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Abstract: In this study, basic research was conducted regarding the era of autonomous vessels and
artificial intelligence (deep learning, big data, etc.). When a vessel is navigating autonomously, it must
determine the optimal route by itself and accurately follow the designated route using route-following
control technology. First, the optimal route should be generated in a manner that ensures safety
and reduces fuel consumption by the vessel. To satisfy safety requirements, sea depth, under-keel
clearance, and navigation charts are used; algorithms capable of determining and shortening the
distance of travel and removing unnecessary waypoints are used to satisfy the requirements for
reducing fuel consumption. In this study, a reinforcement-learning algorithm-based machine learning
technique was used to generate an optimal route while satisfying these two sets of requirements.
Second, when an optimal route is generated, the vessel must have a route-following controller that
can accurately follow the set route without deviation. To accurately follow the route, a velocity-type
fuzzy proportional–integral–derivative (PID) controller was established. This controller can prevent
deviation from the route because overshoot rarely occurs, compared with a proportional derivative
(PD) controller. Additionally, because the change in rudder angle is smooth, energy loss by the vessel
can be reduced. Here, a method for determining the presence of environmental disturbance using the
characteristics of the Kalman filter innovation process and estimating environmental disturbance with
a fuzzy disturbance estimator is presented, which allows the route to be accurately maintained even
under conditions involving environmental disturbance. The proposed approach can automatically
set the vessel’s optimal route and accurately follow the route without human intervention, which is
useful and can contribute to maritime safety and efficiency improvement.

Keywords: autonomous vessel; optimal route; reinforcement learning; route-following control;
environmental disturbance; artificial intelligence; machine learning; deep learning; big data

1. Introduction

With the advent of the Fourth Industrial Revolution, interest and demand for au-
tonomous ships are rapidly increasing [1–3]. In particular, beginning with the Maritime
Unmanned Navigation through Intelligence in Networks (MUNIN) project, there has been
considerable active development and research regarding autonomous ships [4,5]. The
International Maritime Organization defines autonomous ships as maritime autonomous
surface ships (MASS) and has established four degrees of ship autonomy in response to the
era of autonomous ships [6,7]. To satisfy the criteria for constituting a fully autonomous
ship, route determination and route-following control technology are required; several
technical factors must also be addressed. First, the ship must be safely operated based on a
comprehensive understanding of the marine environment and port information through-
out the navigation process. Second, it must be possible to plan the route to minimize fuel
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consumption or navigation time. Finally, a control technology is needed to enable the vessel
to accurately follow the designated route.

Most vessels are equipped with an Electronic Chart Display and Information System
(ECDIS) based on electronic navigation charts [8,9]; thus, it is easy to obtain various
components of information needed to determine the route. Therefore, the route can be
determined using electronic navigation charts instead of paper charts, which were widely
used in the past. Traditionally, the knowledge of experienced officers has been an important
factor in determining the optimal route, but there is a limit to optimal route generation
because of the ever-changing maritime environment. Previous studies regarding route
generation focused on reducing the fuel consumption and sailing time of vessels using the
A∗ and Dijkstra algorithms [10,11]. These algorithms consider collision avoidance on land
and islands, but they do not consider the sea depth and relevant regulations with which
the vessel must comply. To solve this problem, research on reinforcement learning-based
route generation is being actively conducted.

This study was performed to generate an optimal route by considering collision
prevention on land and islands, as well as sea depth and relevant regulations that vessels
must follow. We included an algorithm to reduce fuel consumption by the vessel. To achieve
the objective of this study, a reinforcement-learning algorithm was used as an optimal
route generation algorithm. The reinforcement-learning algorithm learns in the direction of
maximizing the reward and derives the optimal solution. Therefore, unlike the existing
A∗ and Dijkstra algorithms, a more realistic and practical route can be generated because
various surrounding environmental conditions can be considered for route generation.

Control technology is required to enable the vessel to accurately follow a route after it
has been generated [12]. Proportional–derivative (PD)-type autopilot controllers, which
have been widely used in the past, are implemented in most vessels because their perfor-
mance and stability have been verified [13]. However, such autopilot controllers have poor
performance with regard to rapid course alterations and large changes in heading angle.
Additionally, the change in rudder angle is rough, which reduces the energy efficiency of
the vessel.

To resolve these issues, previous studies have utilized fuzzy logic theory. The stability
problem of the fuzzy controller, which was a problem at the time of its introduction,
has been analyzed and resolved by several groups [14,15]; it is widely applied in actual
plants [16,17]. The fuzzy controller can hold expert language information while responding
to nonlinear plants because of its nonlinear characteristics. Additionally, because the fuzzy
proportional–integral–derivative (PID) controller is controlled according to fuzzy logic
rules, it has the ability to optimally generate PID coefficient values that satisfy the control
rules [18,19]. Therefore, such fuzzy PID controllers can achieve faster course alterations
with less route deviation because of large overshoot compared with PD controllers. The
fuzzy PID controller designed in this study is regarded as a velocity fuzzy PID controller
because it is an incrementally controlled controller.

However, despite the use of a fuzzy PID controller with excellent performance, real
vessels are not able to accurately follow the designated route if external environmental
disturbances, such as winds, ocean currents, and waves, are encountered [20,21]. Therefore,
to prevent vessel deviation from the designated route because of environmental distur-
bance, additional thrust and rudder angle must be generated to respond to such changes.
In this study, the characteristics of the Kalman filter’s innovation process were used to
determine the existence of environmental disturbances, and a fuzzy disturbance estimator
was introduced to estimate their magnitude.

Because the Kalman filter is a model-based state estimation theory, the estimation error
between the actual state of the system and the filter estimation increases when an unknown
input (environmental disturbance) is applied [22,23]. The difference between the actual
state of the system and the filter estimation is regarded as the innovation process [24,25].
If the Kalman filter fails state estimation, the innovation will chatter with a constant DC
component. This phenomenon can be used to determine the presence of environmental



J. Mar. Sci. Eng. 2023, 11, 970 3 of 32

disturbances. After confirmation of their presence, the magnitudes of environmental
disturbances are estimated using a fuzzy disturbance estimator. Additionally, modification
of the estimated environmental disturbances into thrust and rudder angle, followed by
their application in the form of additional control input, allows the vessel to accurately
follow the designated route despite environmental disturbance.

If the proposed reinforcement learning-based optimal route generation algorithm
is applied, it will be a useful algorithm that can guarantee the safety of vessels when
applied in real situations. In addition, since it has the ability to estimate the magnitude
of environmental disturbances in real time and control the vessel based on this, it has the
advantage of maintaining a designated route without the intervention of an officer. The
method proposed in this study will serve as a foundation for the era of autonomous vessel.

2. Related Work
2.1. Route Generation

Since reinforcement learning can generate an optimal route considering the surround-
ing environment of a vessel, research on the field of generating an optimal route for a vessel
is being actively conducted.

Based on the Q-learning algorithm, there is a study that generates a vessel’s route
by modeling the distance to the destination and a prohibited area [26], and a global route
generation model for coastal vessels using the Deep Q-Network algorithm have been
proposed [27]. And, there is also a study on route generation for unmanned vessels
using the information provided by ECDIS and deep deterministic policy gradient (DDPG)
algorithm [28]. In addition to these, studies on route generation for collision avoidance
between vessels are also being conducted [29–31].

