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Abstract: Typhoon attacks on the Korean Peninsula have recently become more frequent, and the
strength of these typhoons is also gradually increasing because of climate change. Typhoon attacks
cause storm surges in coastal regions; therefore, forecasts that enable advanced preparation for these
storm surges are important. Because storm surge forecasts require both accuracy and speed, this study
uses an artificial neural network algorithm suitable for nonlinear modeling and rapid computation.
A storm surge forecast model was created for five tidal stations on the Korea Strait (southern coast
of the Korean Peninsula), and the accuracy of its forecasts was verified. The model consisted of a
deep neural network and convolutional neural network that represent the two-dimensional spatial
characteristics. Data from the Global Forecast System numerical weather model were used as input
to represent the spatial characteristics. The verification of the forecast accuracy revealed an absolute
relative error of ≤5% for the five tidal stations. Therefore, it appears that the proposed method can
be used for forecasts for other locations in the Korea Strait. Furthermore, because accurate forecasts
can be computed quickly, the method is expected to provide rapid information for use in the field to
support advance preparation for storm surges.

Keywords: typhoon; storm surge; convolutional neural network (CNN); deep neural network (DNN);
global forecast system (GFS)

1. Introduction

Sea surface temperatures are gradually increasing as climate change accelerates be-
cause of global warming. Consequently, tropical cyclones (typhoons) are occurring more
frequently in the northwestern Pacific Ocean, and their strength also shows an increasing
trend [1]. As typhoon frequency increases, typhoon attacks on the coasts of the Korean
Peninsula are increasing, and inundation damage is occurring frequently in coastal re-
gions [2]. Coastal inundation damage occurred in 2003 because of Typhoon Maemi, which
struck the Korean Peninsula, causing 30 deaths and 600 billion won in property damage [3].
Extensive damage to coastal regions has occurred because of typhoons attacking the Ko-
rean peninsula, such as Typhoon Bolaven (2012) and Typhoon Kong-Rey (2018), which
were reported as severe disasters [4,5]. Such typhoon attacks on coastal regions result in
storm surge phenomena caused by strong gusts, and are considered a cause of inundation
damage. In particular, it is known that when typhoons coincide with flood tide periods,
the sea surface water level increases by as much as 5–6 m, and extensive damage occurs,
for example, the destruction of homes and seawalls [6,7].

As instances of such damage have attracted attention, typhoon storm surges have
become a major research topic in studies of maritime disasters. Furthermore, these incidents
have highlighted the importance of research into typhoon storm surge forecasting as a
method of advance preparation to reduce damage [8–10]. Most studies on typhoon storm
surge forecasting have been based on purely data-driven models, empirical formula models,
or dynamic numerical models [8,11]. Early studies used statistical models to analyze the
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complex and nonlinear relationship between tropical cyclones and storm surges [12–16].
More recently, research has been performed using dynamic numerical models that use
weather data and typhoon forecast information such as typhoon path, central pressure,
and wind speed to obtain more accurate forecasts. Existing studies have been used to
compute results, such as coastal inundation prediction maps, but their practical use is
limited by their low reproducible resolution and high computational demands [17,18].
Furthermore, they have not clearly revealed the physical mechanisms behind typhoon
storm surges, such as atmosphere/ocean interactions, and their ability to provide forecasts
that represent the dynamic effects of typhoons [9,18,19]. Chen et al. [9] reported that the
existing studies have a limitation to predict the storm surge since it involves complex
interactions with the atmosphere and ocean at various scales. Moon et al. [18] also inferred
that predicting typhoon-induced sea state requires very intensive computations because
it should be accomplished by a full coupling between a typhoon model and a surface
wave model.

Because of the limitations of methods used in existing studies, research based on
artificial neural networks (ANNs) is being conducted [9]. Lee [20] confirmed the feasibility
of short-term typhoon storm surge forecasting using a machine learning model. Subse-
quently, to obtain more accurate forecasts, studies were performed to find the optimal
training conditions and parameters [21–23], and various artificial intelligence techniques
such as support vector machines (SVMs) and recurrent neural networks (RNNs) have been
used [10,24–26]. Di Nunno et al. [27] had a research for predicting the non-linear tidal
time-series using Nonlinear Autoregressive Exogenous (NARX) neural network. A recent
study by Eum et al. [10] confirmed the feasibility of long-term forecasting using typhoon
storm surge data calculated by numerical modeling in a Long Short-Term Memory (LSTM)
neural network. Because these models have obtained results more quickly and effectively
than existing numerical hydraulic models, they have been able to highlight the usefulness
of ANNs [9,10,24,28]. However, because they only use data from certain stations, they
have not been able to represent spatial information such as typhoon path or radius of
influence [29,30]. Furthermore, most studies have used only simple field observation data,
even though a large amount of multi-source data is needed for accurate analysis when
ANNs are used [9].

