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Abstract: The Multimodal Transportation Educational Virtual Appliance (MTEVA) is an 

application developed within the framework of the broader Coastal Science Educational 

Virtual Appliance (CSEVA) to enhance coastal resiliency through the integration of  

coastal science and transportation congestion models for emergency situations. The first 

generation MTEVA enabled users to perform and visualize simulations using an integrated 

storm surge and inundation model (CH3D-SSMS) and transportation evacuation/return 

modeling system that supports contraflow in a simple synthetic domain (order of tens  

of intersections/roads) under tropical storm conditions. In this study, the second generation 

MTEVA has been advanced to apply storm surge and evacuation models to the greater 

Jacksonville area of Northeast Florida (order tens of thousands of transportation 

intersections/roads). To support solving the evacuation problem with a significantly larger 

transportation network, new models have been developed, including a heuristic capable of 

efficiently solving large-scale problems. After initial testing on several smaller stand-alone 

OPEN ACCESS 



J. Mar. Sci. Eng. 2014, 2 288 

 

 

transportation networks (e.g., Anaheim, Winnipeg), the heuristic is applied to the 

Jacksonville area transportation network. Results presented show the heuristic produces a 

nearly optimal (average optimality gap <0.5%) solution in 90% less wall clock time than 

needed by the exact solver. The MTEVA’s new capabilities are then demonstrated through 

the simulation of a Hurricane Katrina-sized storm impacting the region and studying how 

the evacuation patterns are affected by the closing of roads due to flooding and bridges due 

to high winds. To ensure residents are able to leave the area, evacuations are shown to need 

to have begun at least 36 h prior to landfall. Additionally it was shown that large numbers 

of residents would be left behind if evacuation does not begin within 18 h of landfall and 

~97% would not escape if evacuation did not begin until landfall, when areas of the coast 

that are the most prone to flooding are already cut off from the ―safe‖ nodes of the 

transportation network. 

Keywords: CSEVA; MTEVA; multimodal transportation; storm surge; evacuation 

 

1. Introduction 

Hurricanes, earthquakes, industrial accidents, terrorist attacks and other such emergency situations 

pose great dangers to lives and property. Efficient evacuation during these events is one way to increase 

safety and avoid escalation of damages. The penalties incurred when Hurricane Katrina caught the 

nation off guard were severe. It is estimated that Hurricane Katrina displaced more than 1.5 million 

people and caused economic damages of $40–120 billion [1]. Over the past decade, evacuation 

problems have been given a heightened attention and there are numerous studies available in the 

literature on evacuation strategies [2–7]. 

The evacuation problem has attracted significant scientific interest over the years, and mathematical 

models and approaches have been devised to solve it, based on network flow optimization  

techniques [8]. The problem is formally stated as follows. Given a transportation network G(V,E), 

where each node (intersection) i ϵ V has a set demand di and each arc (road) has a capacity of uij, and a 

set of safe nodes S (destinations), find the optimal routes to safety. Optimality here can be defined in 

different ways: number of evacuees that reach safety, smallest overall time to safety, average time to 

safety. In this effort, we aim to maximize the number of people that are safely evacuated to one of the 

nodes in set S. 

Maximizing the number of people that are safely evacuated to secure areas is often modeled as a 

quickest transshipment problem [9]. Models for solving the problem were proposed in [10], while a 

summary of recent results can be found in [11]. In the context of evacuation, contraflow can be defined 

as the flow that traverses an arc in the reverse way. That is, if an arc (i,j) is reversed, then flow can travel 

from node j to node i. However, when we consider contraflow, the problem becomes NP-hard [12], 

and as such it is inherently more difficult to solve. Hence, in large-scale, realistic transportation 

networks, the size of the problem renders exact approaches impractical, as significant computational 

time and power would be required. Decomposition schemes [13] and heuristics are thus preferred for 

practical reasons. 
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A comprehensive survey was carried out to identify and evaluate the existing techniques for  

solving large-scale evacuation problems available in literature [14]. Recognizing a reasonable level of 

insufficiencies in multimodal transportation, alternate evacuation routes in case of accidents and 

congestion, and heuristic exploration of difficult optimization problems, this survey helped explain the 

deficiencies in current techniques and also identified the features that significantly affect evacuation 

efficiency. At this moment, key approaches to solving evacuation problems (as defined previously) are 

optimization and simulation. In both cases, the factors that come into play are origin-destination 

assignments (i.e., people that need to reach specific safe zones), arc capacities (static or dynamic, 

contraflow), and priorities (for sensitive groups of people or areas). 

The type of optimization or simulation technique can also be used to classify the problem. The most 

widely used approach (and the approach adopted herein) is the maximum dynamic flow problem [15]. 

Other approaches include, but are not limited to, the Dynamic Traffic Assignment Problem [16], 

Macroscopic Simulation Techniques (NETVAC [17] and MASSVAC [18]), and techniques that utilize 

both optimization and simulation, as in the cell based formulation of [19,20]. For more information on 

these techniques, see [20], where 22 evacuation models are compared. 

Evacuation (and return) planning and disaster management are a vital necessity to the coastal areas 

of Florida where tropical storms are an ever present threat. In particular, to better understand how 

tropical storms impact evacuation patterns in coastal areas and to assist in coastal science, transportation, 

and cyberinfrastructure education, research and outreach, the Multimodal Transportation Educational 

Virtual Appliance (MTEVA), has been developed [21]. The MTEVA is an application developed 

within the framework of the broader Coastal Science Educational Virtual Appliance (CSEVA). 