Through these related work, it was confirmed that reinforcement learning can deter-
mine the vessel’s route. Therefore, in this study, in order to enable a vessel to follow the
route in a more realistic route, it is intended to generate an optimal route using reinforce-
ment learning. As an algorithm, Q-learning, whose performance has been verified, was
applied.

2.2. Route-Following Control

Route-following control is an essential techniques allowing vessels to maintain a
designated route. In order to follow the route, studies have been conducted using line-
of-sight (LOS) guidance systems that determine an LOS vector from the current vessel’s
position to any one point between the next waypoint and use this LOS vector to control
the heading angle [32–34]. In addition, for the purpose of controlling it, controllers such
as PID, fuzzy PID, and neural network, etc., have been applied [35–37]. However, these
studies demonstrated that the performance is excellent in a state where no environmental
disturbances are applied. No matter how good the route-following controller used is, if the
vessel is subjected to environmental disturbances, it will not be able to follow the reference
input, and steady-state error occurs.

In order to solve this problem, research has been conducted on how to configure an
RFO observer using LMI [38], integral state observers [39], and proportional–integral state
observers [40,41] as methods for estimating the magnitude of environmental disturbances.
In addition, a method of estimating environmental disturbance using an error between an
actual system state and as estimated state by constructing a sliding mode type observer
has been studied [42–44]. However, the above methods are complicated and difficult to
develop mathematically, so there is a limit to the performance improvement of disturbance
estimation. In addition, since it is a fixed structure and is designed for asymptotic per-
formance in a steady state, it has a disadvantage that it cannot quickly cope with rapidly
changing disturbances.

Therefore, in this study, a velocity-type fuzzy PID controller was applied as a controller
to follow the vessel’s route. In addition, the magnitude of the environmental disturbance
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can be estimated through the fuzzy disturbance estimator, which is composed of a variable
structure and can quickly cope with rapidly changing environmental disturbance.

3. Dynamic Vessel Model
3.1. Coordinate Systems

To model and analyze the vessel, a body-fixed coordinate system and an earth-fixed
coordinate system are introduced, as shown in Figure 1. The body-fixed coordinate system,
a coordinate system for the analysis of vessel motion, is attached to the body frame of the
vessel; the earth-fixed coordinate system, a coordinate system for analyzing the position
and angle of the vessel on the earth, is attached to the center of gravity [45].
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The variables of a body-fixed coordinate system xByBzB are composed of (u, v, w, p, q, r),
where (u, v, w) are the surge, sway, and heave as linear velocities, respectively; (p, q, r) are
the roll, pitch, and yaw as angular velocities of the vessel, respectively. The variables of an
earth-fixed coordinate system OE are composed of (x, y, z, φ, θ, ψ), where (x, y, z) are the
position coordinates in three dimensions; and (φ, θ, ψ) are the roll, pitch, and yaw (heading)
angles of the vessel, respectively.

3.2. Vessel Equation of Motion

Generally, a vessel is represented by 6-degree-of-freedom (DOF) equations of motion,
which consist of the linear and angular velocities on the three axis directions. However,
because most vessels operate on the horizontal surface of the sea, the 6 DOF equations of
motion can be simplified to 3 DOF equations of motion [46] if the following assumptions
are made:

(1) Roll, pitch, and heave motions of the vessel are negligible.
(2) The shape of the vessel is symmetrical in the xBzB plane.
(3) The origin of the body-fixed coordinate system is located at the center of the vessel.

In this study, the model proposed by Blanke was used as the forward speed model;
the model proposed by Davidson and Schiff was used as the maneuvering model.
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3.2.1. Forward Speed Model

The forward speed model proposed by Blanke is as follows [47]:

m
( .

u− vr− xGr2
)
= X

(
u, v, r,

.
u, δ, T

)
(1)

where xG is the position of the xB-axis coordinate of the vessel’s center of gravity; X is a
nonlinear function describing the hydrodynamic surge force, expressed as follows:

X = X .
uu + Xvrvr + X|u|u|u|u + Xrrr2 + (1− t)T + Xccδδc2δ2 + Xest (2)

Substituting Equation (2) into Equation (1) yields:

(m− X .
u)

.
u = X|u|u|u|u + (1− t)T + Tloss

Tloss = (m + Xvr)vr + Xccδδc2δ2 + (Xrr + mxG)r2 + Xest
(3)

where the hydrodynamic coefficients are expressed as shown in Table 1.

Table 1. Definitions of hydrodynamic coefficients.

Hydrodynamic Coefficients Definition

X .
u Added mass in surge

X|u|u Drag force coefficient in surge
t Thrust deduction number
T Propeller thrust

Xccδδ Resistance related to rudder deflection
c Flow velocity past the rudder

m + Xvr
Excessive drag force related to combined

sway-yaw motion
Xrr + mxG Excessive drag force in yaw

Tloss Loss term or added resistance
Xest External force related to winds and waves

When the operation of the vessel reaches a steady state, Tloss can be regarded as zero
because the drag force and propeller thrust effects are sufficiently large to ignore the effects
of Tloss. Therefore, the forward speed model is expressed as follows:

(m− X .
u)

.
u = X|u|u|u|u + (1− t)T (4)

The state space equation corresponding to Equation (4) is as follows:

.
u =

X|u|u|u|
(m− X .

u)
u +

(1− t)
(m− X .

u)
T (5)

3.2.2. Maneuvering Model

The maneuvering model proposed by Davidson and Schiff is as follows [48]:

M
.
ν+ N(u)ν = bδ (6)

where ν = (v, r)T , M is the inertia matrix, N(u) is a matrix consisting of the sum of C(u)
and D matrices (the Coriolis and centripetal matrix and damping matrix, respectively), and
δ is the rudder angle. M, N(u), and b are expressed as follows:

M =

(
m−Y .

v mxG −Y.
r

mxG − N .
v Iz − N.

r

)
(7)

N(u) =
(
−Yv mu−Yr
Nv mxGu− Nr

)
(8)
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b =

(
−Yδ

−Nδ

)
(9)

If the state vector xm is defined as (v, r)T ∈ R2 and the input um is defined as δ,
Equation (6) is expressed as the following state space equation:

.
xm = Amxm + Bmum (10)

where state matrix Am and input matrix Bm can be expressed as follows:

Am = −M−1N(u) =
(

a11 a12
a21 a22

)
, Bm = M−1b =

(
b1
b2

)
(11)

where a11, a12, a21, a22, b1, and b2 are described in Ref. [49].

3.2.3. Vessel Model Used in This Study

To analyze vessel motion, the forward speed model and maneuvering model must be
combined into the following single state space equation:

.
xc = Acxc + Bcuc (12)

where xc = (u, v, r)T ∈ R3, uc = (T, δ)T , and state matrix Ac and input matrix Bc are
expressed as follows:

Ac =

c 0 0
0 a11 a12
0 a21 a22

, Bc =

d 0
0 b1
0 b2


where c =

X|u|u |u|
(m−X .

u)
, d = (1−t)

(m−X .
u)

(13)

c and d are defined as the terms in Equation (5).
Because the body-fixed coordinate system expresses the vessel’s linear velocity and

angular velocity, the vessel’s position and angle cannot be obtained directly. Therefore, the
vessel’s position and angle in the earth-fixed coordinate system can be obtained through
multiplication of the vessel’s linear velocity and angular velocity by a transform matrix
consisting of 3 DOF (surge, sway, and yaw) expressed as follows [50]:

Rz, ψ =

cψ −sψ 0
sψ cψ 0
0 0 1

 (14)

Therefore, in this study, the state space equation combining Equations (12) and (14)
was used as a vessel model. The final state space equation was constructed as follows:

.
x = Ax + Bu

where A =

(
03×3 Rz, ψ

03×3 Ac

)
, B =

(
03×3

Bc

)
(15)

where state vector x = (x, y, ψ, u, v, r)T and control input u = (T, δ)T .

