representative wave conditions (red markers) using the pick-up rate method (a) and
the energy-flux method (b).

4. Results and Discussion

In the following section, the results that were obtained by implementing the pick-up rate method
by applying the process-based model MIKE21 Coupled Model FM are presented. In order to evaluate
the performance of 2D morphological area models we calculate various statistical parameters which are
described in detail in [59]. The performance of a morphological model can ultimately be assessed by
calculating its bias, accuracy and skill. The most commonly used measure of the latter quantity is the
Brier Skill Score (BSS) which has been applied in a plethora of morphological modelling applications
(i.e., [15,60,61]. It is calculated through the following relationship:

BSS = 1−
MSE(Y, X)
MSE(B, X)

= 1−
〈(Y−X)2

〉

〈(B−X)2
〉

(24)

where Y denotes the predicted (modelled) quantity, X denotes a measured quantity, corresponding
to the reference simulation for the present study due to lack of measurements, and B is a baseline
prediction, usually referring to the initial bathymetry, assuming no alteration of the bed. Additionally,
the square brackets denote average quantities over the whole domain. In Table 2 the classification
scores for the BSS according to [59] in order to estimate the performance of a given morphological
evolution model are shown:

Table 2. Classification table for the Brier Skill Score (BSS) as proposed by [59]. (Adapted from [59],
with permission from Elsevier, 2004).

BSS

Excellent 1.0–0.5
Good 0.5–0.2

Reasonable/fair 0.2–0.1
Poor 0.1–0.0
Bad <0.0
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We evaluate the performance of the morphological model in an area extending about 450 m
offshore (at a maximum depth of about 9 m) the eastern coastline adjusted to the port. We chose to
focus on this area (enclosed by the polygon shown in Figure 7), since it consists mostly of a sandy
uniform bed and is of high interest to the public due to various tourist activities concentrated there.
We also avoid evaluating the performance of the process-based model in the close vicinity of the port
of Rethymno, since the phase-averaged approach utilized by the spectral wave driver MIKE21 SW
is not suited to deal with inhomogeneities and coherent interfaces present in the wave field due to
reflection and diffraction [62,63].
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Figure 7. Finite element mesh showing the area (within the closed polygon) where the morphological
model results will be evaluated.

The estimation of wave heights in the characteristic depth of 8.0 m to subsequently calculate
the depth of closure was carried out using the MARIS-PMS wave model for the full datasets of 7
and 20 and 365 days, with the computed depth of closure being 8.67 m, 6.95 m and 6.69 for each
dataset respectively. No wave breaking took place as expected, however minor changes in the wave
height were observed due to the energy bunching effect attributed mostly to shoaling and secondly to
wave refraction.

4.1. Morphological Bed Evolution for the Dataset of Seven Days

In the present section the morphological bed evolution of the area of interest using the forcing
dataset of 7 days is presented and discussed. The most dominant wave direction turned out to be the
northern, as shown by the representative wave conditions in Table 1. Consequently, the prevailing
hydrodynamic and sediment transport vector component’s direction for the area of interest was
directed from east to the west, as shown in Figure 8, resulting mostly in accretive patterns in the
beach face.

From the total of 168 initial hourly changing wave heights 88 of them lead to initiation of sediment
motion by implementing the Shields criterion as was discussed in Section 2.1. Therefore the full dataset
was reduced by a percentage of 47.62%, using the pick-up rate input-reduction method presented
in this paper. Regarding model run-times, the Reference simulation corresponding to the induced
morphological evolution of the complete dataset, resulted in a run-time of 133.3 h. Conversely,
the reduced dataset obtained from the implementation of the pick-up rate method achieved a run-time
of 79.19 h. Thus, a reduction of model run-time by 59.42% was achieved by implementing a Morfac
value of 1 (no acceleration for this simulation). For reference, the energy-flux simulation was completed
after a run-time of 131.2 h. The relatively small effective run-time reduction achieved through this
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method can attributed to the preprocessing of data (small number of wave components compared to
the full dataset) and not so much to the computational process. By utilizing a Morfac of 1, the reduction
of model run-time can essentially be attributed to the newly developed input-reduction method.
This particular feature is considered to be a valuable asset for engineers and scientists wanting to
perform medium to long-term morphological simulations while simultaneously reducing the additional
numerical burden.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 18 of 26 
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Regarding the model performance, for the area enclosed within the polygon shown in Figure 7,
nodal values of the bed level inside the particular domain were extracted both for the Reference
simulation and the pick-up rate simulation. Additionally the corresponding nodal values for the
simulation utilizing the energy-flux input-reduction method were extracted to compare how it fares
against the newly developed method based on the sediment pick-up rate. The model performance
was assessed by calculating measures of bias and accuracy, namely the mean absolute error (MAE),
mean square error (MSE) and root mean square error (RMSE). Lastly we focused on the skill evaluation
of the model by calculating the BSS and categorizing the simulation as shown in Table 2. The measures
obtained for the area of interest are shown in Table 3 (please see Supplementary Materials for the
detailed calculations of the statistical measures).

