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Abstract: The diverse nature of hull components in shipbuilding has created a demand for intelligent
robots capable of performing various tasks without pre-teaching or template-based programming.
Visual perception of a target’s outline is crucial for path planning in robotic edge grinding and other
processes. Providing the target’s outline from point cloud or image data is essential for autonomous
programming, requiring a high-performance algorithm to handle large amounts of data in real-time
construction while preserving geometric details. The high computational cost of triangulation has
hindered real-time industrial applications, prompting efforts to improve efficiency. To address this,
a new improvement called Directive Searching has been proposed to enhance search efficiency by
directing the search towards the target triangle cell and avoiding redundant searches. Another
improvement, Heritable Initial, reduces the search amount by inheriting the start position from
the last search. Combining Directive Searching and Heritable Initial into a new method called
DSHI has led to a significant efficiency advancement, with a calculation efficiency improvement
of nearly 300–3000 times compared to the ordinary Bowyer–Watson method. In terms of outlines
extraction, DSHI has improved the extraction efficiency by 4–16 times compared to the ordinary
Bowyer–Watson methods, while ensuring stable outlines results, and has also increased the extraction
efficiency by 2–4 times compared to PCL. The DSHI method is also applied to actual ship component
edge-grinding equipment, and its effect meets the shipbuilding process requirements. It could be
inferred that the new method has potential applications in shipbuilding and other industries, offering
satisfying efficiency and robustness for tasks such as automatic edge grinding.

Keywords: intelligent manufacture; machine vision; vision-guided robot; Delaunay triangulation;
outline extraction

1. Introduction

In the shipbuilding industry, most edge-grinding jobs, which is required for all marine
components before painting, are still performed manually, costing considerable time and
labor, as shown in Figure 1. Meanwhile, metal dust and noise generated by grinding is
health-hazardous. This proposes the demand of autonomous grinding. However, compo-
nents of marine structures are naturally of various shapes and sizes with huge amounts, but
the batch size of each type is relatively small. Conventional industrial robots rely on manual
teaching or programming, which has to be carried out repetitively for each different product
type. The current reliance on manual intervention has significantly impeded the advance-
ment of automation in the shipbuilding industry. In contrast, vision-guided robots that
could be automatically reprogrammed on products’ shape are free from repetitive manual
teaching or model-based programming, which greatly improved the production efficiency
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for small batches of multiple types of components. Hence, developing a vision-guided
robot grinding system may be an optimized solution.

Figure 1. (a) Manual edge grinding of ship components; (b) Ship components in various shapes
and sizes.

There are several key techniques to realize the vision-guided robot system. Some of
these techniques, like vision-based calibration, trajectories and programming, have been
solved in previous studies. Outline extraction is the last piece to be filled. Vision data, like
point clouds from laser scanning or images from a camera, are commonly used to generate
workpieces’ shapes. Conventionally, edge detection operators like Roberts, Sobel and
Prewitt are employed in providing an outline of pixel images, and Graham scan produces a
desirable outline for points in convex shapes. Meanwhile, outline extraction from points in
concave shapes poses challenges to both academic research and industrial applications. The
difficulty appears in two aspects. First, it is expected to produce results that meet human’s
visual perception for random-shaped components. In practice, the algorithm faces the
dilemma of being flexible and stable. The algorithm should be adjustable to provide robust
results in different detail levels and will not be over-sensitive, to avoid inevitable errors in
points data. Second, the rapidity is crucial since point clouds are mostly in mega-amounts.

Through the research of actual intelligent edge-grinding equipment, the improvement
of the recognition efficiency will significantly impact the production efficiency of the overall
edge-grinding equipment. For some hull components that require double-sided edge grind-
ing, the effect of improved recognition efficiency will be more significant. For the purpose
of visual-guided robotic edge grind of hull components, the Delaunay triangulation-based
method is studied here to generate acceptable outline shapes of points from randomly
shaped hull components. This paper introduces recent attempts to improve the robustness
and efficiency of the algorithm in Section 3. Section 4 verifies the algorithm with point
cloud data from test pieces and discusses the potential of a vision-guided working mode in
small-batch production.