3.3. Specifications of the Vessel

Figure 2 shows the vessel used in this study. The vessel consists of one propeller used
to generate thrust and one rudder used to control the heading angle. The specifications of
the vessel are shown in Table 2.
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Table 2. Specifications of the vessel.

Parameter Length/Volume Parameter Length/Volume

L 171.8 m Lpp 160.93 m
T 8.23 m B 23.17 m
∇ 18541 m3

where L, Lpp, T, B, and ∇ are the length of the vessel, length between perpendiculars, draft, maximum beam,
and maximum displacement, respectively.

4. Optimal Route Generation

Generally, when officers conduct route planning, they intend to identify the optimal
route that minimizes fuel consumption or navigation time. Conventionally, the optimal
route has been determined based on officers’ professional knowledge.

However, the concept of the maritime autonomous surface ship has emerged with
the Fourth Industrial Revolution and active research in artificial intelligence. Such vessels
must autonomously plan their route by considering various surrounding conditions, rather
than relying on officers’ professional knowledge. To achieve this purpose, an optimal route
was generated based on reinforcement learning in this study.

4.1. Reinforcement-Learning Algorithm
4.1.1. Definition of Reinforcement Learning

Figure 3 depicts the concept of reinforcement learning, in which an algorithm at-
tempts to learn how to achieve a goal through the interaction between an agent and the
environment. Reinforcement learning progresses through the following sequence [51,52]:

(1) The agent observes the current state (St).
(2) The agent uses St to perform a suitable action (At) and provides it to the environment.
(3) The environment communicates the next state (St+1) and reward for the action to the

agent.
(4) The agent performs the next action according to the reward received from the envi-

ronment.
(5) By repeating the above processes, the agent continuously implements actions to obtain

the maximum reward.

4.1.2. Selection of Reinforcement-Learning Algorithm

The agent has multiple components, which include the policy, the value function, and
the model. The policy is the factor that determines how the agent behaves in a particular
state, the value function is the factor that evaluates the effectiveness of each state/action,
and the model is the environment from the agent’s perspective.

The types of reinforcement learning performed according to learning methods that
involve a policy, value function, and model are expressed in the following figure.
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Dynamic programming (DP) is a representative example of a model-based reinforcement-
learning algorithm. DP can be applied when the designer knows about the environment,
and it can easily solve problems very efficiently. However, DP has significant limitations,
including computational complexity and the requirement for complete information regard-
ing the environment. DP solves problems on the assumption that the designer knows the
exact probability of reward and state transformation; therefore, it is difficult to use DP if
the designer does not have precise information regarding the environment.

REINFORCE is a representative example of a policy-based reinforcement-learning
algorithm. Policy-based reinforcement algorithms are mainly used when the action space
is continuous. However, this algorithm is not suitable for learning data that are outdated,
because the best behavior is policy dependent. Additionally, because data can only be
learned for each episode, a long learning interval is required if the episode length is long.

SARSA, Q-learning, DQN, and Monte Carlo are representative examples of value-
based reinforcement-learning algorithms. Unlike policy-based algorithms, these algorithms
are widely used when the action space is discrete. Because the route is generated based on
pixels, the action space is discrete (Figure 5).

J. Mar. Sci. Eng. 2023, 11, 970 9 of 33 
 

 

 
Figure 5. Definitions of eight directions in which the agent can take action. 

Figure 5 shows the action space an agent can take to generate a route on a pixel. The 
agent can take actions in eight directions; thus, their actions are discrete. 

SARSA is a representative on-policy control algorithm that updates the value func-
tion after taking the next action in the next state (i.e., the agent learns as it behaves). A 
limitation of the SARSA algorithm is that if learning initially proceeds in the wrong direc-
tion, it will continue in the wrong direction. 

In contrast, Q-learning is an off-policy that updates the value function without taking 
the next action in the next state. Therefore, even if learning initially proceeds in the wrong 
direction, learning can proceed correctly because the action in the next state is not used to 
update the value function. 

DQN, an algorithm that attaches a neural network to the Q-learning algorithm, is 
widely used when the number of states is very large (dynamic environment). In this study, 
the Q-learning algorithm was applied because it can generate an optimal route between 
the port of departure and entry in a state where the environment does not move. 

Figure 6 shows the concept of the Q-learning algorithm. The Q-learning algorithm 
uses (𝑆 , 𝐴 , 𝑅 , 𝑆 ) as a sample; it uses the largest Q-function in the next state to up-
date the current Q-function. Accordingly, the Q-learning algorithm uses the maximum Q-
function of the next state when selecting the Q-function of the current state, regardless of 
which action is taken in the next state. 

The concept of the Q-learning algorithm is as follows [53,54]: 

 
Figure 6. Concept of the Q-learning algorithm. 

In this manner, the process of updating the Q-function is expressed as follows: 𝑄(𝑆 , 𝐴 ) ← 𝑄(𝑆 , 𝐴 ) + 𝛼(𝑅 + 𝛾𝑚𝑎𝑥𝑄(𝑆 , 𝑎 ) − 𝑄(𝑆 , 𝐴 )) (16) 

where 𝛼 and 𝛾 are the learning rate and discount factor, respectively. 𝛼 is a parameter 
indicating how detailed the model will learn, and 𝛾 is the rate at which the reward re-
ceived in the future is reduced when considering it at present. 

  

Figure 5. Definitions of eight directions in which the agent can take action.



J. Mar. Sci. Eng. 2023, 11, 970 9 of 32

Figure 5 shows the action space an agent can take to generate a route on a pixel. The
agent can take actions in eight directions; thus, their actions are discrete.

SARSA is a representative on-policy control algorithm that updates the value function
after taking the next action in the next state (i.e., the agent learns as it behaves). A limitation
of the SARSA algorithm is that if learning initially proceeds in the wrong direction, it will
continue in the wrong direction.

In contrast, Q-learning is an off-policy that updates the value function without taking
the next action in the next state. Therefore, even if learning initially proceeds in the wrong
direction, learning can proceed correctly because the action in the next state is not used to
update the value function.

DQN, an algorithm that attaches a neural network to the Q-learning algorithm, is
widely used when the number of states is very large (dynamic environment). In this study,
the Q-learning algorithm was applied because it can generate an optimal route between
the port of departure and entry in a state where the environment does not move.

Figure 6 shows the concept of the Q-learning algorithm. The Q-learning algorithm uses
(St, At, Rt+1, St+1) as a sample; it uses the largest Q-function in the next state to update the
current Q-function. Accordingly, the Q-learning algorithm uses the maximum Q-function
of the next state when selecting the Q-function of the current state, regardless of which
action is taken in the next state.
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The concept of the Q-learning algorithm is as follows [53,54]:
In this manner, the process of updating the Q-function is expressed as follows:

Q(St, At)← Q(St, At) + α
(

R + γmaxQ
(
St+1, a′

)
−Q(St, At)

)
(16)

where α and γ are the learning rate and discount factor, respectively. α is a parameter
indicating how detailed the model will learn, and γ is the rate at which the reward received
in the future is reduced when considering it at present.