The effects of typhoon storm surge phenomena are known to vary from place to
place [10]. The characteristics of the seas around the Korean Peninsula vary with location,
and the effects of storm surges vary because of differences in typhoon path and radius
of influence. Therefore, to obtain more accurate forecasts, it is necessary to represent
spatial information that can be used to analyze geographical differences. Furthermore,
to obtain stable results, a statistical basis for analyzing storm surge phenomena must be
clearly presented [9]. This study targeted the Korea Strait and studied typhoon storm surge
forecasting at five tidal stations (Busan, Geomundo, Tongyeong, Wando, and Yeosu). To
create a typhoon storm surge forecast model, an ANN that combines a convolutional neural
network (CNN) and deep neural network (DNN) was used. Data from a two-dimensional
(2D) numerical weather model, rather than station-based time-series data, were used to
represent spatial information. Results calculated by models are known to be more accurate
when forecast data are used as training data [31]. Therefore, 2D numerical weather model
data were used as the input, and spatially stable and accurate forecasts were computed.

2. Data and Methods
2.1. Study Area

The frequency and strength of typhoon attacks in the Korea Strait increase year by
year, and the expected inundation damage is high. This area is located at the southernmost
end of the Korean Peninsula along the Korea Strait, and storm surge forecasts for advance
preparation are important. The Korea Strait was selected as the study area, and storm
surge phenomena during typhoon attacks were predicted (Figure 1a). Typhoon storm surge
forecast models were created for five tidal stations (Busan, Geomundo, Tongyeong, Wando,
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and Yeosu) on the Korea Strait (Figure 1b), and the forecasting results and the observation
data at five tidal stations were used to verify the accuracy of the models.
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Figure 1. Study area. (a) Red and orange boxes indicate Korea Strait and domain area of Global
Forecast System (GFS) data, respectively. Blue lines represent trajectories of typhoons (2010–2019).
(b) Red dots represent the five tidal stations (Wando, Geomundo, Yeosu, Tongyeong, and Busan).

2.2. Data
2.2.1. Typhoon Data

This study used past typhoon data provided by the Korea Meteorological Admin-
istration (KMA). The KMA provides data on developing typhoons, affecting typhoons,
and landfalling typhoons in the northwestern Pacific Ocean, and this study used data on
affecting typhoons and landfalling typhoons that directly affected the Korean Peninsula.
Data from 39 typhoons over the past 10 years (2010–2019) were used, and the periods
from typhoon impact to dissipation were calculated and selected as training periods for
the typhoon storm surge prediction model. The variables in the typhoon data, including
latitude, longitude, central pressure, maximum wind speed, gale radius, and moving speed,
were used for data analysis to select the input variables for the typhoon storm surge forecast
model (Table 1).

Table 1. List of affecting and landfalling typhoons from 2010 to 2019, provided by Korea Meteorologi-
cal Administration (KMA).

Typhoon Impact Occurrence
Date

Extinction
Date

Central
Pressure (hPa)

Maximum
Wind Speed

(km/h)

Radius of
Wind Impact

(km)

DIANMU landfall 08 Aug 2010 12 Aug 2010 980 112 300

KOMPASU landfall 29 Aug 2010 03 Sep 2010 960 144 450

MALOU affected 03 Sep 2010 08 Sep 2010 990 86 250

MEARI affected 22 Jun 2011 27 Jun 2011 970 130 480

MUIFA affected 28 Jul 2011 09 Aug 2011 930 180 580

TALAS affected 25 Aug 2011 05 Sep 2011 965 137 420

KHANUN landfall 16 Jul 2012 19 Jul 2012 988 90 250

DAMREY affected 28 Jul 2012 03 Aug 2012 975 122 300
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Table 1. Cont.