2. Related Work

In many cases, robots are manually programmed. However, the evolution towards
automated robot systems sustains different manufacturing processes. Leo and Selvaraj
developed a vision-guided deburring system for rectangle workpieces [1]. Tellaeche and
Arana achieved the CAD model-based robotic deburring [2]. Wenlong Li [3] solved the
hand–eye calibration problem for grinding. Studies mentioned above are more emphasized
on a robot’s motion control, while the irregular shape of the workpiece is not mentioned.

For objects in complex shapes, Theodosios [4] proposed and discussed the skeletoniza-
tion methods, which leads to the Medial axis transform (MAT). The MAT is implemented in
mapping and construction because it provides a compact presentation of geometry. How-
ever, MAT is easily disturbed by perturbation. Meanwhile, a rare study was conducted
from the view of the shipbuilding industry, which emphasizes efficiency and robustness.
The gap between mathematical algorithms to the implementation of small-batch production
is unfilled.
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Research on extracting outlines from visual data poses challenges due to the com-
plexity and variations of target objects. For objects in regular polygon shape, attempts of
outline segment segmentation and regularization were performed through Ordered Hough
Transform (OHT) by Widyaningrum [5], or through a Ransac-based method by Lucas and
Van Tilburg [6]. For objects in complex shapes, alpha shape is well accepted as the outline
shape in the visual perception of discrete data points. Edelsbrunner [7] introduced the
creation of outlines from a selection of boundary points by the alpha shape algorithm.
This leads attention towards the geometry-based outline extraction methods for planar
shape, including Voronoi diagrams and Delaunay triangulation [8]. This topic also arises
in satellite remote sensing imagery. Zollini and Dominici [9] contributed to the shoreline
extraction from SAR and optical images.

The Delaunay triangulation is unique for any fixed set of points. It is studied thor-
oughly and applied in many fields, like meshing for finite element analysis, mapping for
geographical information systems (GIS) [10], and surface reconstruction for reverse engi-
neering [11]. The study focuses on algorithm generating Delaunay triangulation also draws
attention. The methodology of previous work on Delaunay triangulation could be classified
into several categories, namely incremental insertion algorithm [12], divide-and-conquer
algorithm [13], gift wrapping algorithm [14], triangle expanding algorithm [15], sweep line
algorithm [16] and convex-hull-based algorithm [17]. According to Su’s comparison [18],
the algorithms mentioned above have different advantages and disadvantages, suited for
various demands in different fields. With the rapid development of computer hardware,
algorithm work on parallel computation [19–24] has emerged in recent years. Among these,
the workflow of incremental insertion is flexible and friendly to points appending or re-
moving. Thus, it is applied in cases with a demand for frequent point editing. However, the
incremental insertion method is associated with a significant computational cost, which is
particularly challenging given the mega data involved in point clouds. Enhanced efficiency
in this regard would be highly beneficial in expanding its application scope.

3. Methodology

The alpha shape is well known for its capability to preserve small shape details of a
finite point set at a required level of detail [10]. The alpha shape is defined in terms of α,
which effects the boundary’s detail level. As α varies, the alpha shapes can change from
the points themselves to the convex hull, as shown in Figure 2.

Figure 2. (a) Points of concave object; (b) Alpha shape of points (1/α = 100); (c) Alpha shape of points
(1/α = 500); (d) Alpha shape of points (1/α = 1000).
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Edelsbrunner proposed an empty circle check to determine the boundary of the alpha
shape. As shown in Figure 3a, the edge connecting points 6 and 7 is a boundary edge
because at least one empty circle at r = 1/α exists. Likewise, all boundary edges given by
empty circle check form a complete alpha shape.

Figure 3. (a) Boundary edges from empty circle check; (b) Same result of boundary edges (in thick
strokes) from circumcircle check.

The time cost of an empty circle check in Edelsbrunner’s method is unpredictable. An al-
ternative method is a circumcircle check based on Delaunay triangulation. Figure 3b shows
that the circumcircle check provides the same result for boundary edges.

Thus, the general workflow of our proposed method consists of three major steps,
as shown in Figure 4. First, a triangulation mesh of the point set is generated. Second, a
BFS starts from the super triangles to perform the circumcircle check. Third, the free edges
of all outer triangles are found and close the loop of the point set’s outline. To provide a
clear and coherent narrative, further details on each methodological step are provided in
the following.