4.2. Considerations for Optimal Route Generation
4.2.1. Definition of the Optimal Route

The optimal route defined in this study is shown in Figure 7.
Figure 7 shows the concept of the optimal route defined in this study. We attempted

to plan an optimal route that ensured vessel safety and minimum fuel consumption by
the vessel.

First, to satisfy the requirement of vessel safety, planning reflected the navigation chart
information, under-keel clearance (UKC), and sea depth. In the offshore environment, many
vessels may be passing through the area, and traffic may be congested; thus, navigation
charts were used to ensure that mutual navigation rules were observed. Additionally, to
prevent the vessel sinking and being stranded, UKC was selected according to the vessel’s
specifications; vessels were also allowed to operate only at a specific sea depth.

Second, to satisfy the requirement for minimum fuel consumption, planning reflected
the shortening distance and minimum waypoints. To reduce fuel consumption, it is essential
to shorten the distance of the route. Additionally, because frequent course alterations
increase vessel energy consumption, the number of waypoints was minimized.
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4.2.2. Data Used to Satisfy Safety Requirements

The navigation chart was provided by Korea Ocean Development Co., Ltd. (KORDO);
sea depth data were provided by General Bathymetric Chart of the Ocean (GEBCO). To
ensure vessel safety, the UKC to guarantee the minimum sea depth can be obtained using
the following equation [55]:

H − Tmax > UKC, UKC = βTmax (17)

where H, Tmax, and β are the sea depth, maximum draft of the vessel, and coefficient of
UKC, respectively. UKC is determined according to the influence of waves; it is generally
regarded as 0.1 to 0.15 for seas with slight wave influence, and 0.3 for seas with large
wave influence.

4.2.3. Algorithm Used to Satisfy Minimum Fuel Consumption

We intended to shorten the distance of the route to save fuel and sailing time, while
minimizing the number of waypoints that would reduce vessel energy efficiency. To satisfy
these conditions, the following algorithm was utilized to train the Q-learning model.

Figure 8 shows the algorithm to minimize vessel fuel consumption. To shorten the
distance of the route, if the distance of the t + 1th episode is shorter than the distance of the
tth episode, a reward is given. To avoid creating unnecessary waypoints, if the tth action
and t + 1th action are identical, a reward is given.
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However, because the Q-learning algorithm searches for a route in units of pixels, it
has a disadvantage in that the generated route inevitably does not lead to the minimum
straight line. Such phenomena also cause the creation of unnecessary waypoints.

Therefore, the route must be simplified, and unnecessary waypoints must be removed
by utilizing an algorithm that connects the route with a straight line. In this study, the
Douglas–Peucker algorithm was applied to connect the route in a straight line.

4.3. Generation of the Optimal Route Using a Q-Learning Algorithm

In this study, the route was intended to be generated under conditions whereby a
vessel departs from Busan port and arrives at Gamcheon port. The latitudes and longitudes
of the target areas are

(
34
◦
59′37′′ ∼ 35

◦
07′52′′

)
and

(
128

◦
57′08′′ ∼ 129

◦
09′37′′

)
.

4.3.1. Environment Settings for Training the Q-Learning Algorithm

To generate the optimal route using the Q-learning algorithm, a training environ-
ment must be constructed by integrating the navigation chart information, UKC, and sea
depth data.

The target area used in this study is an area that is significantly affected by waves; the
coefficient of the UKC was selected as 0.3, and UKC was calculated to be approximately
10.7 m using Equation (17). Therefore, a UKC of 11 m was selected; areas with sea depth
≤11 m were regarded as restricted areas, where the vessel could not pass while satisfying
the safety requirements.

The navigation chart information used is shown in Table 3.

Table 3. Navigation chart information.

Information

1 Restricted area
2 Pilot boarding place
3 Anchorage
4 Traffic separation scheme (Busan port)
5 Traffic separation scheme (Gamcheon port)

Table 3 shows the navigation chart information used in this study. First, a restricted
area was applied around the island to prevent collisions and stranding. Second, when a
vessel enters a port, it should be assisted by a pilot with detailed knowledge of the area;
thus, a pilot boarding place was selected. Third, because vessels frequently wait at anchor
to receive a signal to enter a port, a route could not be generated in the anchorage area.
Finally, a traffic separation scheme was utilized to prevent accidents while entering and
leaving the port. A traffic separation scheme is a system that separates the passage of large
numbers of vessels; it constitutes an area designed in consideration of the traffic volume of
passing vessels.

The integrated environment for generating an optimal route considering navigation
chart information, UKC, and sea depth is shown in Figure 9.

Figure 9 shows the environment built to generate an optimal route. The blue circle
is Busan port, the vessel’s departure point, and the blue triangle is Gamcheon port, the
vessel’s destination point. Black squares represent land. Considering the UKC, areas where
the sea depth is <11 m are shown as red squares, whereas areas with sea depth >11 m are
shown as white squares. Additionally, navigation chart information is indicated by blue
and green squares. For vessel safety, blue squares are areas (anchorage, restricted area, and
traffic separation scheme (B)) through which the route may not pass; green squares are
areas (pilot boarding place and traffic separation scheme (A)) through which the route must
pass. Because this study involved departing from Busan port and arriving at Gamcheon
port, the vessel must pass through area (A) and not pass through area (B) in the traffic
separation scheme zone.
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4.3.2. Simulation Condition

The conditions of parameter values and rewards of the Q-learning algorithm used for
simulation are shown in Table 4.

Table 4. Conditions of Parameter Values and Rewards.

Parameter Values

ε 0.2
α 0.01
γ 0.9

Rewards

Land End learning
Sea depth < 11 m End learning

Traffic separation scheme (A),
pilot boarding place 20

Traffic separation scheme (B),
anchorage, restricted area −20

Arrival at the port of entry 10
Shortening distance algorithm 100
Minimum waypoint algorithm 20

Table 4 shows the conditions of the parameter values and rewards of the Q-learning
algorithm, where ε is an ε-greedy policy, and to provide the agent with a sufficient learning
experience, it is not to explore to the place where the value of Q-function is the largest with a
probability of ε. ε was selected as 0.2, and α and γ were selected as 0.01 and 0.9, respectively.
In addition, the reward was set as follows. First of all, in order to shorten the training time,
learning was terminated immediately when the vessel entered the area (land and sea depth
< 11 m) into which it should not go. If the agent was located in areas corresponding to
traffic separation scheme (A) and the pilot boarding place, through which the route must
pass, 20 was given as a reward, and if the agent was located in areas corresponding to
traffic separation scheme (B), anchorage, and restricted, through which the route must not
pass, −20 was given as a penalty. When the agent arrived at the port of entry in the process
of searching, 10 was given as a reward, and when the shortening distance and minimum
waypoint algorithms were satisfied, 100 and 20 were given as rewards.
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4.3.3. Simulation Results

Figure 10 shows the optimal route generated by utilizing the Q-learning algorithm
and the Douglas–Peucker algorithm. Because the Q-learning algorithm tends to maximize
the reward, routes are consistently generated through the areas where rewards are given.
Additionally, no routes are generated where penalties are applied. Based on the simulation
with Q-learning, because the route is generated in pixel units, the route distance increases,
and many unnecessary waypoints are generated. To compensate for this issue, the Douglas–
Peucker algorithm was utilized to simplify the route generated by the Q-learning algorithm.
As a result of simplifying the route, it was confirmed that the distance of the route was
reduced, and the number of waypoints was significantly reduced to 5. However, for officers
to use the optimal route, it must be displayed on an actual map (Figure 11).
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4.4. Comparison with A∗ Algorithm

In order to demonstrate the excellence of the algorithm generated by Q-learning
proposed in this study, we compared and analyzed its performance with the A∗ algorithm,
which is widely used in path generation. The A∗ algorithm was simulated in the same
environment that used for Q-learning, as shown in Figure 9.