The CSEVA [22] is a unique, self-contained software environment designed to support 

interdisciplinary coastal science education and outreach activities, enabling active, hands-on numerical 

modeling experiments by researchers, stakeholders and the general public. Contained within the 

―virtualized‖ environment of the CSEVA, are the applications that cover a variety of coastal science 

topics. Integration of these applications into a single appliance enhances the user experience (less 

storage requirements, easier to install, linked application scenarios, etc.) and provides a single 

collection of applications that can serve as practical and educational tools to scientists, educators and 

students, alike. In addition to the MTEVA, the CSEVA contains CI-TEAM [23] and SCOOP [24] 

applications as well as built-in and ready to use models and tools such as the atmospheric model WRF 

(Weather Research and Forecasting model) and a fully functional THREDDS Data Server (TDS) [25]. 

The CI-TEAM application simulates the release of a tracer into the waters of the Indian River Lagoon 

estuarine system (Northeast Florida). While, the SCOOP application simulates storm surge and 

inundation in two different domains: a simple domain being impacted by a synthetic storm and 

Charlotte Harbor (southwest Florida) being impacted by various different wind forecasts for Hurricane 

Charley (2004). 

The first generation MTEVA enabled users to perform and visualize simulations using an integrated 

storm surge and inundation model (CH3D-SSMS) and transportation evacuation/return modeling 

system that supports contraflow in a simple synthetic domain (order of tens of transportation 

nodes/arcs) under tropical storm conditions. In this study, the second generation MTEVA has been 

advanced to apply storm surge and evacuation models to the greater Jacksonville area of Northeast 

Florida (order tens of thousands of transportation nodes/arcs). To support solving the evacuation 
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problem with the significantly larger transportation network, several new algorithms have been 

developed including a heuristic. After initial testing on several smaller stand-alone transportation 

networks (e.g., Anaheim, Winnipeg), the heuristic is shown to be near optimal network (average 

optimality gap <0.5%) for the Jacksonville transportation, while the wall clock time necessary to reach 

a solution decreased more than 90%, compared to the time needed to obtain a solution solving the 

optimization problem using an exact solver. The MTEVA’s new capability to simulate the 

transportation network response to a significantly larger network is demonstrated through the 

simulation of a Hurricane Katrina-sized storm impacting the region and studying how the evacuation 

patterns are affected by the closing of roads due to flooding and bridges due to high winds. 

The paper is outlined as follows. First, we give a description of the Storm Surge and Inundation 

Modeling part within the MTEVA, and provide information on its main component, the CH3D-SSMS. 

Further, in Section 3, we introduce notation and provide optimization models to describe the problem. 

We then describe three different methods to tackle the large-scale problem, and compare them in terms 

of solution quality and computational efficiency. In Section 4, a demonstration application is presented 

in which a synthetic storm is bearing down on the Jacksonville area. Finally, Section 5 summarizes the 

findings of this effort and aims to give further insight in future work and approaches on the field. 

2. Storm Surge and Inundation Modeling within the MTEVA 

The core of the MTEVA is a coupled storm surge and transportation network modeling system. 

These models, the optimization engine used to solve the network optimization problem, and all  

of the associated pre- and post-processing utilities are then packaged into the MTEVA. The  

main driver of the coupled modeling system is the storm surge modeling system, CH3D-SSMS  

(e.g., [26]). It includes a high-resolution coastal surge model CH3D, developed by [27,28], which is 

coupled to a coastal wave model SWAN [29] and large scale surge and wave models. Both models can 

receive open boundary conditions from a number of large-scale surge and wave models. Finally, a 

synthetic hurricane wind [30] model is also incorporated into the system that provides wind and 

barometric pressure forcing in the domain. CH3D-SSMS is validated using many recent Atlantic Basin 

hurricanes (e.g., [26]) and is used to produce a FIRM (Flood Insurance Rate Map) for Pinellas County, 

FL. CH3D-SSMS was also used to produce surge atlas which was compared with the SLOSH (the 

model used by the National Hurricane Center) surge atlas. Since 2004, CH3D-SSMS has been 

advanced to provide real-time forecast of hurricane wind, storm surge, wave, and coastal inundation 

for various parts of FL and Gulf coasts during hurricane seasons [26,31]. 

Also, given that the issue of sea level rise (SLR) has garnered attention recently, an option to 

simulate the effect of SLR is included. The SLR values chosen are: the 100-year projections derived 

from a continuation of the approximate local linear trend (+21 cm), the value in between of the nearby 

Mayport (2.40 mm/year) and Fernandina (2.02 mm/year) tide stations through 2006 [32]; the value 

developed for the Intergovernmental Panel on Climate Change (IPCC) mid-range scenario A1B  

(+50 cm) [33]; and an estimate near the upper SLR limits found for several IPCC scenarios in [34]  

(+150 cm). Two algorithms for implementing the SLR physics on storm surge and inundation are 

included. In the first algorithm (―ad-hoc‖), SLR is simply added onto the final simulated water level. In 

the second algorithm (―integrated‖), SLR is added onto the water level boundary and initial conditions 
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used in the model such that the model simulates the end effect of the SLR providing a much more 

realistic estimate of flooding due to SLR as it takes into consideration the hydrodynamics. 

For a given storm surge and inundation simulation, CH3D-SSMS either sends the entire  

simulated response at the completion of the simulation or it sends the response periodically (e.g., once  

every 15 min of simulated time) including the current pattern of storm surge and inundation as well as 

the state (all roads passable, certain roads flooded, etc.) of the transportation network. The state of 

roads (arcs) and intersections (nodes) are based on inundation and wind conditions. Exceeding 

threshold inundation values will mark a road (arc or a node) as impassable and unavailable to be used 

in evacuation. The transportation network optimization model then reads in the state of the network 

along with a set of capacities, demands, etc. and determines the optimal traffic flow either using an 

exact solver or a heuristic approach. 