3.1. Quicker Insertion Algorithm

Given the point set S of the concave object, the outline extraction starts with a Delaunay
triangulation mesh DT(S). The Bowyer–Watson incremental insertion is one of the classical
mesh generation methods. Because the workflow of incremental insertion is friendly to
data editing, it is still a good choice on many occasions.
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Figure 4. Workflow to extract the outline of the point cloud.

Generally, the Bowyer–Watson scheme starts from a large triangle containing all points
within. This triangle is usually called a super triangle. Then, the incremental insertion
repeats the following 2 steps until all points are inserted:

Step 1: Insert a new point p. Find out triangles that contain p within their circumcircle.
These triangles are marked as “bad triangles”.

Step 2: Delete these “bad triangles” and form a polygonal hole. And generate new triangles
by connecting the edges of this polygonal hole to point p.

A straightforward implementation of Step 1 is to check all triangles in each iteration.
But this method leads to 2 problems:

1. The round-off error is inevitable in practice. In some cases, the round-off error causes
triangles’ degeneration.

2. It is unnecessary to check all triangles. Since “bad triangles” account for a small
fraction of all triangles in each iteration, most calculation expenses of the point-in-
circumcircle check are worthless.

Thus, here we propose the first improvement of the incremental insertion algorithm.
Step 1 is decomposed into 2 sub-steps:

Step 1.1: Find out the triangle Tp where inserted point p is located.
Step 1.2: Search neighbor triangles from Tp, and find out the triangles of which

circumcircle the point p falls in.
The first improvement could avoid the problem of triangles’ degeneration, but it helps

little in reducing the calculation expense. The majority of the time cost of the Delaunay
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algorithm is the point location search, namely searching the triangle which contains the
inserted point [25]. In many cases, step 1.1 requires investigating most triangles to find
out Tp. Thus, the second improvement is proposed, providing a quicker search of Tp.

Step 1.1: Select a triangle Tk, where k = {0, 1, 2, . . ., i} denotes the k-th iteration step.
Obtain the vector Vk from the triangle’s centroid Ck to p.

Step 1.2: If p is located in Tk, then Tk is Tp. Otherwise, take Tk’s neighbor triangle along
the direction of Vk as Tk+1, and then repeat Step 1.1.

Step 1.3: Search neighbor triangles from Tp, and find out triangles of which circumcircle
the point p falls in.

Figure 5 shows how the directive search works. The search for triangle Tp (in red)
starts from Tk (in blue). The neighbor triangle Tk+1 on the direction of vector Vk connecting
Ck and p will be used in the next iteration.

Figure 5. Cont.
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Figure 5. (a) Insert a new point p; (b) Search along vector Vk to find the triangle containing point p;
(c) Find triangles of which circumcircle the point p falls in; (d) Construct the new Delaunay triangle.

This improvement enables the search to consciously approach Tp, which significantly
reduces the number of triangles to be searched during incremental insertion. Here we
name it directive search (DS). It is clear that the first iteration triangle T0 will determine
the search process. Thus, deliberately selecting the first iteration triangle T0 could reduce
calculation expenses even further.

In most cases, the point set is stored in a sequence that the next inserted point pk+1 is
likely near the current point pk. It could be inferred that the triangle Tp+1 is likely near to
pk, also. If each iteration starts from a triangle T0 containing current point pk, its search
process could be quite quicker. Figure 6 presents a typical scenario of this. The search
for Tp+1 (green triangle) starting from the adjacent triangle of the current point (purple
triangles) is quicker than from a random triangle (blue triangle) in most cases. Because the
start position T0 is inherited from the current point insertion, this improvement is called
heritable initial (HI).
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Figure 6. Heritable initial to quicker search for Tp+1.

Finally, the previously mentioned improvements, the directive search and the heritable
initial position, could be combined. Here, the incremental insertion algorithm ends up
being the following procedures:

Step 0: Prepare a super triangle containing all points. The super triangle is T0.
Step 1: Insert a new point p, and find the “bad triangles”. This step consists of 3 sub-steps:

Step 1.1: Select the triangle Tk, where k = {0, 1, 2, . . ., i} denotes the k-th iteration step.
Obtaint the vector Vk from the triangle’s centroid Ck to p.

Step 1.2: If p is located in Tk, then Tk is Tp. Otherwise, take Tk’s neighbor triangle along
the direction of Vk as Tk+1, and then repeat Step 1.1.

Step 1.3: Search neighbor triangles from Tp, and find triangles of which circumcircle
the point p falls in.