Figure 12 presents the simulation results, showing the optimal route based on the
Q-learning and A∗ algorithms. A∗ is an algorithm that simply finds the shortest distance
by judging areas that cannot be reached and areas that can be reached. Therefore, as shown
in Figure 12, it can be confirmed that no route is generated in the areas (Land, anchorage,
restricted area, Sea depth < 11 m, and Traffic separation scheme (B)) to be avoided, but it
does not pass through areas (Traffic separation scheme (A) and Pilot boarding place) that
need to be passed through. In addition, since a route is generated that is too close to the
land, it is difficult to secure the stability of the vessel’s operation, and many unnecessary
waypoints are generated, resulting in energy loss to the vessel.
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The optimal route generated by the Q-learning algorithm has a disadvantage in that
the distance of the route is longer than that of the A∗ algorithm. However, it can be
confirmed that the number of unnecessary waypoints is significantly reduced. In addition,
since the route is generated based on reward, it can be confirmed that the route is generated
while satisfying the vessel’s operation regulations. In vessel operation, it is very important
to pass the pilot boarding place and the Traffic separation scheme (A) area to ensure the
safety of the vessel.

To verify the effectiveness of the reinforcement learning-based route generation
methodology proposed in this study, an optimal route was generated targeting another
area. Details on this are presented in Appendix A.

5. Route-Following Control

Section 5 addresses the control method for following the route. After the route has been
determined, control technology to accurately maintain the route is required. PD controllers
with simple structures and proven stability have been widely used to control vessel routes.
However, the PD controller tends to deviate from the route because of overshoot when
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the course alteration angle is large and the speed is slow. Additionally, the rudder angle
substantially changes, reducing vessel energy efficiency. To compensate for these problems,
a velocity-type fuzzy PID controller was designed and used as a route-following controller
in this study.

5.1. Design of the Velocity-Type Fuzzy PID Controller

Figure 13 shows the structure of the velocity-type fuzzy PID controller. The velocity-
type fuzzy PID controller uses the heading angle error, along with its velocity and accel-
eration, as input; the control increment of the rudder angle is generated as output. The
variables used from input to output are expressed as follows [56]:

ψe(k) = ψd(k)− ψ(k)
ψr(k) = [ ψe(k)− ψe(k− 1)]/T
ψa(k) = [ ψr(k)− ψr(k− 1)]/T

ψ∗e = GE(k)× ψe(k), ψ∗r = GR(k)× ψr(k), ψ∗a = GA(k)× ψa(k)
dδ(k) = dδ1(k) + dδ2(k)

dδc(k) = GU(k)× dδ(k), δc(k) = dδc(k) + δc(k− 1)

(18)

where ψd(k) and ψ(k) are the reference heading angle and current heading angle of
the vessel, respectively. ψe(k), ψr(k), and ψa(k) are the error of heading angle, velocity
of ψe(k), and acceleration of ψe(k) at sampling time k, respectively. GE(k), GR(k), and
GA(k) are the fuzzification scale parameters for ψ∗e , ψ∗r , and ψ∗a , respectively. GU(k) is the
fuzzification scale parameter for dδc(k). The outputs of fuzzy control blocks 1 and 2, dδ1(k)
and dδ2(k), are added to produce dδ(k). Furthermore, the control input δc(k) is created by
adding the control increment dδc(k) and rudder angle at sampling time k− 1.
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Figure 13. Structure of the velocity-type fuzzy PID controller.

5.1.1. Fuzzification Algorithm

Figure 14 shows the fuzzification algorithm for the inputs and outputs of the velocity-
type fuzzy PID controller. The fuzzy set ψ∗e has two members: error positive (EP) and error
negative (EN); the fuzzy set ψ∗r has two members: rate positive (RP) and (RN); and the
fuzzy set ψ∗a has two members: error positive (AP) and error negative (AN) (Figure 14a).
The fuzzy set dδ1(k) has three members: output positive (OP), output zero (OZ), and output
negative (OP) (Figure 14b); and the fuzzy set dδ2(k) has two members: output positive
middle (OPM) and output negative middle (ONM) (Figure 14c).
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The fuzzification algorithms for dδ1(k) and dδ2(k) are different because fuzzy control
block 2 compensates for the behavior of fuzzy control block 1. Fuzzy control block 2 has
the ability to improve the transient response of the system.

5.1.2. Fuzzy Control Rule

Fuzzy control rules are created based on expert experience and control engineering
knowledge [57–60]. The fuzzy control rules for fuzzy control blocks 1 and 2 used in this
study are shown in Table 5.

Table 5. Fuzzy control rules for fuzzy control blocks 1 and 2.

Fuzzy Control Block 1

(R1)1 : IF ψ∗e = EP and ψ∗r = RP THEN dδ1(k) = OP
(R2)1 : IF ψ∗e = EP and ψ∗r = RN THEN dδ1(k) = OZ
(R3)1 : IF ψ∗e = EN and ψ∗r = RP THEN dδ1(k) = OZ
(R4)1 : IF ψ∗e = EN and ψ∗r = RN THEN dδ1(k) = ON

Fuzzy Control Block 2

(R1)2 : IF ψ∗r = RP and ψ∗a = AP THEN dδ2(k) = OPM
(R2)2 : IF ψ∗r = RP and ψ∗a = AN THEN dδ2(k) = ONM
(R3)2 : IF ψ∗r = RN and ψ∗a = AP THEN dδ2(k) = OPM
(R4)2 : IF ψ∗r = RN and ψ∗a = AN THEN dδ2(k) = ONM

In fuzzy control ( (R1)1 ∼ (R4)1), (R1)2 ∼ (R4)2), Zedeh’s AND logic is utilized
to determine the first half of each rule, and Lukasiewicz OR logic is utilized to combine
each rule.

If the scale parameters are varied at each sampling time, as shown in Equation (19),
such that inputs always exist within the range of the normalization parameter L according
to the size of the input, input combinations for fuzzy control blocks 1 and 2 can be generated
as shown below.

GE(k) =
L

ψe(k)
, GR(k) =

L
ψr(k)

, GA(k) =
L

ψa(k)
(19)

5.1.3. Defuzzification Algorithm

The center of area method [61–63] is utilized as the defuzzification approached used in
the velocity fuzzy PID controller, and the following defuzzification output is generated [64]:

dδj(k) =
∑n

i=1 µdδj(k)(wi)× (wi)

∑n
i=1 µdδj(k)(wi)

(20)
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where j represents the outputs of fuzzy control blocks 1 and 2, with values of 1 and 2; n is
the number of rules corresponding to each fuzzy control block, with a value of 4; and wi
and µdδj(k)(wi) are the member values and membership of a member, respectively.

For fuzzy control blocks 1 and 2, output fuzzy sets are defuzzified within L interval
to generate dδ1(k) and dδ2(k). Then, the final control increment dδc(k) can be gener-
ated through the addition of dδ1(k) and dδ2(k) and multiplication by the output scale
parameter GU(k).