Typhoon Impact Occurrence
Date

Extinction
Date

Central
Pressure (hPa)

Maximum
Wind Speed

(km/h)

Radius of
Wind Impact

(km)

TEMBIN landfall 19 Aug 2012 31 Aug 2012 945 162 350

BOLAVEN affected 20 Aug 2012 29 Aug 2012 920 191 550

SANBA landfall 11 Sep 2012 18 Sep 2012 910 202 530

LEEPI affected 18 Jun 2013 21 Jun 2013 992 79 400

KONG-REY affected 26 Aug 2013 31 Aug 2013 985 97 300

DANAS affected 04 Oct 2013 09 Oct 2013 935 173 400

NEOGURI affected 04 Jul 2014 11 Jul 2014 915 194 490

HALONG affected 29 Jul 2014 11 Aug 2014 915 194 500

NAKRI affected 30 Jul 2014 03 Aug 2014 980 90 380

VONGFONG affected 03 Oct 2014 14 Oct 2014 900 212 420

CHAN-HOM affected 30 Jun 2015 13 Jul 2015 935 176 450

NANGKA affected 04 Jul 2015 18 Jul 2015 920 191 390

HALOLA affected 13 Jul 2015 27 Jul 2015 960 140 320

GONI affected 15 Aug 2015 26 Aug 2015 930 180 370

MALAKAS affected 13 Sep 2016 20 Sep 2016 935 176 320

CHABA landfall 28 Sep 2016 06 Oct 2016 930 180 380

NANMADOL affected 02 Jul 2017 05 Jul 2017 985 97 170

NORU affected 21 Jul 2017 08 Aug 2017 935 176 350

TALIM affected 09 Sep 2017 18 Sep 2017 940 169 430

PRAPIROON affected 29 Jun 2018 04 Jul 2018 975 115 280

RUMBIA affected 15 Aug 2018 18 Aug 2018 990 72 220

SOULIK landfall 16 Aug 2018 25 Aug 2018 950 155 380

TRAMI affected 21 Sep 2018 01 Oct 2018 920 191 430

KONG-REY landfall 29 Sep 2018 07 Oct 2018 920 191 450

DANAS affected 16 Jul 2019 20 Jul 2019 990 86 250

FRANCISCO landfall 02 Aug 2019 06 Aug 2019 975 115 250

LEKIMA affected 04 Aug 2019 12 Aug 2019 930 180 400

KROSA affected 06 Aug 2019 16 Aug 2019 950 155 450

LINGLING affected 02 Sep 2019 08 Sep 2019 940 169 390

TAPAH affected 19 Sep 2019 23 Sep 2019 965 133 360

MITAG landfall 28 Sep 2019 03 Oct 2019 965 133 330

2.2.2. Observational Data from Tidal Stations

Tidal station data provided by the Ocean Data in Grid Framework of the Korea
Hydrographic and Oceanographic Agency (KHOA) were used to select the training data
for the typhoon storm surge forecast model and validate the model. The KHOA operates
48 tidal stations on coasts around the Korean Peninsula, and provides data on observed,
harmonic, and residual tide levels, as well as data on air pressure, wind direction, and
wind speed. The residual tide level refers to the difference between the observed and
harmonic tide levels, and it indicates storm surges that occur during typhoon attacks. Five
tidal stations on the Korea Strait (Busan, Geomundo, Tongyeong, Wando, and Yeosu) were
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used in this study; they were selected because it was possible to collect data from 2010
to 2019 for these stations (Figure 1b). First, the tidal station data were used to perform a
statistical analysis to determine the training variables for the ANN. The observation data
from the periods corresponding to the shortest and longest proximity distances between
the five tidal stations and the typhoon were used in the statistical correlation analysis.
Training data for the ANN model were selected on the basis of the correlation results of
each variable component in the statistical analysis. The ANN model was validated by
comparing and analyzing the forecasting results after training and the observed tide levels
at each tidal station.

2.2.3. GFS Data

GFS numerical weather model data with a spatial resolution of 0.25◦ were used as the
ANN training data to represent the 2D spatial characteristics. Data for a 10-day forecast
period is provided by an early global forecast system operated four times daily by the U.S.
National Oceanic and Atmospheric Administration. Weather data with spatial information
were used in the typhoon storm surge forecast model (Figures 1a and 2). The ANN training
variables were selected according to the results of a correlation analysis using tidal station
data. Weather elements such as air pressure, u and v components of wind speed, and wind
direction were used as training variables. The GFS data for the typhoon period (2010–2019,
where the time interval for forecast data is 3 h) were parsed and used (Figure 2 and Table 2).
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Table 2. GFS parameters. Air pressure (PRMSL), air temperature (TMP), and wind speed and wind di-
rection components (UGRD and VGRD, respectively) were used to train the artificial neural network.