During a simulation, potential nodes fall into several possible categories: (1) The node is connected 

to one or more other nodes via an arc; (2) The node is isolated and no longer has any connections  

(e.g., due to flooded roads), but may reconnect in the future; or (3) The node has been destroyed and 

will never again be connected to any other nodes (node becomes permanently flooded for the duration 

of the evacuation, so that for the remainder of the evacuation event it cannot be used). Nodes are 

considered destroyed if flooding exceeds some critical value, HNcr. 

Each arc within the network is defined as either a ―road‖ (considered indestructible) or a ―bridge‖. 

Roads are assumed at some height, RA, above (or below) the surrounding topography and become 

unusable if, during the course of a simulation, the water level at any location on the road exceeds some 

critical height, HAcr, above the road. If, at any point of time later the water level retreats, the road 

becomes usable again. Each bridge has its own elevation relative to the simulation vertical datum  

(e.g., NAVD88), BA. If, during the course of a simulation the water reaches the bridge, it is considered 

―destroyed‖ and permanently unusable. Additionally, regardless of water level, bridges are also 

assumed to be impassable during periods of high wind when the wind speed exceeds some critical 

value, WAcr. For practical purposes HNcr is set to 30 cm (about one foot of flooding) and WAcr  

to 45 mph. In reality these number can vary depending on location, but they are in line with actual 

values used by authorities. Critical values can be customized in the system, but not directly in the  

user interface. 

Finally, for the optimization phase, we consider the transportation network as a graph G(V,E), 

where V is the set of nodes and E the set of roads. We further define two costs for the roads, namely 

    and    . The first represents the time/cost to use arc (i,j) ϵ E, while the latter the cost to reverse it, in 

order to allow the contraflow. It is easy to see that in order to reverse a road, some actions are 

necessary; police officers should be employed to control traffic, proper traffic signs should be used, 

etc. For simplicity, we treat every arc the same way, hence            

3. The Transportation Network Assignment (aka Evacuation) Model 

Within the MTEVA, three algorithms are now available to solve the transportation network 

assignment (aka evacuation) problem: (1) Time Static—a fast algorithm that works with a single time 

instance attempting to move as many people as possible to safety (any node in the set S) and is then 

iterated for multiple time steps; (2) Time Dynamic—attempts a planned evacuation, however, adding 
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the time dimension to the problem increases its size and thus takes significantly longer to solve;  

(3) Heuristic—a compromise between the computational time and problem complexity. Coupled to the 

surge model—the transportation model operates based on knowledge about flooding extents and 

dynamics. The mathematical models that arise within the time static, time dynamic heuristic, along 

with the model of the time dynamic version (exact) are all solved using the GNU Linear Programming 

Kit (GLPK) contained within the MTEVA. 

3.1. Algorithms and Implementation 

In this section, we first give the notation (Table 1) and the necessary information we need, and then 

proceed to formulate the problem as a mixed-integer linear program. We also propose two heuristic 

approaches, and evaluate their efficiency in synthetic and real transportation networks. The two 

heuristic approaches can be summarized as: (1) Iteratively solve each discrete time step, updating each 

node’s demand and status (Time Static); (2) Heuristically solve the time dynamic version (NP-Hard) of 

the problem, after smartly selecting the arcs to be reversed (Time Dynamic Heuristic). Solving the  

NP-hard problem provides an optimal solution as to the routes that each vehicle needs to use, and the 

routes that need to be reversed in order to achieve maximum efficiency. On the other hand, both  

Time Static and Time Dynamic Heuristics provide approximate solutions that can be significantly 

faster to compute. The results show that the heuristics developed produce solutions within reasonable 

optimality gaps, and are significantly faster to compute. 

Table 1. Notation used to describe the transportation network,       , of a region and the 

mathematical model. 

Sets 

V The set of all nodes (intersections) in the network. 

E The set of all arcs (roads) in the network 

S The set of nodes that are considered safe 

Input Parameters 

    The capacity of arc        . For any two nodes        ,      . 

  
  A binary input parameter that is equal to 0 if node   is destroyed at time  , or 1 otherwise. 

   
  A binary input parameter that is equal to 0 if arc       is destroyed at time  , or 1 otherwise. 

  The budget of arcs that can be reversed during the evacuation process. 

Variables to be Optimized 

  
  The demand of node     at time    .   

  is the initial demand of node   and is given. 

   
  The flow on arc         at time    . 

    A binary variable that is equal to 1 if arc         is reversed, or 0 otherwise. 

The first approach, Time Static [21], involves the decomposition of the big, time dynamic, problem 

into smaller problems, each considered as one discrete time step. The final solution is essentially the 

collection of all partial solutions, obtained after each step. However, this approach is myopic as it does 

not consider future consequences. For example, evacuations are performed without any consideration 

of which areas are physically closer to being flooded and thus, need to be evacuated first. 

On the other hand, the second approach (Time Dynamic Heuristic) considers future consequences, 

and selects routes and road reversals that are going to maximize the number of people that reach safety 
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in the end, rather than at each time step. The heuristic uses model information to locate the arcs that 

seem to be bottlenecks for the evacuation process. This approach is based on the ―shadow prices‖ of 

the capacity constraint set of the original problem. In mathematical programming, every linear 

program has its dual, which is typically used to extract information on the model and the solution. The 

capacity constraints state that the flow on any road at any time has to satisfy the capacity of the  

road     
       without consideration of contraflow. The dual multiplier of this set of constraints 

represents the increase in the number of evacuees, if the capacity of the arcs were bigger. However, 

this assumes that the number of evacuees is much bigger (which might not be the case). Now, let     be 

the dual multipliers of the relaxed constraint. Selecting the   arcs with the biggest         gives a 

greedy approach on the   arcs that should be reversed. 