Table 3. Statistical parameters obtained in the area of interest for both the pick-up rate simulation and
the energy-flux simulation-Dataset of 7 days.

Pick-Up Rate Method Energy Flux Method

Bias −0.0054 −0.0101
MAE(Y,X) 0.0218 0.0233
MSE(Y,X) 0.0018 0.0020

RMSE(Y,X) 0.0429 0.0450
BSS 0.9300 0.9200

From the above it can be derived that both the pick-up rate method and the energy-flux method
can be categorized as excellent in regards to the BSS. As far as the model bias is concerned, the numerical
model slightly underpredicts the morphological changes, albeit for a few mm. All accuracy measures
are deemed acceptable for short-term morphological simulations. It should be stated that the pick-up
rate method fares slightly better than the energy-flux method for this particular dataset. This can
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be attributed to the fact that for relatively small datasets of input data, the higher complexity of the
pick-up rate method and subsequent calculations can offer slightly more detailed prediction of the
morphological bed evolution. However, on the other hand the pick-up rate method is highly dependent
on the formulations used for the calculation of physical quantities, such as the friction factor due to
waves and wave orbital velocity and consequently more testing to verify the previous statement should
be carried out.

4.2. Morphological Bed Evolution for the Dataset of 20 Days

For the particular dataset, the hydrodynamic and sediment transport patterns were relatively
the same as the results shown in the previous section. This can be attributed to the prevailing
waves propagating from the northern sector which again dominate the wave climate, as shown in
Figure 4. For all the simulation scenarios of this section we applied a value of Morfac = 20 in order to
ultimately assess how the pick-up rate method fares in longer datasets when used in tandem with a
model-reduction technique.

From the total of 481 initial hourly changing wave heights, 216 of them in deep water satisfy the
Shields criterion of incipient motion. Therefore the full dataset was reduced by a percentage of 45.53%,
for the purpose of implementing the pick-up rate method. Regarding model run-times, the Reference
simulation corresponding to the induced morphological evolution of the complete dataset, resulted
in a run-time of 24.47 h, whereas the energy-flux simulation achieved a model run-time of 23.21 h.
Conversely, the reduced dataset resulting from the implementation of the pick-up rate method achieved
a run-time of 12.57 h, leading to a reduction of 51.37% of total model run-time. This is a significant
portion of model reduction when taking into account the further run time reduction achieved through
the use of Morfac.

Utilizing the same procedure as §4.1 bed level values were extracted for the resulting model
predictions (through the implementation of pick-up rate and energy-flux methods) and the “measured”
values obtained through the reference simulation. The obtained bias, accuracy and skill measures for
the area of interest illustrated in Figure 7 are shown in Table 4, while the detailed calculations of the
statistical quantities for the particular dataset are presented in the Supplementary Materials.

Table 4. Obtained statistical parameters in the area of interest for both the pick-up rate simulation and
the energy-flux simulation dataset of 20 days.