If the control increment dδc(k) is arranged and simplified according to the input
combinations condition as shown in Figure 15, a very simple PID-type control increment is
created, as shown in the equation below:

dδc(k) = Ki(k)ψe(k) + Kp(k)ψr(k) + Kd(k)ψa(k) (21)

where Ki(k), Kp(k), and Kd(k) are defined as integral gain, proportional gain, and derivative
gain, respectively. The gain values are obtained according to the following equations:

Ki(k) = 0.5× GU(k)× GE(k)
Kp(k) = 0.5× GU(k)× GR(k)

Kd(k) = 0.25× GU(k)× GA(k)
(22)
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5.2. Performance Verification of Velocity-Type Fuzzy PID Controller

A simulation was conducted to find the optimal route from Busan port to Gamcheon
port, as generated in Section 3, to verify the performance of the velocity-type fuzzy PID
controller designed in this study; its performance was compared with the PD controller.

5.2.1. Simulation Condition

The PD controller used in this simulation is shown in Equation (23):

δ(k) = −Kp(ψd(k)− ψ(k)) + Kdr(k) (23)

Kp and Kd were optimally selected as 1 and 70, respectively. The desired heading angle
ψd(k), defined as the angle between the vessel’s current position and the next position of
the waypoint, was expressed as follows:

ψd(k) = atan2(yk − y(k), xk − x(k)) (24)

where xk and yk are the coordinates corresponding to the x- and y-axes of the next waypoint,
respectively; x(k) and y(k) are coordinates corresponding to the x- and y-axes of the current
vessel position.
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The vessel’s forward velocity was set to 8 m/s, and the maximum allowable angle of
the rudder was limited to ± 20

◦
to ensure vessel stability.

5.2.2. Simulation Results for the Route-Following Control

Figure 16 shows the simulation results of route-following using PD and velocity-type
fuzzy PID controllers. Both controllers generally demonstrated good adherence to the
optimal route.
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However, if course alteration Sections 1–3 were enlarged, the limitations of the PD
controller expressed as a blue solid line were confirmed. When the PD controller was used,
a larger course alteration angle was associated with larger overshoot, resulting in route
deviation. Additionally, the vessel required a long interval to become stabilized.

In contrast, when the velocity-type fuzzy PID controller was used, the route was
followed reliably, with overshoot rarely occurring, regardless of the magnitude of the angle
of the later course. Such results demonstrate that the vessel can accurately follow the
designated route.

The performance of the PD controller deteriorated because the gains of the controller
could not be changed after they had been established. However, unlike the PD controller,
the velocity-type fuzzy PID controller optimally scheduled the gains in real time according
to the fuzzy control rules; thus, the performance of route-following control was superior to
performance with the PD controller.

Figure 17 shows the simulation results for vessel velocities. Because the forward
direction velocity was set to 8 m/s, this value remained constant. There was no lateral
velocity in the section except for the alter course; in the course alteration section, the PD
controller had a higher absolute value of the later velocity than the velocity-type fuzzy PID
controller. This difference was directly related to route deviation.
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The route-following controller used the heading angle as an input and generated the
rudder angle as an output to ensure that the vessel could follow the route. Therefore,
Figures 18 and 19 are important indicators regarding controller performance.
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Figure 19 shows the simulation results of the rudder angle when the rudder was
controlled using the PD and velocity-type fuzzy PID controllers. When the PD controller
was used, the rudder angle changed in a rough manner, whereas the velocity-type fuzzy
PID controller exhibited a smooth rudder angle change. In addition, it can be confirmed
that the stabilization time of the vessel is short because the speed of the alter course is
fast. This result arose because the velocity-type fuzzy PID controller was utilized as an
input to the controller in incremental form. Therefore, upon application of the velocity-type
fuzzy PID controller, a smooth vessel heading angle was generated without large overshoot
(Figure 18).

A series of simulations confirmed the superiority of the velocity-type fuzzy PID
controller; therefore, the velocity-type fuzzy PID controller was selected to follow the route
in this study.

6. Estimation of Environmental Disturbances Using a Fuzzy Disturbance Estimator

In this study, a velocity-type fuzzy PID controller was applied to accurately follow the
route. However, when a vessel actually sails, it is greatly affected by various environmental
disturbances, including wind, waves, and ocean currents. The presence of such environ-
mental disturbances will result in vessel deviation from the designated route, regardless of
whether the velocity-type fuzzy PID controller is used. Additional energy is consumed to
control the vessel, thus increasing the vessel’s energy use.

To solve these issues, Session 5 estimates the magnitude of environmental disturbances
using the characteristics of the Kalman filter innovation. Additionally, if the estimated
environmental disturbances are converted into the thrust and rudder angle to control
the vessel and regarded as control input, the vessel will be able to accurately follow the
designated route despite the environmental disturbances.

6.1. Method for Determining the Existence of Environmental Disturbances

Generally, if the Kalman filter succeeds in state estimation, the innovation process
tends to chatter at 0; if unknown disturbances are applied from the outside, state estimation
fails, and the innovation process chatters with a constant DC value. Environmental distur-



J. Mar. Sci. Eng. 2023, 11, 970 21 of 32

bance has a meaning identical to unknown disturbance because its effects on the vessel are
unknown.

In this context, the presence of environmental disturbance is determined. First, if the
value of the innovation process at each sampling time is converted into an absolute value
and averaged by summing over a specific number of sampling intervals, a value that does
not considerably fluctuate can be obtained. The corresponding equation is shown below:

S =

(
N

∑
j=0
|ie(k− i)|

)
/N (25)

where ie(k) is the innovation process at sampling time k of the Kalman filter, defined as
the difference between the output of the system and the value of the filter estimation; N is
the window defining the range of the number of the innovation process to be accumulated.
If the window is excessively small, ie(k) has a large influence on S; thus, it is sensitive to
the latest information. Conversely, if the window is excessively large, ie(k) does not have a
large influence on S; thus, it is insensitive to the latest information.

Therefore, the size of the window is selected by the designer based on the required
sensitivity. If the value of S, which does not considerably fluctuate, is obtained, the existence
of environmental disturbance must be determined.

Figure 20 shows how to determine the existence of environmental disturbances. The
threshold η is a constant determined by the designer based on the value of S. If the
condition S > η is satisfied, environmental disturbance is applied to the vessel. Then,
a fuzzy disturbance estimator is used to estimate the magnitude of the environmental
disturbance ˆest(k). The fuzzy disturbance estimator for estimating the environmental
disturbance is presented in Section 5.2 [65].
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6.2. Design of the Fuzzy Disturbance Estimator

Figure 21 shows the structure of the fuzzy disturbance estimator. The overall structure
is similar to the structure of the velocity-type fuzzy PID control shown in Figure 12, but
there are differences in the variables used.
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The velocity-type fuzzy PID controller uses the error components of the heading angle
as input and generates control increment of the rudder angle as output. However, the fuzzy
disturbance estimator uses the error components of the innovation process of the Kalman
filter as input; it produces the estimated value of the environmental disturbance as output.
The definitions of variables used in the fuzzy disturbance estimator are as follows:

ie(k) = z(k)− ẑ(k), ie(k)∗ = GIE(k)× ie(k)
ir(k) = ie(k)/T, ir(k)∗ = GIR(k)× ir(k)

ia(k) = [ie(k)− ie(k− 1)]/T, ia(k)∗ = GIA(k)× ia(k)
est(k) = est1(k) + est2(k), ˆest(k) = est(k)× GEST(k)

(26)

where ie(k), ir(k), and ia(k) are the innovation process, values obtained by dividing the ie(k)
by sampling time T, and rate of change according to sampling time of ie(k), respectively.
GIE(k), GIR(k), and GIA(k) are the fuzzification scale parameters for ie(k)∗, ir(k)∗, and
ia(k)∗, respectively. GEST(k) is the fuzzification scale parameter for ˆest(k). The outputs
of fuzzy estimation blocks 1 and 2, est1(k) and est2(k), are summed to produce est(k).
Additionally, the value of the estimated environmental disturbance ˆest(k) is created by
multiplying GEST(k).