Number Level Valid Time Parameter Description

001 Mean sea level 3 h forecast PRMSL Pressure reduced to MSL (Pa)
435 2 m above ground 3 h forecast TMP Air temperature (K)

442 10 m above ground 3 h forecast UGRD U component of
winds (m/s)

443 10 m above ground 3 h forecast VGRD V component of
winds (m/s)

2.3. Method
ANN Training for Storm Surge Forecasting

The air pressure, wind speed, wind direction, and air temperature in the GFS data
and harmonic tide levels for each tidal station were used as input variables in the training
data to create the typhoon storm surge forecast model. The data included 2438 items,
and 2278 items were used to train the model, excluding the 166 test dataset for validating
the final model [Chaba (2016) and Kong-Rey (2018)] which is the independent dataset
not involved in training at all. Of the 2278 data, 2050 were used as the training dataset
for training the model, and the remaining 228 data were used as the validation dataset
for validating the training process. The residual tide levels obtained by subtracting the
harmonic tide levels from the observed tide levels at the five tidal stations were used as
the ground truth. The forecast period of the ANN model consisted of eight days for which
it was possible to obtain GFS data, and the typhoon storm surge forecast time interval
(∆t) was 3 h, which is the same as that of the GFS data. As 2D spatial data, the GFS data
were used for regarding the storm surge phenomena and spatial characteristics such as
typhoon path, strength, and surrounding environment. The typhoon storm surge forecast
model was created by combining a CNN– an ANN algorithm used to update the weight
values of the spatial characteristics of 2D data–and a DNN to incorporate station-based
data (Figure 3). In addition, the hyperbolic tangent and ReLU functions were combined
and used as the activation functions of the input layer and hidden layer to well represent
typhoon events, and a linear function was used as the activation function of the output
layer. Adam was used as the model optimizer to perform training. All variables of input
and output data were used after normalization in the progress of training. In the forecasting
process, the GFS forecast data and harmonic tide level data for the corresponding times in
the fully trained model were preprocessed, and the results were calculated by inputting
the data into the model. Then, the forecasts (240 h, 3 h intervals) were calculated by
postprocessing (Figure 4).
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3. Results
3.1. Data Correlation

Typhoon storm surge phenomena have complex correlations with several variables,
and a thorough examination of the effects of each variable is needed for a clear analysis.
Furthermore, to compute ANN-based forecasts, the estimation of the variables that are
likely to affect typhoon storm surges is important during model training for increasing
the forecast accuracy. That is, it is important to understand the mechanism of each of
the variables in regard to typhoon storm surge phenomena, and to use these variables in
ANN training accordingly. Here, the complex correlations were first studied by statisti-
cally analyzing the typhoon storm surge phenomena and each of the variables (Table 3).
Figure 5 shows the weather data observed at the five tidal stations and the residual compo-
nents used to analyze their correlations with typhoon storm surge phenomena. Data from
39 typhoons that attacked the Korean Peninsula from 2010 to 2019 were used to calculate
the distance of affecting area from the typhoon center to each tidal station, and the data
from each tidal station for each time period were compared to determine the correlations.
As the distance from each tidal station to the typhoon’s area of influence decreased, the
air pressure decreased (slope, 0.023), and the residual tide level increased (slope, −0.044)
(Figure 5a,c,e,g,i). In particular, the correlation between air pressure and the residual com-
ponent was negative (R = −0.20) at all five tidal stations. This result shows that the water
level increased because of the effect of air pressure as the typhoon (i.e., tropical cyclone)
attacked. Figure 5b,d,f,h,j show the distance of each tidal station from the typhoon’s area of
influence and the wind speed and residual tide level. As the typhoon approached, the wind
speed (slope, −0.009) and residual tide level increased. Overall, the five tidal stations had
similar correlations, but the variability between the wind speed and residual component
was not clear, in contrast to the variability between the air pressure and residual component.
The reason is thought to be that the effect of wind speed is not independent, and it exerts a
complex effect in combination with other factors. Although the correlations at each tidal
station were similar, other differences in variability appeared. These differences occur
because the factors affect typhoon storm surge phenomena to different degrees at each
observation station; thus, it is necessary to consider spatial information.

