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Abstract: The operating conditions of all-electric tugboats are flexible and changeable. They are more
complicated than conventional vessels in terms of joint voyages and power generation scheduling.
To guarantee the reliable operation of the ship, a new coordinated optimization scheme that combines
economy and operational reliability is proposed. It is based on the various operating conditions
of the tugboat during its voyage, taking into account the random outages of equipment and load
fluctuations due to speed and wave uncertainties. Due to the difficulty of implementing a stochastic
sampling method with space-time coupling constraints (e.g., the voyage is related to propulsion
load), an analytical approach is needed to transform the model into a readily solvable mixed-integer
linear program (MINP) which attributes risk scenarios to load fluctuations under various conditional
probabilities. In addition, this paper proposes an improved piecewise linearization method based on
a differential evolutionary algorithm to speed up the solution process and improve computational
accuracy. Meanwhile, the energy storage loss cost due to battery degradation is added to the
optimization target. The battery’s cycle life is extended by rational scheduling of charging and
discharging. Simulations validate this paper’s joint scheduling optimization scheme in multiple
comparison experiments. The results show that it can effectively balance the economic and reliability
levels under various risk scenarios and improve the environmental energy efficiency indicators.

Keywords: all-electric tugboat; operational reliability; mixed-integer programming; improved
piecewise linearization; voyage scheduling; battery degradation loss

1. Introduction

All-electric ships (AESs) combine propulsion and service load through an energy man-
agement system [1]. The flexibility, safety, and energy utilization efficiency are improved
compared with conventional mechanical propulsion ships [2]. Furthermore, for China to
achieve the ambitious target of carbon peaking by 2030 and carbon neutrality by 2060,
the research and promotion of AES are crucial.

In [3–6], the unit combination, generation scheduling, sizing of the energy storage
system, and energy management of the ship power system have been intensively studied.
As the above study, the influence of the voyage information on the optimization objective
is ignored. Being a mobile microgrid, the propulsion load of the AES accounts for more
than 70% of the total load demand [7]. Therefore, the optimization of ship speed by
scheduling propulsion load and the generation scheduling by variable load demand need
to be considered simultaneously to constitute joint generation and voyage scheduling [8,9].

To solve this problem, many improved optimization models have been proposed to
jointly optimize AES generation and load dispatch in recent years [7–13]. The authors
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of [10] integrated the voyage scheduling and power system dispatching of AESs to develop
the carbon price, and the method can better incentivize AESs to achieve emission control.
In [7], a two-layer robust optimization model is used to minimize the fuel consumption and
energy efficiency operational indicator by considering the ship speed loss due to wave and
wind uncertainties for joint power generation and voyage schedules. In [11], a stochastic
programming model is adopted to avoid the operational risk caused by renewable en-
ergy generation and load-side uncertainty. They introduced the conditional value-at-risk
indicator in the objective function. Joint optimization of the voyage and multi-objective
energy management is achieved by coordinating the AES with the hybrid energy storage
system [12]. The study in [13] tries to extend the GHG emissions as an objective function to
the AES joint scheduling model, which is solved using the non-dominated sorting genetic
algorithm II algorithm. However, the studies mentioned above for AES voyage optimiza-
tion only focus on economic and GHG emission targets. The dynamic reliability level of
ship operation optimization has not been focused on.

The voyage conditions of tugboats are significantly different from those of conven-
tional ships, where the power demand is high during towing, with a total load factor of
more than 90% [14,15]. In contrast, the load level is lower during berthing or cruising.
Therefore, it challenges the optimal economic dispatch of power under guaranteed reliabil-
ity conditions when the operating conditions are variable. The studies show that resistance
generated by wind and waves causes loss of ship speed [16,17]. The above study considered
the effect of ship speed loss in AES operation optimization due to wind and wave variation.
However, the propulsion power variation required to maintain the predefined voyage
is not considered, which is significant for the reserve power in the ship’s power system
at each moment. Additional power reserves are required to maintain the preset speed,
considering the added resistance caused by waves. It is necessary to avoid power shortages
under heavy load conditions. Therefore, the chance-constrained model [18–20] is used in
this study. Stochastic outages of equipment components such as generators and batteries
under load uncertainty are considered to avoid overly optimistic scheduling decisions.