Pick-Up Rate Method Energy Flux Method

Bias −0.0177 −0.0058
MAE(Y,X) 0.0633 0.0535
MSE(Y,X) 0.0096 0.0066

RMSE(Y,X) 0.0980 0.0813
BSS 0.8300 0.8800

It can be observed that the situation for the longer dataset of 20 days comparing the scores of the
two simulations are reversed, as the energy-flux method performs better in all assessing categories.
The slightly worse performance of the pick-up rate input-reduction method can be attributed to the
elimination of the low-energy wave conditions. It should be stated though that both simulations achieve
a score of “Excellent” once again, validating the ability of both methods to predict the morphological
bed evolution for this particular set of input conditions. Thus, it is considered that for medium term
morphological modelling applications, a small decrease in accuracy is insignificant compared to the
model run-time reduction achieved through implementation of the pick-up rate method.

4.3. Morphological Bed Evolution for the Dataset of a Year

In the present section, the predicted bed level changes obtained through the pick-up rate and the
energy-flux simulation are compared with the Reference simulation for the dataset covering a full
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year of wave data. This comparison is of significant importance, since it can provide the basis for the
assessment of the performance of the pick-up rate method in long-term morphological simulations
(order of years). For all the simulation scenarios of this section a Morfac = 100 was applied in order to
further accelerate the simulations. This value is at high end of the allowable values of the acceleration
factor for morphological bed evolution under the combined effect of waves and currents, however it is
deemed acceptable as shown in [2,10,16] for moderate wave conditions.

From the total of 8219 initial hourly changing wave heights, 3523 satisfy the Shields criterion of
incipient motion. Therefore the full dataset was reduced by a percentage of 57.17%, by implementing
the pick-up rate method. Regarding model run-times, the reference simulation corresponding to the
induced morphological evolution of the complete dataset, resulted in a run-time of 106.86 h. Conversely,
the reduced dataset resulting from the implementation of the pick-up rate method achieved a run-time
of 39.13 h leading to a reduction of 56.80% of total model run-time, whereas the energy-flux simulation
was completed after 90.58 h. It is evident that especially for long-term morphological predictive
simulations the computational gain by implementing the pick-up rate method is quite significant.

To provide a basis for the comparison of the bed evolution obtained through the three distinct
simulations and the subsequent model skill evaluation, the predicted bed-level changes obtained by the
reference, pick-up rate and energy-flux simulations are presented in Figure 9. In particular, the relative
bed level changes obtained by the reference simulation for the coast east of the Rethymno port are
compared with the respective bed level changes obtained by the pick-up rate simulation. In general,
the pick-up rate simulation slightly underpredicts the bed level changes, due to the elimination of
low energy conditions that are able to initiate some sediment motion in small water depths. However,
the predicted values of bed level changes are of the same order of magnitude as the reference simulation
and it should be stated that the eroding and accretive patterns obtained in both simulations appear
for the most part at the same positions. Both model predictions also depict sedimentation at the port
entrance and accretion at the coastline adjusted to the port. Regarding the energy-flux simulation,
it can be observed that the predicted morphological bed evolution values are of the same order of
magnitude as those obtained through the reference simulation and the areas where accretion or erosion
is more prevalent are predicted correctly by the energy-flux method. It can also be observed that the
bed-level change patterns predicted by both the energy-flux and pick-up rate method have many
similarities for the area shown in Figure 9.

To further assess model performance and skill for long-term bed-level predictions, the obtained
bias and accuracy statistical quantities, namely the MAE, MSE, RMSE and skill measures (BSS) for the
area of interest illustrated in Figure 7 are shown in Table 5.

As shown in Table 5, the energy-flux method performs better in all assessing categories compared
to the pick-up rate method for the simulation of a year of morphological bed evolution.

Table 5. Obtained statistical parameters in the area of interest for both the pick-up rate simulation and
the energy-flux simulation-Dataset of a year.