Step 2: Delete the “bad triangles” and generate new triangles. This step consists of
2 sub-steps:

Step 2.1: Delete the “bad triangles” and form a polygonal hole.
Step 2.2: Connect the edges of this polygonal hole to point p. And take one of these

new triangles as T0 for the next point.

Step 3: Repeat Step 1, until all points are inserted.

3.2. Circumcircle Radius Check for Alpha Shape

Given the Delaunay Triangulation DT computed from point set S, suppose edge e in
the DT of points p and q is a boundary edge of alpha shape Sα. For the definition of alpha
shape, an empty circle with its radius r > 1/α must exist containing p and q. It can be
inferred that, in the two triangles adjacent to edge e, at least one triangle’s circumcircle
radius satisfies r > 1/α. Thus, we use the circumcircle radius check of Delaunay Triangles
instead of the empty circle check. Figure 7a shows an example of a circumcircle radius
check. Edge e1 of points 2 and 3 is a boundary edge of Sα, while the edge e2 of points
6 and 8 is not. They can be explicitly distinguished by the radius of the circumcircle of their
adjacent triangles T1 and T2. T1 is a domestic triangle of Sα since r1 < 1/α, while T2 is on
the outer side of Sα because of r2 > 1/α.

The value of α is determined by point cloud density and the minimal value of hole
radius. The circumcircle radius check is implemented in breadth-first search (BFS). All
triangles containing the super points are pushed into a to-visit stack. One triangle popped
up from the to-visit stack and is labeled as visited, and its neighbor triangles are checked.
If the neighbor triangle is unvisited and its circumcircle radius r > 1/α, this triangle is
pushed into the to-visit stack. Repeat this process until the to-visit stack is empty. All
visited triangles stored in set V form the alpha shape Sα, colored by red in Figure 7b.
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Figure 7. (a) Circumcircle radius check to find boundary segment; (b) Circumcircle radius check to
obtain triangles V within alpha shape.

The set of Delaunay triangles V outlines the alpha shape Sα. Edges of triangles in set
V are checked for their shared state. Edges shared by 2 triangles are internal edges, while
the other edges are treated as free edges.

The free edges of these triangles may form 2 close loops. One loop contains the super
points of Bowyer–Watson incremental insertion and would be discarded. The other loop,
without any super points, turns out the outline shape of the concave object. Figure 7b colors
the edges of the outline shape in red segments.

4. Experiments

The proposed method is verified in the laboratory. Experiments are carried out on
low-density point clouds and high-density point clouds. Each case is to compare the
algorithm efficiency and outline extraction speed of DSHI with ordinary Bowyer–Watson
scheme and open-source PCL, which is widely used in practical intelligent equipment.
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4.1. Case of Low-Density Point Clouds

In this study, 6 test pieces made of acrylic plates are prepared to simulate hull compo-
nents. An RGBD camera (Percipio PM806-E1 (Percipio, Shanghai, China), 1280 × 960 pixels)
is employed to obtain low-density point clouds for test pieces, as shown in Figure 8.
Point clouds of test pieces from RGBD cameras are manually separated from the back-
ground. Figure 9 shows pictures of 6 test pieces with their point cloud and triangle mesh.
Table 1 lists the number of points and triangles of each test piece.

Figure 8. RGBD camera (Percipio PM806-E1).

Figure 9. Cont.
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Figure 9. Triangulation test (Percipio). Column (a) Photos; Column (b) Size; Column (c) Point cloud;
Column (d) Triangle mesh.

Table 1. Number of points and triangle of test pieces (low-density point clouds).

Test Piece Points Triangles

1 3716 7356
2 3161 6260
3 2179 4288
4 8258 16,422
5 8828 17,557
6 8696 17,309

To obtain the maximum workspace, this paper uses the minimum 2-norm value
of the cable force array as the objective value, combines the static equilibrium equation
constraints and the cable force inequality constraints, and solves the cable force using an
optimization algorithm.

The incremental insertion scheme for triangulation mesh generation is implemented
in Visual Studio C#. In total, there are 3 versions of the incremental insertion algorithm
studied here, the ordinary Bowyer–Watson method [25], one with directive search (DS),
and the other with both directive search and heritable initial (DSHI).