Solving the voyage and power generation scheduling model with wind and wave
uncertainty and random component outages has several issues to be addressed. First, the
typical equation of ship speed and propulsion power used in the literature [11,13,21] does
not apply to tugboats. When a tug is in dragging condition, its speed will change due
to the additional resistance of the towed vessel. Therefore, it is necessary to model the
propulsion system under the influence of the meteorological environment according to
different working conditions of the tugboat [17]. Secondly, the piecewise linearization
methods mentioned in the above studies convert nonlinear functions into MILP by equally
spaced segmentation. However, introducing too many integers increases the burden of
the solution. In addition, probabilistic constraints in the model need to be approximately
transformed while considering balancing accuracy and computational efficiency [22,23].
The study in [14,19] used battery balancing for power fluctuations in the system, but the
effect of cyclic and irregular charging/discharging strategies on the battery life was not
considered. Consequently, the battery loss model needs to be established so that the control
strategy can be optimized [24–26].

The following are the main contributions of this paper. This paper proposes a joint
optimal scheduling model for navigation and power generation considering tugboat op-
eration’s reliability to solve the above-proposed problem. The main contributions are
as follows.

(1) System operational reliability has not been a concern in previous AES operational
optimization problems. In this study, a combined navigation and power generation schedul-
ing model is constructed for different operating conditions of tugboats. A probabilistic
constraint on operational reliability is adopted instead of the traditional deterministic
constraint to avoid over-optimistic optimization schemes.

(2) The typical ship speed and propulsion power formula do not apply to tugboats.
Nonlinear expressions for the tugboat’s speed in calm water and the propulsion power
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for the variable operating conditions of the tugboat departure, docking, dragging, cruis-
ing, and berthing are developed. Due to the increased resistance caused by wind speed
and waves, the preset speed of the ship is effectively maintained by dispatching the cor-
responding reserve power. This way, ships’ operational reliability and arrival rate can
be enhanced.

(3) For nonlinear and chance constraints in the model, the optimal adaptive piecewise
linearization and the probability distribution discretization method are employed to trans-
form them into linear deterministic constraints. Previous studies have not been concerned
with the piecewise linearization method’s effect on the calculation’s accuracy. The im-
proved model used in this study significantly reduces the number of decision variables and
decreases the computational burden.

(4) The energy storage system consisting of battery units combined with generator
units can improve energy utilization and flatten power fluctuations. Conventional battery
charging and discharging strategies do not consider the economic loss due to degradation.
In this study, the loss of energy storage lifetime is quantified and translated into an economic
loss. It effectively mitigates the loss of battery life.

The rest of this article is organized as follows: Section 2 presents the mathematical
model of the problem. Section 3 illustrates the optimization problem formulations. The solu-
tion method for the optimal operation of tugboats is introduced in Section 4. Then, Section 5
provides case studies and a discussion of the results. Section 6 concludes the work.

2. Mathematical Modeling
2.1. Problem Description

Tugboats are vessels that carry out towing, transportation operations, and rescue
missions and play an essential role in economic production. The primary operating area of
the port tugboat studied in this paper is about 12 sea miles from the shore. In this study,
an electric propulsion tugboat with an energy storage system is used as the research object,
considering that the ship, as a mobile microgrid, needs to regard the reasonable distribution
of power and is constrained by the voyage. Therefore, a mathematical model for the joint
dispatch of power generation and navigation schedule under multiple working conditions
of a tugboat is established.

2.2. Tugboat Propulsion System Modeling

The system topology of an AES is shown in Figure 1. Three diesel generators provide
the necessary power for the propulsion and service load of the entire ship, and a storage
system consisting of two lithium batteries. The batteries can be used to achieve peak
shaving, energy saving, and emission reduction depending on the load profile of the
generator under various operating conditions. Since the ship propulsion load accounts
for more than 90% of the total load while towing, the power fluctuations due to wind
and wave resistance cannot be ignored. The following equation usually expresses the
relationship between propulsion power and ship speed, and h1 and h2 are fixed parameters
after fitting [11,13].