After the arcs have been reversed, the remaining problem is a large-scale, time-dynamic evacuation 

problem that can be solved as a quickest transshipment problem [9]. We, instead, dualize the capacity 

constraints, and augment them, based on an Augmented Lagrange duality iterative scheme. 

The two heuristic approaches can be summarized as follows: 

 Time Static [21] 

o Everyone evacuates simultaneously. Future events (congestion/flooding) not considered. 

o Decomposition into discrete, smaller problems, each considering only one time step. 

 Time Dynamic Heuristic (Present Study) 

o Evacuation is phased. Future events (congestion/flooding) are considered. 

o Relaxation involves the selection of the arcs to be reversed. 

o Locates the arcs that would benefit evacuation the most (if equal demand everywhere). 

o Resulting formulation of a dynamic network flow problem is solved using the Augmented 

Lagrange relaxation approach. 

The formulation can be given as 

         
 

             (1) 

      
      

      
 

                 
 

                        
    (2) 

   
                              

    (3) 

               (4) 

   
                   (5) 

  
               (6) 

                    (7) 

The objective function in (1) ensures that the number of people exiting the ―unsafe‖ areas of the 

network and entering a secure location (safe zone) is maximized. Constraint (2) is the time-dynamic 

counterpart of the well-known flow conservation constraint in network flow problems. Then, the 

capacity of the arcs is set in constraint (3). Observe that when an arc is reversed, its capacity is added 

to the one of the opposite direction. For simplicity, we assume that for a one-way road (i,j), there exists 

a reverse direction road (j,i) as well with a capacity of uij = 0. Equation (4) is a typical budget 
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constraint that ensures no more than K arcs can be reversed. The reason for that limitation is logistical; 

reversing a road takes time and needs to be done carefully. Hence, it is realistic to assume a limit on 

that number. Last, constraints (5)–(7) define the restrictions on the variable values. 

Observe that in an optimal solution, no road (i,j) can have positive values for the flows xij and xji. 

The proof, which is done by contradiction, can be found in Lemma 1 of [13]. 

3.2. Computational Results 

The key advantage of the heuristics developed herein are that they are computationally efficient. 

This is particularly important as events which lead to mass evacuations can be unpredictable. For 

example, Hurricane Charley (2004) was forecast to make landfall in Tampa Bay, FL. Within 24 h of 

making landfall, the storm made an abrupt turn to the right and residents of the Charlotte Harbor area 

(several hundred miles to the South of Tampa Bay) had little time to evacuate. In this section, we 

present the results of a computational study using the MTEVA to show how the heuristic performs on 

both synthetic and real transportation networks and show the heuristics feasibility for potential use in 

real-time evacuation planning. Three algorithms are compared: (1) the exact method (i.e., optimizing 

using GLPK); (2) the time static heuristic; and (3) the time dynamic heuristic. Findings are reported in 

terms of ―optimality gaps‖ (difference between the estimated values calculated by the heuristic and the 

exact values) and the computational time required to reach a solution. In our approach, we measure the 

objective function by the number of evacuees that reached a safe node within the time horizon. Each 

algorithm is written in C++, and the numerical experiments were performed on a server with two 

AMD Opteron 6128 Eight-Core CPUs and 12 GB of RAM, running Linux x86_64, CentOS 5.9. Even 

though the server supports parallelization, at the moment the algorithms are not implemented  

in parallel. 

The computational experiments were designed as follows. First, 5 synthetic networks of  

different sizes ranging from 20 to 10,000 nodes were created, where 5%–10% of the nodes were,  

at random, selected to serve as safe areas. Then, the three approaches (exact, time static, and  

heuristic) were tested, reporting their respective optimality gaps and computational time. In  

addition, real transportation networks from a set of well-known transportation network test problems 

(Anaheim, Austin, Philadelphia, Sioux Falls, and Winnipeg) [35] were optimized. The safety nodes for 

the real networks were randomly selected and the optimization process was repeated 10 times for each 

network. On the other hand, for the Jacksonville transportation network, the set of safe nodes was 

known in advance, and hence, only one experiment was performed. 

From the results of the numerical experiments, it can be seen that the optimality gap is small and the 

computational time was reduced significantly as compared to the exact solver. For example, for large 

network (10,000 nodes) simulations performed using synthetic transportation networks (Tables 2 and 3), 

the time static heuristics is shown to decrease simulation time on average by 89% while providing  

a result on average within 8.11% of being optimal. For the more realistic time dynamic heuristic, 

simulation time is cut by 87% and optimality is within 1.99%. Similar results can be seen when 

simulating real transportation networks (Tables 4 and 5). 
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Table 2. Time Static Heuristic Statistics on Synthetic Networks. 

Network Size 

(nodes) 

Average Optimality 

Gap (%) 

Maximum 

Optimality Gap (%) 

Average Time 

Decrease (%) 

Maximum Time 

Decrease (%) 

20 0.28 1.27 81 89 

100 0.41 3.89 85 92 

500 0.80 8.02 87 93 

1000 2.54 14.47 87 94 

10,000 8.11 31.12 89 97 

Table 3. Time Dynamic Heuristic Statistics on Synthetic Networks. 