Table 3. Correlations between variables describing storm surges for five tidal stations (Busan,
Geomundo, Tongyeong, Wando, Yeosu). Data on typhoons that affected the Korean Peninsula
between 2010 and 2019 were used.

Comparison Station Slope R2 Corr.

Distance
–Air pressure

Busan 0.017 0.12 0.35

Geomundo 0.029 0.29 0.54

Tongyeong 0.022 0.17 0.42

Wando 0.031 0.05 0.22

Yeosu 0.023 0.20 0.44

Total 0.023 0.09 0.30

Distance
–Air speed

Busan −0.007 0.12 −0.34

Geomundo −0.009 0.08 −0.28

Tongyeong −0.008 0.09 −0.30

Wando −0.008 0.01 −0.07

Yeosu −0.007 0.05 −0.23

Total −0.009 0.09 −0.30
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Table 3. Cont.

Comparison Station Slope R2 Corr.

Distance
–Residual tide level

Busan −0.027 0.08 −0.28

Geomundo −0.039 0.04 −0.19

Tongyeong −0.036 0.10 −0.32

Wando −0.060 0.13 −0.36

Yeosu −0.039 0.09 −0.30

Total −0.044 0.09 −0.30

Air pressure
–Residual tide level

Busan −0.710 0.13 −0.36

Geomundo −1.146 0.09 −0.30

Tongyeong −0.853 0.15 −0.39

Wando −0.103 0.01 −0.08

Yeosu −1.074 0.19 −0.44

Total −0.388 0.04 −0.20

Air speed
–Residual tide level

Busan 0.810 0.03 0.16

Geomundo 0.843 0.02 0.14

Tongyeong 1.998 0.20 0.44

Wando 0.328 0.05 0.22

Yeosu 0.398 0.16 0.40

Total 0.578 0.05 0.22

The effects of wind direction and tide levels were confirmed to have complex effects
in combination with wind speed. Figures 6–15 show time-series of the observed tide level,
forecast tide level, residual component, wind speed, and wind direction at each tidal station
for two typhoons that recently attacked the Korean Peninsula and caused extensive damage
[Chaba (2016) and Kong-Rey (2018)]. To obtain the distance between the typhoon center
and each tidal station, the distance from the area of influence was calculated according
to KMA standards, and it is shown as a time-series with the tidal station data from the
same time period. As shown in Figures 6–15, the variability of the residual component
varied with distance to the typhoon center. This result illustrates storm surge phenomena
due to the typhoon attack. Similar variability patterns generally occurred at the five tidal
stations. However, differences were found in the time periods of the effects caused by the
typhoons at each tidal station. When Typhoon Chaba attacked, the typhoon effects at the
Busan, Tongyeong, and Yeosu tidal stations were reflected in advance, and the residual
component increased (Figures 6, 8 and 10), but there were no large temporal differences
at the Geomundo and Wando tidal stations (Figures 7 and 9). A similar difference also
appeared when Typhoon Kong-Rey attacked (Figures 11–15). In each typhoon time period,
the tide level characteristics were different at each tidal station, and these differences are
attributed by the differences in distance from the typhoon center. Regarding the relationship
with wind speed and wind direction, the residual component shows a larger increase when
southerly winds were stronger because of the typhoon attack (Figures 11 and 13–15). During
the attack by Typhoon Kong-Rey, a high residual component appeared during southerly winds
at the Wando tidal station (Figure 14). In contrast, regarding the effects of wind speed and
wind direction, the affected time periods at the tidal stations also differed. At the Tongyeong,
Wando, and Yeosu tidal stations during the attack of Typhoon Chaba, the differences are
attributed to differences in how the southerly wind was reflected in advance and the residual
component increased. These results show that the wind speed, wind direction, and tide level
factors of typhoon storm surges differed with location, and each factor exerted a complex
effect rather than being independent. That is, various factors have a complex effect on typhoon
storm surge phenomena, and it is necessary to represent spatial information in the model. The
data needed for ANN training were selected accordingly.
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represent wind direction and speed, respectively.