Pt
pl = h1 · (Vt)h2 (1)

The formula does not apply to tugboats. The sailing resistance increases significantly
under towing conditions, and the power required for propulsion to overcome the resistance
increases. The power increment due to wind and wave resistance must also be solved for
large vessels. Therefore, the model of propulsion power of an all-electric tugboat under
multiple working conditions and different meteorological conditions is established for the
above problems, as in (1)–(6). In the towing condition, the required power of the tugboat
and the dragged vessel need to be summed. In the following equations, L, B, D, and CB
denote the ship’s length, breadth, draft, and block coefficient, respectively. Hw represents
the wave height. c1 − c5 denote the different resistance coefficients, respectively, and they
are derived from [15,16,27,28]. Equations (3) and (4) are used to calculate the frictional
resistance and residual resistance of a ship in calm water, respectively [29]. Equation (2)
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denotes the desired propulsion power of an AES in calm water conditions. Wave height
Hw is expressed as a quadratic function of wind speed as in Equation (5). The additional
power required to maintain the preset speed is solved by (6) [30], which describes the effect
of varying wind and wave conditions on the propulsion power.

Pt
pl = (Rt

F + Rt
R) ·Vt/ηpl (2)

Rt
F = c1 · L · (B + 2D) · (Vt)c2 (3)

Rt
R = c3 · CB · B · D · (Vt)(c4+c5Vt) (4)

Hw = 0.02 · (Vt
s )

2 (5)

4 Pi
e = 4.594 · (2Hw + 0.152)2 · CB · B2/L/ηpl (6)

Figure 1. Topology of tugboat power system.

2.3. Wind Speed Probability Distribution Model

The above illustrates that the wind speed values are significant to solve for the power
increment due to maintaining the pre-defined speed of the ship. Therefore, a probabilistic
distribution model of wind speed is needed to further describe the propulsion power
fluctuations during navigation. Many studies have shown that the wind speed follows the
Weibull distribution [19,31]. Its probability density function and cumulative distribution
function are (7) and (8), where vw denotes the wind speed, k is the shape factor, and η is the
scale factor [32,33]. Figure 2 shows the fitted probability distribution based on the annual
wind speed data collected from the meteorological station in Yingkou.

f (vs) =
k
η
· (vs

η
)k−1 · exp[−(vs

η
)k] (7)

F(vs) = 1− exp[−(vs

η
)k] (8)
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Figure 2. Probability distribution of wind speed in Yingkou.

2.4. Battery Loss Assessment Model

The practical life of a battery is determined by a combination of factors such as
temperature, the number of cycles, and depth of discharge [24]. In a hybrid energy power
system, the scheduling strategy of energy storage directly affects the battery life loss [26].
Therefore, the battery losses throughout its lifetime need to be quantified and converted
into economic costs to facilitate the joint scheduling optimization of ship energy [25].
The lifetime loss of battery energy storage is modeled by (9)–(11).

Nn,t
cycle = s0 + s1 · es2(1−SOCn,t) + s3 · es4(1−SOCn,t) (9)

Lt
n =

1
Nn,t

cycle

(10)

Lossn,w,t = Sn,w,t
B · |Lt

n − Lt−1
n | (11)

3. Problem Formulation

A mathematical model of the joint voyage and generation scheduling that includes
chance constraints is developed to balance the economy and reliability of the voyage.
The model simulates the navigation scenario and contains output constraints on the genera-
tors and batteries, voyage constraints, and reliability probability constraints. As in Figure 3,
the tugboat receives the operation task and departs from port A, sailing in cruising mode
to location B of the vessel to be towed. Finally, the tugboat drags the target vessel from
point B to port C in dragging mode. When the ship is berthing in port C, the shore power
charges the lithium battery to satisfy the power demand during berthing.

Figure 3. Voyage scheduling.