Network Size 

(nodes) 

Average Optimality 

Gap (%) 

Maximum 

Optimality Gap (%) 

Average Time 

Decrease (%) 

Maximum Time 

Decrease (%) 

20 0.19 1.01 79 85 

100 0.24 1.15 85 89 

500 0.55 2.01 86 90 

1000 1.54 3.60 87 90 

10,000 1.99 4.41 87 91 

Table 4. Time Static Heuristic Statistics on Real Networks. |V| indicates the number of nodes. 

Network (nodes) 
Average Optimality 

Gap (%) 

Maximum 

Optimality Gap (%) 

Average Time 

Decrease (%) 

Maximum Time 

Decrease (%) 

Sioux Falls 

(|V| = 24) 
0.00 0.00 75 90 

Anaheim 

(|V| = 416) 
1.08 1.17 85 90 

Winnipeg 

(|V| = 1057) 
3.02 3.66 86 92 

Austin 

(|V| = 7388) 
6.97 7.11 86 94 

Philadelphia 

(|V| = 13,389) 
14.90 20.00 90 97 

Table 5. Time Dynamic Heuristic Statistics on Real Networks. |V| indicates the number of nodes. 

Network (nodes) 
Average Optimality 

Gap (%) 

Maximum 

Optimality Gap (%) 

Average Time 

Decrease (%) 

Maximum Time 

Decrease (%) 

Sioux Falls (|V| = 24) 0.00 0.00 72 86 

Anaheim (|V| = 416) 0.00 0.00 76 88 

Winnipeg (|V| = 1057) 0.00 0.00 76 88 

Austin (|V| = 7388) 0.98 2.11 77 92 

Philadelphia (|V| = 13389) 3.25 3.89 82 92 

3.3. Virtual Appliance Performance 

Virtual machines, as can be used in the MTEVA, do not provide the same computation efficiency  

as native hardware due to I/O overhead, etc. However, test simulations indicate (Table 6) that  
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this overhead is fairly small and is more than compensated for by the computational efficiently 

improvements of the heuristics. 

Table 6. Computational overhead due to performing simulations in the virtual MTEVA environment. 

Algorithm Computational Overhead 

Time Static +4.2% 

Time Dynamic +4.8% 

Heuristic +6.2% 

4. Demonstration Application to the NE Florida Coast 

The MTEVA’s enhanced ability to simulate the evacuation patterns in significantly larger 

transportation networks (in a reasonable amount of time) using a heuristic are demonstrated through 

the simulation of a Hurricane Katrina-sized storm impacting the Northeast Florida coastal region and 

studying how the evacuation patterns are affected by the closing of roads due to flooding and bridges 

due to high winds. Results within the MTEVA are presented using high-level, standards-compliant, 

GUI-driven interfaces. Specifically, CH3D-SSMS output is written as NetCDF compliant with CF 

(climate forecasting) conventions, which enables the use of a TDS to provide access to data and 

simplify visualization. OpenLayers is then used to bring together the mapping of storm surge and 

transportation results. As part of the second generation MTEVA, the interactive interface is now 

developed using AJAX and PHP (Figure 1 shows the simulation setup and Figure 2 shows 

visualization of results as examples of the first generation interface). 

Storm surge and inundation in the Northeast Florida region is simulated using a high resolution 

(100 m) CH3D-SSMS model for Northeast Florida (255 × 1201 cells), which domain spans from West 

Palm Beach to the Florida/Georgia border and extends ~40 km offshore. This model is then coupled 

with the transportation network that is based on the newest NERPM4 (NorthEast Regional Planning 

Model version 4, created for Northeast Florida (Figure 3) ―2005 base‖ MTEVA configuration. The 

network includes 28,585 nodes and 57,814 links. Demands at the nodes are obtained by combining 

different types of demands (various types of cars, public transportation, etc.) data from the NERPM4 

as the current network optimization model does not differentiate between different transportation modes. 

Figure 1. User interface for the simple network MTEVA configuration featuring a 

synthetic tropical storm making landfall in an idealized domain with a bay. 
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Figure 2. Simulated transportation network response to the synthetic storm making landfall 

in an idealized domain. The initial configuration of the transportation network is shown on 

the left while the simulated network assignment and storm surge and inundation as the 

storm approaches is shown on the right. 

  

Figure 3. NERPM4 road capacities (left) and demands (right). 

  

To assess the efficiency of the newly developed heuristic for the Northeast Florida transportation 

network, another set of computational experiments was performed (Table 7). As with the experiments 

presented earlier, both the original and newly developed heuristics are shown to significantly improve 

the speed at which the evacuation problem can be solved. 
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Table 7. Efficiency of the heuristics for the Northeast Florida network. 

Heuristic 
Average Optimality 

Gap (%) 

Maximum Optimality 

Gap (%) 

Average Time 

Decrease (%) 

Maximum Time 

Decrease (%) 

Static 14.51 14.51 88 88 

Dynamic 4.33 4.33 80 80 

The simulation of several different Northeast Florida scenarios can be performed within the 

MTEVA based on a synthetic storm, similar in size to Hurricane Katrina, making landfall on the east 

coast of Florida in presence of varying amounts of SLR (Figure 4). Inputs are provided through a 

simple interface which allows for variation of network assignment algorithm, amount of SLR, SLR 

algorithm, etc. The atmospheric storm wind and pressure gradient forcing is supplied by an analytic 

wind model [30] which uses a synthetic Katrina-like (size/intensity) storm track that makes landfall in 

the region. After completion, simulated storm surge and inundation are displayed in an interface 

(Figure 5) which allows map navigation along with the ability to toggle display layers (surge and 

inundation, transportation network, background layers, etc.). For reference, using relatively modern 

computational hardware, the evacuation model building and optimization phase, using a commercial 

solver, takes ~25 h to compute using the exact solver, due in part to the large-scale model and inherent 

difficulty of the problem. 