Because the fuzzification algorithm, fuzzy estimation rule, and defuzzification algo-
rithm used in the fuzzy disturbance estimator are similar to those aspects of the velocity-
type fuzzy PID controller, they are not discussed further in this paper.

The value of the environmental disturbance, estimated by the fuzzy disturbance
estimator generated through the above process, is as follows:

ˆest(k) = Ei(k)ie(k) + Ep(k)ir(k) + Ed(k)ia(k) (27)

where Ei(k), Ep(k), and Ed(k) are expressed as follows:

Ei(k) = 0.5× GEST(k)× GIE(k)
Ep(k) = 0.5× GEST(k)× GIR(k)

Ed(k) = 0.25× GEST(k)× GIA(k)
(28)

6.3. Route-Following Control System to Eliminate the Effects of Environmental Disturbance

Figure 22 shows a block diagram of the vessel’s route-following control system to
eliminate the effects of environmental disturbance. If the environmental disturbance can be
reliably estimated by the fuzzy disturbance estimator using the Kalman filter’s innovation
process, it can be converted into thrust and rudder angle that control the vessel and
feedback to the control input. Here, T ˆest(k− 1) and δ ˆest(k− 1) are the values obtained by
converting estimated environmental disturbance into thrust and rudder angle, respectively;
τdis
′(k− 1) is the environmental disturbance applied to the vessel; and w(k− 1) and v(k)

are the system noise and measurement noise, respectively.

6.4. Simulation of Route-Following Control
6.4.1. Simulation Conditions

Ocean currents, waves, and wind, which have major effects on vessels, were selected
as the environmental disturbances in this study. Ocean currents were generated using
a first-order Gauss–Markov process [66], and waves were generated by expressing the
Perison–Moskowitz (PM) spectral density function in state space [67]. Finally, the method
proposed by Isherwood was used to calculate the wind force and moment using wind force
and moment coefficients, wind speed, and wind angle [68,69]. The simulation conditions
for environmental disturbances are presented in Table 6.
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Table 6. Simulation conditions for environmental disturbances.

Conditions for Environmental Disturbances

Wind speed (knot) 15
Wind direction (deg) −5
Wave amplitude (m) 0.3

Wave period (s) 10
Ocean current average speed (m/s) 1

Ocean current direction (deg) −5

Table 6 presents the conditions for environmental disturbances selected in this study.
The speed and direction of the wind were selected as 15 knot and −5 deg, respectively,
and the amplitude and period of the wave were selected as 0.3 m and 10 s, respectively.
In addition, average speed and direction of the ocean current were selected as 1 m/s and
−5 deg, respectively.

The forward velocity and rudder limit angle for vessel safety were set to the same
values described in Section 5.

6.4.2. Simulation of Environmental Disturbance Estimation

Because environmental disturbances affect the surge, sway, and yaw of the vessel, the
magnitude of environmental disturbances must be estimated for these three factors [70].
In Figures 23 and 24, the blue line shows the force and moment added to the vessel by
ocean current, wave, and wind; the red line shows the estimated force and moment of the
environmental disturbance using the fuzzy disturbance estimator.

The simulation results confirmed that the fuzzy disturbance estimator can reliably
estimate the forces and moments of environmental disturbances. In addition, it can be
confirmed that it is able to respond even in the alter course section, in which the force and
moment of environment disturbance change rapidly. The reason for this is that the fuzzy
disturbance estimator proposed in this study has a variable structure and can change the
gain value that can estimate the magnitude of the environmental disturbance in real time.

In order for the vessel to accurately follow without departing from the designated
route, it is necessary to convert the reliably estimated force and moment of environmental
disturbances into thrust and rudder angle that control the actual vessel. The estimated
surge force is converted into the thrust T ˆest(k− 1); the estimated sway force and yaw
moment are converted into the rudder angle δ ˆest(k− 1).
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6.4.3. Simulation of Route-Following Control

Figure 25 shows the route-following control for cases with and without environmental
disturbance, with compensation using T ˆest(k− 1) and δ ˆest(k− 1). The red dotted line
shows the result of route-following control for the case without environmental disturbance.
The simulation results confirmed that the sufficiently designated route was adequately
maintained, even when only the velocity-type fuzzy PID controller was used.
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Figure 25. Route-following control for the cases with and without environmental disturbance, with
compensation using T ˆest(k− 1) and δ ˆest(k− 1).

However, when environmental disturbances were applied to the vessel, as indicated by
the black solid line in Figure 25, the vessel was not able to accurately follow the designated
route; thus, route deviation occurred. This increased the time for the vessel to reach the
destination; it also caused economic loss by increasing fuel consumption. Because of this
problem, it is necessary to estimate the force and moment of environmental disturbances
using a fuzzy disturbance estimator.

The blue solid line shows the simulation result, compensated for using T ˆest(k− 1)
and δ ˆest(k− 1) to prevent route deviation because of environmental disturbances. The
simulation results confirmed that route-following control was possible without deviating
from the route, despite continuous application of environmental disturbances to the vessel.

Figure 26 shows the vessel’s velocities. The black solid line is a simulation result
showing the vessel velocities after application of environmental disturbances to the vessel;
it is clear that velocities increased or decreased according to vessel’s heading angle. The
environmental disturbances applied to u simply increased or decreased the forward velocity
of the vessel, whereas environmental disturbances applied to v caused the vessel to deviate
from the designated route.

However, when the effects of environmental disturbances were compensated for using
T ˆest(k− 1) and δ ˆest(k− 1), the velocity v did not occur in the section except for the alter
course; thus, the vessel did not deviate from the route. Additionally, the velocity u could be
held constant at 8 m/s. Through such a result, it can be expected that the vessel maintains
the set forward velocity at a constant and accurately route-following is possible without
deviating from the designated route.

Figure 27 shows the vessel heading angles. As indicated by the solid black line, if
environmental disturbances were applied to the vessel, the vessel heading angle could not
be maintained constant; it changed continuously, because the heading angle changed in
real time due to the rudder being continuously controlled to ensure that the vessel arrived
at the next waypoint.



J. Mar. Sci. Eng. 2023, 11, 970 26 of 32

J. Mar. Sci. Eng. 2023, 11, 970 27 of 33 
 

 

maintains the set forward velocity at a constant and accurately route-following is possible 
without deviating from the designated route. 

 
Figure 26. Velocities (𝑢) and (𝑣) for the case with or without environmental disturbance, and 
compensated for using 𝑇 (𝑘 − 1) and 𝛿 (𝑘 − 1). 

Figure 27 shows the vessel heading angles. As indicated by the solid black line, if 
environmental disturbances were applied to the vessel, the vessel heading angle could not 
be maintained constant; it changed continuously, because the heading angle changed in 
real time due to the rudder being continuously controlled to ensure that the vessel arrived 
at the next waypoint. 