J. Mar. Sci. Eng. 2022, 10, 1973 6 of 18

3.1. Objective Function

In this study, the expectation of the economic cost of one cruise is taken as the objec-
tive function of the optimization problem. As shown in (12), the total cost contains the
generator’s fuel consumption cost Cw,t

f , start-up cost Cw,t
s , power reserve cost Rw,t

G , battery

operation cost Cw,t
B , and power reserve cost Rw,t

B . In order to reduce the lifetime loss of
battery energy storage due to random, irregular charging and discharging, the loss cost
Lw,t

B is added to the optimization objective. The specific modeling is shown in (13)–(20).

min
W

∑
w=1

T

∑
t=1

ρw · (Cw,t
G + Cw,t

B + Rw,t
G + Rw,t

B + Lw,t
B ) (12)

Cw,t
G = Cw,t

f + Cw,t
s (13)

Cw,t
f =

K

∑
k=1

Sk,w,t
G · uk,t · [ak

0 + ak
1 · r

k,t
G + ak

2 · (r
k,t
G )2] · ∆t (14)

Pk,t
G = Pk

G,max · r
k,t
G (15)

Cw,t
s =

K

∑
k=1

max(0, uk,t − uk,t−1) · Fk
up (16)

Cw,t
B =

N

∑
n=1

Sn,w,t
B · Fn

B · (Pn,t
c + Pn,t

dc ) · ∆t (17)

Rw,t
G =

K

∑
k=1

Qk,w,t
G · Fk

G · ∆t (18)

Rw,t
B =

N

∑
n=1

Qn,w,t
B · Fn

Br · ∆t (19)

Lw,t
B =

N

∑
n=1

Lossn,w,t · Fn
Bl (20)

3.2. Problem Constrains

As a mobile microgrid, an AES is not only subject to the constraints of the system power
balance and the physical constraints of equipment operation but also to the limitations of
ship speed and voyage. Equation (21) represents the real-time power balance constraint in
the system. Equations (22)–(25) shows the operating constraints of the generating units.
Equations (23) and (24) are the minimum on and off time constraints, which represent the
restrictions on the continuous on and off time of the generators.

Equation (25) indicates the constraint on the generator reserve power in case of an
emergency w. Equations (26)–(30) represent the operational constraints of energy storage.
Equation (31) describes the ship’s speed constraint. Equation (32) represents the distance
constraint from port A to position B. Equation (33) represents the entire distance limitation
of the voyage from port A to position B and then to port C. Equation (34) expresses the
operational reliability constraint for the entire voyage, which is the form of the probability
constraint, and the deterministic transformation of this formula is described in Section 4.3.
To translate into a MILP problem, contingency events where generator or battery outages
may occur are equated with loading surges.

Power Balance Constrains:

N

∑
n=1

(Pn,t
dc − Pn,t

c ) +
K

∑
k=1

Pk,t
G · u

k,t = Pt
pl + Pt

ser (21)
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Generator Constraints:

PG,min · uk,t ≤ Pk,t
G ≤ Pk

G,max · uk,t (22)

(uk,t − uk,t−1)(TNk,t−1 − TNk
min) ≤ 0 (23)

(uk,t−1 − uk,t)(TFk,t−1 − TFk
min) ≤ 0 (24)

Qk,w,t
G ≤ Sk,w,t

G · uk,t · (Pk
G,max − Pk,t

G ) (25)

Battery Energy Storage Constraints:

Pn
c,min ≤ Pn,t

c ≤ Pn
c,max (26)

Pn
dc,min ≤ Pn,t

dc ≤ Pn
dc,max (27)

SOCn
min ≤ SOCn,t =

En,t
B

En
B
≤ SOCn

max (28)

SOCn,t = SOCn,t−1 +
ηn

c · Pn,t
c · ∆t

En
B

−
Pn,t

dc · ∆t
ηn

dc · E
n
B

(29)

Qn,w,t
B ≤ Sn,w,t

B ·min

{
(SOCn,t − SOCn

min) · En
B · ηn

dc
∆t

, Pn
dc,max − Pn,t

dc

}
(30)

AES Voyage Constraints:
Vdoc(1− µ1) ≤ Vt ≤ Vdoc(1 + µ1) t ∈ Tdoc

Vdep(1− µ2) ≤ Vt ≤ Vdep(1 + µ2) t ∈ Tdep

Vcru(1− λ) ≤ Vt ≤ Vcru(1 + λ) t ∈ Tcru

Vdra(1− ε) ≤ Vt ≤ Vdra(1 + ε) t ∈ Tdra

(31)