3.2. Model Results

The accuracy of the typhoon storm surge forecast model was validated at five points
during the attacks of typhoons Chaba (2016) and Kong-Rey (2018). Figures 16 and 17 show
the harmonic, observed, and predicted tide levels for the two typhoon time periods as
time-series. The seawater level periodicity and storm surge phenomena during the typhoon
attacks were modeled well overall. In particular, the storm surge phenomena that occurred
in conjunction with flood tide periods were modeled similarly to the observed tide levels.
In addition, the modeled seawater level increase caused by typhoon attack during the
ebb tide period was also consistent with the actual tide level (Figure 16b,d). The storm
surge occurrence time periods were found to be accurately divided and modeled, although
each of the five tidal stations had different results. Table 4 shows performance indices for
the storm surge forecasting results at the five tidal stations, which were calculated as the
absolute error, absolute relative error, and root mean square error (RMSE). The absolute
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deviation is the difference between the predicted tide level and observed tide level at
the time of maximum residual tide level, and the absolute relative error is the absolute
deviation ratio of the observed tide level. The relative deviation at the Tongyeong and
Wando tidal stations during the Chaba (2016) attack period was more than 15%, whereas
the other tidal stations showed relative deviations of 5% or less. When Typhoon Kong-Rey
attacked, all five tidal stations showed a relative deviation of 5% or less. The RMSE was
15 cm or less at all tidal stations. Table 5 shows accuracy evaluation results, which are
calculated using residual tide levels and predicted residual tide levels. Overall, it shows
the correlation between 0.7 and 0.9, and it is confirmed that the model could be possible to
predict the residual tide level similarly with the observed tide level.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 17 of 21 
 

 

 
Figure 16. Validation of trained model during Typhoon Chaba (2016). Time-series results for (a) 
Busan, (b) Geomundo, (c) Tongyeong, (d) Wando, and (e) Yeosu stations. Red lines are results pre-
dicted by the trained model. Blue and black lines show observed and harmonic tide levels, respec-
tively, at the tidal station. 
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Figure 17. Validation of trained model during Typhoon Kong-Rey (2018). Time-series results for
(a) Busan, (b) Geomundo, (c) Tongyeong, (d) Wando, and (e) Yeosu stations. Red line is results
predicted by the trained model. Blue and black lines show observed and harmonic tide levels,
respectively, at the tidal station.
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Table 4. Performance evaluation of the model. A relative error indicates the discrepancy between
the observed and predicted tide levels, which is expressed as an absolute error. The absolute error is
calculated using the observed and predicted tide levels at the maximum residual tide level. RMSE:
root mean square error.

Station

Typhoon

Chaba (2016) Kong-Rey (2018)

Absolute Relative
Error (%)

Absolute
Error (cm)

RMSE
(cm)

Absolute Relative
Error (%)

Absolute
Error (cm)

RMSE
(cm)

Busan 5.74 4.59 10.18 3.37 4.96 9.05

Geomundo 0.57 1.13 7.81 5.17 14.25 7.05

Tongyeong 15.23 24.99 9.65 2.97 8.34 7.32

Wando 0.11 0.20 12.81 3.88 11.15 12.00

Yeosu 16.90 29.91 10.36 0.56 2.00 7.21

Table 5. Accuracy evaluation of the model. Correlation, centered root mean square difference, and
standard deviation are calculated using the residual tide levels and predicted residual tide levels.

Station

Typhoon

Chaba (2016) Kong-Rey (2018)

Correlation Centered Root Mean
Square Difference

Standard
Deviation Correlation Centered Root Mean

Square Difference
Standard
Deviation

Busan 0.77 5.96 8.0 0.92 4.23 9.78

Geomundo 0.89 7.38 16.2 0.84 6.37 10.39

Tongyeong 0.57 8.13 6.8 0.91 5.35 12.80

Wando 0.85 7.96 14.7 0.84 10.19 18.50

Yeosu 0.72 9.87 11.3 0.93 6.84 15.35

4. Discussion

Because storm surge phenomena during typhoon attacks cause extensive damage
to coastal regions, their prediction is important. Furthermore, the frequency of typhoon
attacks is gradually increasing, and the rapid computation of highly accurate forecasts
is crucial. Highly accurate results have been computed in previous studies using high-
performance numerical models. However, computation is time-consuming and requires
considerable computing resources. Moreover, because typhoon storm surge phenomena
have complex correlations with several variables, it is difficult to take all mechanisms into
account in analysis and forecasting. Therefore, this study aimed to compute results more
quickly using several variables as ANN training data.