The Northeast Florida MTEVA configuration provides an opportunity to study how timing of 

evacuation affects the ability to do it as well as how SLR may potentially impact evacuation plans. As 

a demonstration application under present day conditions (no SLR), Figure 6 shows the use of 

evacuation routes at different times (5 and 2 h until landfall, respectively, with evacuation starting 48 h 

before landfall) and how traffic patterns change as a bridge closes due to high wind intensity and 

Figure 7 shows changes in local traffic routes due to flooding of roads (snapshots of traffic 3 and 2 h 

until landfall are shown). 

Figure 4. Interface for the Northeast Florida MTEVA configuration showing the track and 

intensity of the synthetic storm. 
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Figure 5. Visualization of model simulation results. 

 

Figure 6. Comparison of evacuation routes at different time instances three hours apart.  

In the second case the evacuees are forced to take Acosta Bridge (right) because of the 

inaccessibility of the Fuller Warren Bridge (which is otherwise the preferred route, left) 

due to high wind intensity. 

 

Full Warren Bridge 

 

Acosta Bridge 

To determine the optimal time to begin an evacuation, a series of simulations were performed using 

different evacuation times. Figure 8 illustrates the number of people located in areas that flood that  

will not have enough time to evacuate as a function of evacuation start time. For the particular 

demonstration application presented, all evacuations that start at least 36 h prior to hurricane landfall 

are 100% successful in evacuating flooded areas. However, the number of people unable to escape 

increases dramatically if an evacuation has not begun at least 18 h prior to landfall with about 97% loss 

if evacuation starts at landfall. This is not surprising as areas near the coast that are the most prone to 

flooding are already cut off from the ―safe‖ nodes of the transportation network. 
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Figure 7. Raised water level alters local traffic patterns due to flooding of roads and intersections. 

  

Figure 8. Estimated percentage of the number of people in flooded areas unable to 

evacuate (loss) as a function of evacuation start time. 

 

5. Summary and Conclusions 

Enhancements to a unique, self-contained, software environment, the MTEVA, have been presented. 

The MTEVA seeks to assist in coastal science, transportation and cyberinfrastructure research, education 

and outreach by creating a coupled modeling system capable of simulating the transportation  

network response in synthetic and real physical domains to a system subject to high winds, storm 

surge, and inundation. The MTEVA allows individual science components to be brought together in a 

simple-to-use infrastructure where users can focus on learning the science instead of trying to setup 

and perform simulations. 

While there are countless possible uses of the MTEVA, three will be highlighted. First, the 

MTEVA would be well suited for use by planners and organizers of emergency preparedness exercises 

who need to develop (in an easy-to-use fashion) realistic scenarios of conditions and transportation 

network conditions before (evacuation), during, and after (return) a storm. Second, the MTEVA  

is now, thanks to the inclusion of a heuristic, well suited towards ―real-time‖ use in an Emergency 
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Operations Center (EOC) (i.e., after evacuation has occurred) to assist first responders in predicting 

specific transportation infrastructure which may be impassable. Finally, the MTEVA is ideally suited 

for deployment in educational environments where students of all skill levels can learn, through  

hands-on activities, about: storm surge and inundation, transportation engineering and optimization. 

In summary, the MTEVA: 

 contains a storm surge and inundation modeling system coupled with a transportation network 

optimization model capable of simulating lane reversal. The coupled modeling system is then 

applied to both synthetic and real domains. 

 demonstrates and promotes interoperability through its use of a THREDDS Data Server (TDS) 

for distribution and visualization of results. At the most basic level, users can access the MTEVA 

through the web-based GUI. However, more advanced users are able to setup and perform 

simulations using the scheduling interfaces directly (e.g., using the ―condor_submit‖ command). 

 is completely configurable, customizable and expandable. Because the tools, scripts, web 

interfaces, etc. are located within the MTEVA; any individual component can be altered to meet 

an individual user’s needs. For example, locations of nodes modified, additional network 

nodes/arcs can be added, or demands and capacities changed. 

 provides an educational environment useful for students of coastal science, cyberinfrastructure, 

and transportation engineering. For example, coastal science students can better understand how 

storm surge impacts a domain given storm strength, domain shape, etc. Cyberinfrastructure 

students can focus on the technical details of the MTEVA itself along with its web interfaces, 

databases and scripting technologies used behind the scenes. Transportation engineering students 

could investigate how the use of lane reversal can be optimized during a storm event. Finally, 

transportation practitioners in Northeast Florida could use the MTEVA to investigate how their 

domain responds to different synthetic tropical storms. 

As part of this study, the MTEVA has been enhanced to includes three algorithms for solving the 

transportation network optimization problem for evacuation: (1) Time Static—a fast algorithm that 

works with a single time instance attempting to move as many people of possible to safety and is then 

iterated for multiple time steps; (2) Time Dynamic—attempts a planned evacuation, however, adding 

the time dimension to the problem increases its size and thus takes significantly longer to solve;  

(3) Heuristic—a compromise between the computational time and problem complexity. 

The heuristic was shown to be able to successfully simulate large scale transportation networks with 

only a small optimality gap but a large decrease in computational time. For example, when using the 

realistic time dynamic heuristic, simulation time is cut by 87% (~3 h to obtain a heuristic solution, 

compared to ~25 h to solve the problem exactly) and optimality is within 1.99%, making the heuristic 

highly suitable for simulation of the large Northeast Florida MTEVA configuration (also implemented 

as part of this study) which is based on the NERPM transportation network. 