Here, the number of searched triangles during incremental insertion is taken as the
index of search cost, because it is independent of the coding languages, operation systems
or hardware configuration. The smaller the number of it is, the lesser the calculation cost
paid during mesh generation. Table 2 compares the result of 3 algorithms in this experiment,
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the ordinary Bowyer–Watson scheme, one with directive search (DS), and the other with
both directive search and heritable initial (DSHI).

Table 2. Search cost of incremental insertions (low-density point clouds).

Test
Piece

Search Cost
(Ordinary)

Search Cost
(DS)

DS/
Ordinary

Search Cost
(DSHI) DSHI/DS DSHI/

Ordinary

1 11,410,445 255,881 2.24% 29,881 11.68% 2.62‰
2 9,215,350 345,249 3.75% 25,599 7.41% 2.78‰
3 4,096,232 212,507 5.19% 12,761 6.00% 3.12‰
4 62,778,422 722,185 1.15% 72,733 10.07% 1.16‰
5 72,878,539 816,222 1.12% 79,815 9.78% 1.1‰
6 69,991,500 1,112,193 1.59% 77,474 6.97% 1.11‰

Comparing DS and the ordinary scheme, directive search cuts the triangle search cost
down to about 1.12%~5.19%. And comparing DSHI with DS, the heritable initial position
can further cut the triangle search cost down to 6.00%~11.68%. Comparing DSHI and
the ordinary scheme, the search cost is cut down to 1.1‰~3.12‰. It is equivalent to a
300~1000 times improvement in efficiency. This results in a very remarkable improvement
in mesh generation efficiency.

The outline extraction test is conducted in 3 groups. The DSHI is compared with
the open-source algorithm PCL and the ordinary Bowyer–Watson method in time cost
and outline shapes. The time costs of mesh generation on the same points are listed in
Table 3 and Figure 10. The test pieces outlines extracted by these three methods are com-
pared in Figure 11. It is shown that the DSHI enjoys better efficiency in most experiments
while ensuring the same quality of the outlines. Compared with the PCL, DSHI is 2–3 times
faster in most experiments, and compared with the ordinary Bowyer–Watson method,
the efficiency improvement effect is more significant, increased by 4–7 times. Meanwhile,
under low-density point clouds, the PCL method may not be able to accurately extract
outlines in certain experiments.

Table 3. Time cost comparison of outline extraction (low-density point clouds).

Test Piece Time Cost (DSHI) Time Cost (PCL) Time Cost (Ordinary)

1 24.03 ms 34.8 ms 96.12 ms
2 44.05 ms 32.81 ms 216.3 ms
3 40.05 ms 18.77 ms 156.2 ms
4 48.06 ms 96.52 ms 374.67 ms
5 44.05 ms 86.5 ms 336.54 ms
6 36.05 ms 106.9 ms 196.26 ms

Figure 10. Time cost comparison of outline extraction (low-density point clouds).
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Figure 11. Column (a) Points of test pieces (low-density point clouds); Column (b) Outline from
Bowyer–Watson triangulation; Column (c) Outline from DSHI triangulation; Column (d) Outline
from PCL.
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4.2. Case of High-Density Point Clouds

The second group employs a Mech-eye LSR-L (2048 × 1536 pixels) RGBD camera
obtaining high-density points cloud of each test piece with the same material as the first
group (acrylic plates), as shown in Figure 12. Table 4 lists the number of points and triangles
of each test piece’s cloud.

Figure 12. RGBD camera (Mech-eye LSR-L).

Table 4. Number of points and triangle of test pieces (high-density point cloud).

Test Piece Points Triangles

1 763,685 1,526,916
2 513,513 1,026,757
3 406,434 812,588
4 1,591,649 3,182,968
5 1,015,985 2,031,739
6 997,571 1,994,959

In experiments, the ordinary Bowyer–Watson crashes in processing the high-density
point clouds because of overwhelming computation burdens. Thus, comparison of search
cost and outlines are only compared between DSHI and PCL.

This experiment is to verify the capacity of extracting outlines of concave objects in
high-density point clouds. Due to the points of test pieces here being in quite large numbers,
they are down-sampled to fit the size of Figure 13. The points visualized here are lesser
than actual points, but the algorithm still works on the original high-density point clouds.
Results of outline extraction are also illustrated in red segments in Figure 13. In comparing
with the shape of acrylic plates, it is demonstrated that the outline of high-density point
clouds from DSHI successfully meets human’s visual perception, while results from PCL
have jaggies in some corners or edges.