Pick-Up Rate Method Energy Flux Method

Bias −0.2316 −0.1441
MAE(Y,X) 0.2661 0.1885
MSE(Y,X) 0.1070 0.0614

RMSE(Y,X) 0.3272 0.2478
BSS 0.7445 0.8535
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Both simulations show increased error values compared to the previously examined test cases,
which is to be expected for longer-term morphological bed predictions, where the computed relative
bed level changes are large relative to the initial bathymetry. The deterioration of the pick-up rate
simulation results can be attributed in part due to the elimination of the low-energy wave conditions
in conjunction with the significant model run-time reduction. Once again, however, both simulations
achieve a score of “Excellent”, validating the ability of the pick-up rate method to adequately predict
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the long-term morphological bed evolution. The selection of a relatively large Morfac (Morfac = 100 in
the present simulations), is also considered to have an effect on the lower values of the computed BSS,
especially for the pick-up rate method where the representative wave conditions are characterized by
larger wave heights compared to the respective ones stemming from the energy-flux method. However,
implementation of the pick-up rate method for long-term simulations was shown to achieve significant
model run-time reduction (order of 57% for the examined test case) while simultaneously maintaining
satisfactory results.

It should be stated that implementation of the proposed method on a different area of application
should be carried out in order to assess its dependence on the local wave conditions and its ability to
accurately predict the long-term morphological bed evolution. The method can be further extended to
account for the effect of currents on the incipient sediment motion, by calculating a mean bed shear
stress due to the combined effects of currents and waves [21]. However, this extension is dependent on
the availability of accurate current measurements at the offshore boundary, while transferring current
data near the breaker zone, where the largest proportion of circulation takes place, is a rather complex
task which omits the scope of simplicity and speed, inherently present in input-reduction methods.

5. Conclusions

In the present paper, an efficient method of wave input reduction based on the calculation of the
sediment pick-up rate was presented and its implementation was validated in the coastline adjusted to
the port of Rethymno, Crete. The novelty of this method lies in the combination of input-reduction
and model-reduction elements, which stem from the incorporation of incipient sediment motion
through the calculation of Shields number. The method was implemented using the process-based
model MIKE21 Coupled Model FM for the calculation of wave propagation, current and sediment
transport fields.

The pick-up rate method was implemented and validated against three datasets of total records of
7 days, 20 days and a year respectively, in order to assess the model’s ability to accurately predict the
morphological bed evolution using the aforementioned method for small and larger datasets and for a
variety of input conditions. For the three distinct simulations, elimination of wave heights unable to
satisfy Shields criterion for initiation of sediment motion results in a reduction of model run-time by
59.42%, 51.37% and 56.80%, respectively.

The performance of the morphological model was assessed by calculating statistical values
concerning the predictive simulation’s bias, accuracy and skill. For the three distinct scenarios,
the pick-up rate method was implemented and results were compared against the widely used
energy-flux method of wave schematization. Regarding the commonly used BSS, employed to measure
a morphological model’s skill, the pick-up rate simulation was deemed as “excellent” for all situations,
with a small deterioration of performance in the long-term (order of year) simulation.

The newly developed method should be utilized with caution in the vicinity of coastal structures
where wave reflection and diffraction begin to play a significant role in shaping the wave field. It should
be stated that the same limitation applies to 3rd-generation spectral wave models such as MIKE 21 SW,
which can qualitatively capture diffraction effects and the incorporation of this process is based on the
parabolic mild slope equation. For example in the case of a coastal area protected by shore parallel
breakwaters the pick-up rate method cannot be applied at the lee side of the breakwater since the wave
characteristics at the nearshore depth of 8 m would be erroneously calculated due to the omission of
said wave processes. However, the method can safely be applied for any coastal area, independent
of the complexity of the shoreline and bottom topography, if wave diffraction and reflection are not
dominant in the depth of 8 m where the depth of closure is calculated.

Implementation of this method requires the utilization of a parabolic mild slope wave model and
is rather complex, when compared to the application of traditional input-reduction methods, such as
that based on the calculation of wave energy flux, which can be carried out within a single spreadsheet.
However it should be stated that a higher effort during the computation of the representative wave
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classes is rather insignificant compared to the gain achieved by the reduction of the 2D morphological
area model run-time through the pick-up rate method.

Therefore, it is considered that the input-reduction method developed for the purpose of this
research will be a valuable tool for coastal engineers and scientists, achieving adequately accurate
bed level predictions for medium- to long-term simulations compared to the reference simulation,
while simultaneously further reducing numerical burden and model run-times.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-1312/8/8/597/s1:
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