Finally, a demonstration application was presented which illustrates how the MTEVA can be used 

to better understand how storm surge and inundation impacts key evacuation travel routes and leads to 

an increase in non-recurrent congestion. Through better understanding of such impacts, emergency 

managers and planners can better optimize evacuation/return routes increasing coastal resiliency. 

  



J. Mar. Sci. Eng. 2014, 2 302 

 

 

Acknowledgments 

This work was funded by the UF Center for Multimodal Solutions for Congestion Mitigation 

(CMS) (2009-010 and 2011-017) and the University of Florida. 

Author Contributions 

J.R.D. led the integration of the coastal science with the transportation models for emergency 

situations. V.A.P. and Y. P. S. performed the simulations of storm surge and inundation and developed 

the visualization and interfaces for the MTEVA. C.V. and P.M.M. developed and performed the 

computational analysis on the enhanced transportation evacuation/return modeling system. R.J.F., one 

of the original developers of the underlying Virtual Appliance software, assisted with its use by  

the MTEVA. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Hurricane Katrina: Performance of Transportation Systems. In Technical Council on Lifeline 

Earthquake Engineering Monograph; DesRoches, R., Ed.; American Society of Civil Engineers: 

Reston, VA, USA, 2006. 

2. Wolshon, B.; Urbina Hamilton, E.; Levitan, M.; Wilmot, C. Review of Policies and Practices for 

Hurricane Evacuation. II: Traffic Operations, Management, and Control. Nat. Hazards Rev. 2005, 

6, 143–161. 

3. Gwynne, S.; Galea, E.R.; Owen, M.; Lawrence, P.J.; Filippidis, L. A review of the methodologies 

used in the computer simulation of evacuation from the built environment. Build. Environ. 1999, 

34, 741–749. 

4. Kuligowski, E.D.; Peacock, R.D. A Review of Building Evacuation Models; National Institute of 

Standards and Technology, Technology Administration, U.S. Department of Commerce: 

Washington, DC, USA, 2005; p. 156. 

5. Radwan, E.; Mollaghasemi, M.; Mitchell, S.; Yildirim, G. Framework for Modeling Emergency 

Evacuation; Center for Advanced Transportation Systems Simulation, University of Central 

Florida: Orlando, FL, USA, 2005; p. 47. 

6. The Volpe National Transportation Systems Center. Improving Regional Transportation Planning 

for Catastrophic Events (FHWA); Volpe Center Highlights: Cambridge, MA, USA, 2002. 

7. Howe, D. Planning Scenarios: Executive Summaries; Homeland Security Council: Washington, 

DC, USA, 2004. 

8. Ahuja, R.K. Network Flows: Theory, Algorithms, and Applications; Prentice Hall: Englewood 

Cliffs, NJ, USA, 1993. 

9. Hoppe, B.; Tardos, É. The Quickest Transshipment Problem. Math. Oper. Res. 2000, 25, 36–62. 

10. Yamada, T. A network flow approach to a city emergency evacuation planning. Int. J. Syst. Sci. 

1996, 27, 931–936. 



J. Mar. Sci. Eng. 2014, 2 303 

 

 

11. Lu, Q.; George, B.; Shekhar, S. Capacity Constrained Routing Algorithms for Evacuation 

Planning: A Summary of Results. In Advances in Spatial and Temporal Databases;  

Bauzer Medeiros, C., Egenhofer, M.J., Bertino, E., Eds.; Springer Berlin Heidelberg: Berlin, 

Heidelberg, Germany, 2005; Volume 3633, pp. 291–307. 

12. Rebennack, S.; Arulselvan, A.; Elefteriadou, L.; Pardalos, P.M. Complexity analysis for 

maximum flow problems with arc reversals. J. Comb. Optim. 2010, 19, 200–216. 

13. Vogiatzis, C.; Walteros, J.L.; Pardalos, P.M. Evacuation Through Clustering Techniques. In 

Models, Algorithms, and Technologies for Network Analysis; Goldengorin, B., Kalyagin, V.A., 

Pardalos, P.M., Eds.; Springer New York: New York, NY, USA, 2013; Volume 32, pp. 185–198. 

14. Pardalos, P.M.; Arulselvan, A. Multimodal Solutions for Large Scale Evacuations; University of 

Florida: Gainesville, FL, USA, 2009; p. 53. 

15. Ford, L.R. Flows in Networks. In Princeton Landmarks in Mathematics; Princeton University 

Press: Princeton, NJ, USA, 2010. 

16. Merchant, D.K.; Nemhauser, G.L. A Model and an Algorithm for the Dynamic Traffic 

Assignment Problem. In Traffic Equilibrium Methods; Florian, M.A., Ed.; Springer Berlin 

Heidelberg: Berlin, Heidelberg, Germany, 1976; Volume 118, pp. 265–273. 

17. Sheffi, Y.; Mahmassani, H.S.; Powell, W.B. NETVAC1 : A Transportation Network Evacuation 

Model; Center for Transportation Studies, Massachusetts Institute of Technology: Cambridge, 

MA, USA, 1980. 

18. Radwan, A.E.; Hobeika, A.G.; Sivasailam, D. A computer simulation model for rural network 

evacuation under natural disasters. Inst. Transp. Eng. J. 1985, 55, 25–30. 

19. Zou, N.; Yeh, S.-T.; Chang, G.-L.; Marquess, A.; Zezeski, M. Simulation-Based Emergency 

Evacuation System for Ocean City, Maryland, During Hurricanes. Transp. Res. Rec. 2005, 1922, 

138–148. 