When the environmental disturbances were compensated by 𝑇 (𝑘 − 1)  and 𝛿 (𝑘 − 1), the heading angle changed only in the alter course section, and the heading 
angle remained constant in the other section. This result was similar to the case without 
environmental disturbances. 

In Figures 25–27, the simulation results corresponding to the case without environ-
mental disturbances and the case where compensation was performed using 𝑇 (𝑘 − 1) 
and 𝛿 (𝑘 − 1) were similar. However, the rudder angle simulation results were differ-
ent because an additional rudder angle was applied to the vessel to cope with environ-
mental disturbances. Figure 28 shows the rudder angles of the vessel. As indicated by the 
solid black line, it can be confirmed that a certain angle is generated for the rudder to 
respond to environmental disturbances. According to the direction and magnitude of the 
environmental disturbances acting on the vessel, the rudder angle is compensated in + 
and – directions to an angle suitable for the magnitude. 

These simulation results confirmed that the method proposed in this study can accu-
rately follow the designated route, despite the application of environmental disturbances 
to the vessel. 

Figure 26. Velocities (u) and (v) for the case with or without environmental disturbance, and
compensated for using T ˆest(k− 1) and δ ˆest(k− 1).

J. Mar. Sci. Eng. 2023, 11, 970 28 of 33 
 

 

 
Figure 27. Heading angles for the case with or without environmental disturbance, and com-
pensated for using 𝑇 (𝑘 − 1) and 𝛿 (𝑘 − 1). 

 
Figure 28. Rudder angles for the case with or without environmental disturbance and com-
pensated for using 𝑇 (𝑘 − 1) and 𝛿 (𝑘 − 1). 

7. Conclusions 
In this study, to satisfy the navigation requirements of autonomous vessels, an opti-

mal route was determined considering both vessel fuel consumption and vessel safety; a 
route-following control method that could accurately follow the designated route was 
proposed. 

To achieve these requirements, an optimal route was generated based on reinforce-
ment learning, and a velocity-type fuzzy PID controller that could accurately follow the 
route was introduced. Additionally, to prevent route deviation because of environmental 
disturbances, a fuzzy disturbance estimator capable of estimating environmental disturb-
ance magnitude was designed. The estimated environmental disturbance magnitudes 
were converted to the thrust and rudder angle to control the vessel and thus prevent route 
deviation. 

To verify the method proposed in this study, simulations for route-following control 
were performed using the derived 3 DOF vessel model. The following conclusions were 
obtained: 

Figure 27. Heading angles for the case with or without environmental disturbance, and compensated
for using T ˆest(k− 1) and δ ˆest(k− 1).

When the environmental disturbances were compensated by T ˆest(k− 1) and δ ˆest(k− 1),
the heading angle changed only in the alter course section, and the heading angle remained
constant in the other section. This result was similar to the case without environmental
disturbances.

In Figures 25–27, the simulation results corresponding to the case without environ-
mental disturbances and the case where compensation was performed using T ˆest(k− 1)
and δ ˆest(k− 1) were similar. However, the rudder angle simulation results were different
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because an additional rudder angle was applied to the vessel to cope with environmental
disturbances. Figure 28 shows the rudder angles of the vessel. As indicated by the solid
black line, it can be confirmed that a certain angle is generated for the rudder to respond
to environmental disturbances. According to the direction and magnitude of the environ-
mental disturbances acting on the vessel, the rudder angle is compensated in + and −
directions to an angle suitable for the magnitude.
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following control method that could accurately follow the designated route was proposed.

To achieve these requirements, an optimal route was generated based on reinforcement
learning, and a velocity-type fuzzy PID controller that could accurately follow the route was
introduced. Additionally, to prevent route deviation because of environmental disturbances,
a fuzzy disturbance estimator capable of estimating environmental disturbance magnitude
was designed. The estimated environmental disturbance magnitudes were converted to
the thrust and rudder angle to control the vessel and thus prevent route deviation.

To verify the method proposed in this study, simulations for route-following control
were performed using the derived 3 DOF vessel model. The following conclusions were
obtained:

(1) To generate an optimal route, reinforcement learning based on Q-learning algorithms
was introduced. The optimal route was generated in a manner that ensured vessel
safety and minimized fuel consumption. To ensure safety, under-keel clearance,
navigation charts, and sea depth were considered; shortening distance and minimum
number of waypoints were considered to minimize fuel consumption. The optimal
route from Busan port to Gamcheon port was determined using a traffic separation
scheme, restricted area, anchorage, and pilot boarding place. The results of the
simulation using the Q-learning algorithm confirmed that the optimal route could be
generated while satisfying the requirements.

(2) For the optimal route generated using the Q-learning algorithm, a route-following
control method that can accurately follow the route is required. Conventionally,
a PD controller is used to control the vessel, but such a controller has limitations
including fast course alterations, rough rudder angle changes, and route deviation
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related to large overshoot. To resolve these problems, a velocity-type fuzzy PID
controller was introduced. Use of the velocity-type fuzzy PID controller did not
result in large overshoot; thus, the vessel did not deviate from the designated route.
Additionally, because the changes in rudder angle were smooth, the vessel energy
efficiency increased.

(3) Despite the use of a velocity-type fuzzy PID controller, the application of environmen-
tal disturbances (ocean current, waves, and wind) to the vessel prevented accurate
route-following control. To resolve this problem, a control method capable of fol-
lowing the route without deviation, regardless of environmental disturbances, was
proposed. First, the presence or absence of environmental disturbance was deter-
mined based on the characteristics of the Kalman filter innovation process; when
environmental disturbance was present, the magnitude of the disturbance was esti-
mated using the fuzzy disturbance estimator. Conversion of the magnitude of the
estimated environmental disturbance into thrust and rudder angle actually controlling
the vessel allowed the designated route to be accurately followed, even in the presence
of such environmental disturbances.

The study reported here demonstrated the potential for an autonomous vessel to
generate and follow an optimal route by itself, while responding to the effects of envi-
ronmental disturbance. Further research is needed to implement the proposed optimal
route generation algorithm on ECDIS and apply the route-following control technology to
actual vessels.
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Appendix A

To verify the efficiency of the method proposed in this paper, the optimal route was
generated in the same way by changing the target area. The target area’s latitude and
longitude values were (34◦57′32′′ to 35◦07′12′′ ) and (128◦45′48′′ to 129◦09′37′′ ).

The experimental environment was constructed under the same conditions as in
Section 4.3.1. By applying the UKC, the area with a sea depth of ≤11 m was selected
as a restricted area where the vessel could not pass, and five types of navigation chart
information were considered as shown in Table 3. The experimental environment built
under these conditions is shown in Figure A1.

Simulation conditions were also selected in the same way as in Section 4.3.2, and the
experiment was conducted. The generated optimal route is presented in Figure A2.

https://www.gebco.net/data_and_products/gridded_bathymetry_data/
https://www.gebco.net/data_and_products/gridded_bathymetry_data/
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Figure A2 shows the route generated by Q-learning and the route generated by
reflecting the Douglas–Peucker algorithm to simplify the route. Because the Q-learning
algorithm tends to maximize rewards, route is generated in areas where rewards are given.
Additionally, it can be seen that no route is generated in the area where the penalty is
applied. These results prove that the method proposed in this study can correctly generate
a route even if the experimental environment changes.
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