DAB(1− δAB) ≤
TAB

∑
t=1

Vt · ∆t ≤ DAB(1 + δAB) (32)

DAC ≤
TAC

∑
t=1

Vt · ∆t ≤ DAC(1 + δAC) (33)

Operational Reliability Constraints

W

∑
w=1

ρw · Pr

{
K

∑
k=1

Qk,w,t
G +

N

∑
n=1

Qn,w,t
B ≥ (1− Sk,w,t

G ) · Pk,t
G · u

k,t + (1− Sn,w,t
B ) · Pn,t

dc +4Pt
e

}
≥ 1− Lolp (34)

4. Scheduling Optimization Model Conversion

The optimization problem described in Section 3 includes multiple nonlinear con-
straints such as (2), (9), (23), (24), and (34), which would result in an excessive computational
burden. This section uses the corresponding linearization methods to reduce computational
complexity and improve model accuracy. The converted MILP model is solved based on
the CPLEX solver.

4.1. Improved Piecewise Linearization Model

In the above model, (2) and (9) are nonlinear functions, which are usually transformed
into mixed integer forms using piecewise linearization. Equations (35)–(41) are specific
linearization processes. The variable xt in the t period is split into the form of a summation
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of the product of multiple continuous variables wt
m and segmented points xm. ĝ(·) is a

linear function after segmentation, where lt
m is a binary variable.

xt =
M+1

∑
m=1

wt
m · xm (35)

xm = (m− 1) · ∆x + xmin (36)

∆x = (xmax − xmin)/M (37)

ĝ(xt) =
M+1

∑
m=1

wt
m · g(xm) (38)

M+1

∑
m=1

wt
m = 1 wt

m ≥ 0 (39)

M

∑
m=1

lt
m = 1 lt

m = 0 or 1 (40)


wt

m ≤ lt
m m = 1

wt
m+1 ≤ lt

m m = M
wt

m ≤ lt
m−1 + lt

m 1 < m < M

(41)

min ∑
j∈Num

(g(xj)− ĝ(xj))2 (42)

In (36) and (37), the use of uniform segmentation affects the fitting accuracy of the
curve. Therefore, a modified piecewise linearization model is proposed in this study to
speed up the fitting speed and improve the estimation accuracy. A differential evolution
method is used to optimize the location of the breakpoint that minimizes the sum of
squared errors. The corresponding objective function is shown in (42). Num is the number
of samples. The fitted error values at x for the equally spaced segmentation function and the
optimized segmentation function are shown in Figure 4. The red line represents the fitted
function for each segment of equal length, denoted as the equally spaced segmentation
function. The blue line indicates the fitted function after the optimized segmentation point
by an improved piecewise linearization model, denoted as the optimized segmentation
function. In addition, the yellow line represents a nonlinear function curve, which is
denoted as a true nonlinear function. Error1, produced by the equally spaced linearization
method, is significantly larger than Error2, produced by the proposed improved segmented
linearization method.

Figure 4. Piecewise linearization function.
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4.2. Minimum On and Off Time Linearization

The minimum on and off time constraints are expressed in (23) and (24). Taking
the minimum operating time as an example, its mixed integer linearized expression is
shown in (43)–(45). These equations are based only on the binary variables of the generator
operating state.

Gk

∑
t=1

(1− uk,t) = 0 (43)

Gk = min(T, (TNk
min − TNk,0) · uk,0)

t+TNk
min−1

∑
s=t

uk,s ≥ TNk
min · (uk,t − uk,t−1) (44)

∀k ∈ K, ∀t = Gk + 1 · · · T − TNk
min + 1

T

∑
s=t

uk,s − (uk,t − uk,t−1) ≥ 0 (45)

∀k ∈ K, ∀t = T − TNk
min + 2 · · · T

where Gk denotes the initial time period in which generator k must be online. TNk,0

represents the number of periods when the initial moment is already online. The initial
state of k is expressed by uk,0.