The running time costs of DSHI and PCL in high-density point clouds are also com-
pared in Table 5 and Figure 14. It is clear that DSHI runs 2–4 times faster in comparing with
PCL. This method alleviates the computation burden of the insertion triangulation scheme,
providing one more affordable choice of points outline extraction.

Table 5. Time cost of outline extraction (high-density point cloud).

Test Piece Time Cost (DSHI) Time Cost (PCL)

1 2854.14 ms 10,267.7 ms
2 3173.56 ms 7072.56 ms
3 1818.06 ms 5323.69 ms
4 9970.89 ms 27,544.8 ms
5 6987.71 ms 13,908.4 ms
6 3189.75 ms 13,399.7 ms
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Figure 13. Points and outline test (high-density point cloud). Column (a) Points; Column (b) Outline
from DSHI; Column (c) Outline from PCL.
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Figure 14. Time cost comparison of outline extraction (high-density point cloud).

Since the ordinary BW scheme fails in dealing with the point clouds of high density,
the second case of original point clouds is appropriately down-sampled to compare the
efficiency of the three methods and the speed of contour extraction under high-density
and high-quality point clouds. Table 6 lists the number of points and triangles of each test
piece’s cloud after down-sampling.

Table 6. Number of points of test pieces (down-sampled).

Test Piece Points Triangles

1 17,604 35,029
2 16,295 32,400
3 12,263 24,381
4 17,130 34,060
5 15,531 30,899
6 14,809 29,478

Table 7 compares the efficiency of 3 algorithms using the same method as in Section 4.2,
the ordinary Bowyer–Watson scheme, one with directive search (DS), and the other with
both directive search and heritable initial (DSHI). Comparing DS and the ordinary scheme,
the directive search cuts the triangles search cost down to about 0.53%~1.65%. And
comparing DSHI with DS, the heritable initial position can further cut the triangles search
cost down to 2.63%~6.26%. Comparing DSHI and the ordinary scheme, the search cost is
cut down to 0.33‰~0.51‰. It is equivalent to a 1000~3000 times improvement in efficiency.
The results show that the efficiency improvement of the DSHI method is more significant
under high-density point clouds.

Similarly, we used the same method as in Section 4.2 to compare the time cost of
outlines extraction of the three methods under high-density point clouds. The results are
listed in Table 8 and Figure 15. The test pieces outlines extracted by the three methods
are shown in Figure 16. It is shown that compared with low-density point clouds, the
outlines extraction efficiency of the DSHI algorithm is more significantly improved under
high-density point clouds. Compared with the PCL method, the efficiency is increased by
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2–4 times, and compared with the ordinary Bowyer–Watson method, the efficiency is even
increased by 7–16 times.

Table 7. Search cost of incremental insertions (down-sampled).

Test Piece Search Cost
(Ordinary)

Search Cost
(DS)

DS/
Ordinary

Search Cost
(DSHI) DSHI/DS DSHI/

Ordinary

1 301,184,708 4,067,904 1.35% 106,970 2.63% 0.36‰
2 259,483,564 2,737,748 1.06% 104,982 3.83% 0.4‰
3 146,277,609 2,410,395 1.65% 74,661 3.10% 0.51‰
4 285,813,272 1,504,871 0.53% 94,157 6.26% 0.33‰
5 232,072,475 2,795,457 1.20% 82,272 2.94% 0.35‰
6 211,203,409 2,815,502 1.33% 83,908 2.98% 0.4‰

Table 8. Time cost of outline extraction after down-sampling (down-sampled).

Test Piece Time Cost (DSHI) Time Cost (PCL) Time Cost (Ordinary)

1 104.28 ms 220.35 ms 925.43 ms
2 78.53 ms 165.68 ms 1325.7 ms
3 47.33 ms 143.52 ms 492.26 ms
4 94.16 ms 207.7 ms 926.27 ms
5 90.14 ms 164.04 ms 1106.24 ms
6 63.55 ms 163.06 ms 455.05 ms

Figure 15. Time cost comparison of outline extraction (down-sampled).