First, a correlation analysis was performed by comparing various weather factors and
typhoon storm surge phenomena. The results showed that the factors had complex effects
rather than clear individual effects. In particular, it was possible to confirm correlations
between factors such as typhoon path and distribution, and it was found that forecasts that
represent spatial characteristics are needed. Therefore, this study used the air pressure,
wind speed, wind direction, and air temperature from the GFS numerical weather model
as training data to represent spatial characteristics. Although air pressure, wind speed, and
wind direction data have been used in previous studies, this study also used air temperature
data as additional training data in an attempt to consider the effect of ocean volume.

The harmonic tide levels used as training data were time-series data that were pre-
dicted using the summation of tidal constituents. Therefore, because of the properties of
ANN series models, there are limitations on the training of a series of neural networks
together with 2D array data from GFS. In particular, storm surge phenomena resulting from
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typhoons are strongly affected by tides; therefore, training is strongly affected by periodic
components. This problem occurs because the harmonic tide levels have a larger effect
than other data in the updating of the ANN weight values, which causes bias. Therefore,
this study created an independent ANN model for each type of training data, and it used a
mixed model that employed ANNs suitable for the properties of the data.

A neural network designed to serve as the forecast model was created by combining a
CNN and DNN, in contrast to previous studies, which used RNNs. A recent RNN-based
study found that relatively accurate forecasts were obtained using an LSTM model [32].
However, differences in the forecast performance appeared at all points. By contrast, this
study, which used a CNN to represent spatial data during training, revealed that there
were almost no differences between tidal stations. In the evaluation of typhoon storm
surge forecasting, an absolute relative error of 10% or less is usually considered to indicate
accurate modeling [10]. The forecasts obtained in this study had an absolute relative error
of less than 5% overall, indicating that the model is capable of highly accurate typhoon
storm surge forecasting. In addition, even though the times at which storm surges occurred
and the tidal periods were different at each tidal station, the forecast model was very
similar to the actual tide levels overall. The reason is thought to be that the forecast model
properly considered spatial characteristics during training, and it seemed to model complex
interactions with various factors via training. The fact that there were no large differences
between the forecasting results at each tidal station suggests that the forecast model can be
used satisfactorily to make forecasts at other stations.

The GFS numerical weather model data that were used as the training data have a low
spatial resolution of 0.25◦; therefore, the ability to model local weather characteristics is
limited. However, it was possible to calculate highly accurate storm surge forecasts. As the
frequency of typhoons that attack in succession is steadily increasing, it will be necessary
for later studies to adjust the forecast time interval precisely. GFS numerical weather model
data were used in this study, but it is expected that better modeling results can be obtained
in future studies if data with finer temporal resolution are used for training.

A recent study by Di Nunno et al. [33] confirmed that the influence of previous
observation data remained and implicitly affected the prediction in the case of absence of
meteorological parameters. Therefore, this study focused on weather data to create a storm
surge forecast model. However, it is thought that future studies must represent ocean time.
In particular, as there are distinct differences in water temperature distributions and water
mass characteristics from place to place, it is thought that representing these properties is
important for accurate forecasting results. For the Korean Peninsula, typhoon attacks are
not limited to the southern coast but also affect the Yellow Sea and East Sea; therefore, it
is important to expand the study area in which typhoon storm surges are predicted. In
future research, it will be necessary to first conduct studies in which the features of regional
sea are distinguished, and it is expected that much improved results can be obtained by
creating forecast models based on the method proposed in this study. Furthermore, it is
challengeable whether a hypothetically predicted typhoon can produce the surge model
much more accurately in the case of actual typhoon. It is necessary to study how accurately
reproducible results when the predicted typhoon is used for training. It is expected to
optimize the weight of training model much more clearly.

The rapid and accurate computation of typhoon storm surge forecasts is considered to
be a crucial factor in responding to coastal disasters. Because the proposed method offers a
forecast model that uses ANNs, it can rapidly compute accurate forecasts. Therefore, it is
judged to be sufficiently effective as part of a storm surge forecasting system. Furthermore,
it is expected to provide useful information when applied in the operational field for
advance preparation.
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