20. Liu, Y.; Lai, X.; Chang, G.-L. Cell-Based Network Optimization Model for Staged Evacuation 

Planning Under Emergencies. Transp. Res. Rec. 2006, 1964, 127–135. 

21. Davis, J.R.; Paramygin, V.A.; Tutak, B.; Sheng, Y.P.; Zheng, Q.P.; Pardalos, P.M.; Figueiredo, R.J. 

Development of a Multimodal Transportation Educational Virtual Appliance (MTEVA) to study 

congestion during extreme tropical events. In Proceedings of the Transportation Research Board 

91st Annual Meeting, Washington, DC, USA, 22–26 January 2012. 

22. Davis, J.R.; Paramygin, V.A.; Figueiredo, R.J.; Sheng, Y.P.; Vogiatzis, C.; Pardalos, P.M.  

The Coastal Science Educational Virtual Appliance (CSEVA). In Proceedings of the 12th 

International Conference on Estuarine and Coastal Modeling, St. Augustine, FL, USA,  

7–9 November 2011; Spaulding, M.L., Ed.; American Society of Civil Engineers: Reston, VA, 

USA, 2012; pp. 359–377. 

23. Davis, J.R.; Figueiredo, R.J.; Sheng, Y.P.; Fortes, J.A.; Ganguly, A.; Paramygin, V.A.;  

Wolinsky, D.I.; Zhang, J.; Tutak, B. Application of emerging cyberinfrastructure technologies to 

aid in the education and training of coastal and estuarine scientists. J. Ocean Technol. 2010, 5, 

56–80. 

  



J. Mar. Sci. Eng. 2014, 2 304 

 

 

24. Davis, J.R.; Paramygin, V.; Tutak, B.; Juste, P.S.; Figueiredo, R.J.; Sheng, Y.P.  

Advancing Educational Capacity: Using the SCOOP Educational Virtual Appliance. In 

Proceedings of the 11th International Conference on Estuarine and Coastal Modeling, Seattle, 

WA, USA, 4–6 November 2009; Spaulding, M.L., Ed.; American Society of Civil Engineers: 

Reston, VA, USA, 2010; pp. 201–220. 

25. Davis, J.R.; Paramygin, V.A.; Figueiredo, R.J.; Sheng, Y.P. Using Virtualization to Integrate 

Weather, Climate, and Coastal Science Education. In Proceedings of the American Geophysical 

Union Fall Meeting, San Francisco, CA, USA, 3–7 December 2012. 

26. Sheng, Y.P.; Alymov, V.; Paramygin, V.A. Simulation of storm surge, wave, currents, and 

inundation in the Outer Banks and Chesapeake Bay during Hurricane Isabel in 2003: The 

importance of waves. J. Geophys. Res. 2010, 115, C04008; doi:10.1029/2009JC005402. 

27. Sheng, Y.P. On modeling three-dimensional estuarine and marine hydrodynamics. In  

Three-Dimensional Models of Marine and Estuarine Dynamics; Nihoul, J.C.J., Jamart, B.M., Eds.; 

Elsevier: Amsterdam, The Netherlands, 1987; pp. 35–54. 

28. Sheng, Y.P. Evolution of a three-dimensional curvilinear-grid hydrodynamic model for estuaries, 

lakes and coastal waters: CH3D. In Proceedings of the Estuarine and Coastal Circulation and 

Pollution Transport Model Data Comparison Specialty Conference on Estuarine and Coastal 

Modeling; Spaulding, M.L., Ed.; American Society of Civil Engineers: Reston, VA, USA, 1990; 

pp. 40–49. 

29. Booij, N.; Ris, R.C.; Holthuijsen, L.H. A third-generation wave model for coastal regions: 1. 

Model description and validation. J. Geophys. Res. 1999, 104, 7649–7666. 

30. Holland, G.J. An Analytic Model of the Wind and Pressure Profiles in Hurricanes. Mon. Weather 

Rev. 1980, 108, 1212–1218. 

31. Sheng, Y.P.; Paramygin, V.A.; Alymov, V.; Davis, J.R. A Real-Time Forecasting System for 

Hurricane Induced Storm Surge and Coastal Flooding. In Proceedings of the Ninth International 

Conference on Estuarine and Coastal Modeling, Charleston, SC, USA, 31 October–2 September 

2005; Spaulding, M.L., Ed.; American Society of Civil Engineers: Reston, VA, USA, 2006;  

pp. 585–602. 

32. Zervas, C. Sea Level Variations of the United States: 1854–2006; Center for Operational 

Oceanographic Products and Services, National Oceanic and Atmospheric Administration: Silver 

Spring, MD, USA, 2009; p. 194. 

33. Meehl, G.A.; Stocker, T.F.; Collins, W.D.; Friedlingstein, P.; Gaye, A.T.; Gregory, J.M.; Kitoh, A.; 

Knutti, R.; Murphy, J.M.; Noda, A.; et al. Global Climate Projections. In Climate Change 2007: 

The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of 

the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., 

Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: 

Cambridge, UK; New York, NY, USA, 2007. 

34. Vermeer, M.; Rahmstorf, S. Global sea level linked to global temperature. Proc. Natl. Acad. Sci. 

USA 2009, 106, 21527–21532. 

  



J. Mar. Sci. Eng. 2014, 2 305 

 

 

35. Bar-Gera, H. Transportation Network Test Problems. Available online: http://www.bgu.ac.il/ 

~bargera/tntp/ (accessed on 5 May 2013). 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