4.3. Robotic Prototype Application

The DSHI method is applied to actual automatic edge-grinding equipment for ship
components, as shown in Figure 17. The equipment consists of a carrying robot with an
RGBD camera, a grinding robot with a milling cutter and two electromagnetic grinding
platforms. Based on the point cloud from the RGBD camera, the vision algorithm detects
the center of mass of the workpiece to guide the robot to carry the workpiece to the grinding
platform and extract the outline of the workpiece. The robot performs edge grinding based
on the workpiece outline information extracted by the vision algorithm.
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Figure 16. Column (a) Points of test pieces (down-sampling); Column (b) Outline from Bowyer–
Watson triangulation; Column (c) Outline from DSHI triangulation; Column (d): Outline from PCL.
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Figure 17. (a) Automatic edge-grinding equipment; (b) Industrial robot grinds rectangular pieces;
(c) Industrial robot grinds triangle pieces.

Three types of marine steel workpieces for edge grinding were provided by the
shipyard, as shown in Figure 18. The dimensions of the workpieces and the edge-grinding
effects are also presented in Figure 18. It can be proved that the DSHI method can accurately
guide the industrial robot to perform edge grinding of ship components. The edge treating
quality meets the requirements in shipbuilding.



J. Mar. Sci. Eng. 2024, 12, 453 20 of 22

Figure 18. Ship components treated by the DSHI method. Column (a) Size; Column (b) Edge
grinding effect.

The edge-grinding robots may significantly save labor costs in shipbuilding. There
are even more benefits, including more stable quality and less health-hazardous. Thus,
automation in shipbuilding is an inevitable trend.

A major advantage of a vision-guided working mode is that the robot system is self-
programmed. It can be finished in seconds when dealing with a new type of product. In
contrast, the manual programming working mode requires laborious reprogramming for
each new product type. Based on the experience of specialists, the time cost of teaching or
reprogramming is by hours or days, depending on the complexity of the products. This
explains the dilemma in shipbuilding automation: labor workers are faster than robots in
small-batch production. The vision-guided working mode could be an optimized solution,
as it imitates the manual operators, from observation, perception, to operation.

The method in this paper is also applicable to other processes, including welding,
sorting and assembling. Figure 19 shows a common scenario in shipbuilding, in which
the collar plate is lap-welded onto the plate. Currently, welding jobs in this scenario are
still performed by labor workers, partly because the collar plate varies in shape and size.
With the aid of DSHI, a vision-guided robotic welding is not far off. Therefore, this mode
has general applicability in the field of shipbuilding and can be applied to other industries
characterized by small-batch, high-variety production.
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Figure 19. Lap weld seam surrounds collar plate.

5. Conclusions

In this paper, an attempt has been made to develop a vision-guided robot system
for marine components edge grinding. It can save on the cost of labor workers. The
novel robot does not require the shape data from the CAD model or manual teaching.
Outline extraction from point cloud plays a crucial part in its workflow. The efficiency and
robustness of the algorithm will affect robots’ productive performance.

The use of the circumcircle radius check in Delaunay triangulation mesh instead of the
empty circle check for obtaining the outline of random-shaped point clouds has been dis-
cussed. Improvements have been proposed to the incremental insertion method and com-
bined to create a new method known as Directive Searching and Heritable Initial (DSHI).
As a result of experiments in outline extraction for test pieces with common hull compo-
nents’ shapes, the following conclusions have been drawn:

DSHI significantly reduces the search cost during incremental insertion, leading to a
faster triangulation mesh method than the ordinary Bowyer–Watson algorithm by nearly
300 to 3000 times for low-quality point cloud. As for high-quality point clouds, the ordinary
Bowyer–Watson method crashes, while DSHI successfully presents the results.

The use of a circumcircle radius check provides a more accurate fit to the visual per-
ception of workpieces. In terms of outline extraction, DSHI has improved the extraction
efficiency by 4–16 times compared to the ordinary Bowyer–Watson method and has also in-
creased the extraction efficiency by 2–4 times compared to PCL. DSHI ensures stable outline
results, while the PCL algorithm fails partially in corners for high-quality point clouds.

Application on a robotic prototype proves that it is reliable in real manufacturing
scenarios. It is verified in the edge grinding of marine components.

Taking these into account, it can be concluded that the DSHI method has demonstrated
potential for intelligent manufacturing applications, such as automatic edge grinding and
other processes. This paper’s work focuses on flat components grinding. More product
types (e.g., workpieces of three dimensions) and more procession (e.g., vision-guided
welding) are to be studied in the future.
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