4.3. Deterministic Transformation of Chance Constraints

Equation (34) is a chance constraint and needs to be transformed into a deterministic
expression. The formula contains two kinds of random variables, and one is the discrete
variable Sk,w,t

G that expresses the occurrence of contingencies in the system with proba-
bility ρw. The occurrence of such random events is equated to sudden load increases.
In this study, the critical event is set to be a single outage of the generator and battery.
The other is a continuous variable with a sudden increase in power due to wind and waves.
The cumulative distribution function (8) of the wind speed is discretized by (46)–(48).

Z

∑
z=0

p(z) = 1, p(z) ≥ 0, z = 0, 1, 2, ..., Z (46)

Z = Vs,max/d (47)

p(z) =


F(d/2)− F(0) z = 0
F(z · d + d/2)− F(z · d− d/2) z 6= Z
F(z · d)− F(z · d− d/2) z = Z

(48)

where p(z) is the discretized probability sequence and Vs,max represents the maximum
value in the historical wind speed statistics. The discrete step length of the sequence is
denoted by d. Therefore,4Pi

e can be transformed into the corresponding discrete values
4Pi

e(z · d).
F (t, s, w) of (49) represents the difference between the reserve power and the load

increment at the moment t when contingency w occurs. The 0–1 variable Zw
z is introduced

and is recorded as 1 when F (t, s, w) ≥ 0 and 0 otherwise. Therefore, the operational
reliability constraint of the system can be translated into (51), where Lolp denotes the
probability of load loss.

F (t, z, w) =
K

∑
k=1

Qk,w,t
G +

N

∑
n=1

Qn,w,t
B − (1− Sk,w,t

G ) · Pk,t
G · u

k,t − (1− Sn,w,t
B ) · Pn,t

dc −4Pt
e (z · d) (49)



J. Mar. Sci. Eng. 2022, 10, 1973 10 of 18

Zw
z =

{
1 F (t, z, w) ≥ 0
0 F (t, z, w) < 0

(50)

W

∑
w=1

Z

∑
z=0

ρw · Zw
z ≥ 1− Lolp (51)

The current model does not conform to the set rules of MILP and still needs further
transformation. Equation (52) introduces a sizeable positive numberM to screen for power
reserve shortages in the system. In summary, the chance constraint (34) can be transformed
into a deterministic constraint by (51) and (52).{

Zw
z ≥ F (t, z, w)/M
Zw

z ≤ 1 +F (t, z, w)/M
(52)

5. Case Study

The algorithms in this paper are programmed by Python 3.7. CPLEX solves the
proposed mixed-integer quadratic programming model.

5.1. Test System and Parameters Introduction

This paper investigates the voyage and power generation scheduling of an all-electric
tugboat equipped with battery energy storage. The target vessel supplies three generators
and two battery units. The parameters of the generators and energy storage are set based on
references [13,19], as shown in Table 1. In addition, the generator reserve price is usually set
to 25% of the most expensive block of the marginal generator function [34]. The parameters
of the two battery storage with 980 kWh capacity are the same: ηc = 95% and ηdc = 97%.
The maximum power of charging and discharging is 0.5 kW. The SOC at the initial moment
is set to 100%. FB = 0.1 USD/kWh, FBr = 0.035 USD/kWh [35]. The optimization parameters
for this algorithm are set as: population size PN = 50, the maximum number of iterations
MaxI = 1000, differential weight F = 0.5, crossover rate CR = 0.5, and absolute tolerance for
convergence Atol = 10−4. The forced outage rate parameters for generators and batteries
are referred to [36–38], and only the risk scenario of a single failure is considered in this
paper for analysis.

Table 1. Economic and operating parameters of generators.

Pmax Pmin a0 a1 a2 Fup FG
(MW) (MW) (USD/p.u.) (USD/p.u.) (USD/p.u.) (USD) (USD/MWh)

G1 1.4 0.3 111 533 14 25 140
G2 1.4 0.3 120 623 10 25 161
G3 1.4 0.4 116 530 14 25 140

The load side consists mainly of the propulsion load and service load. Based on the
voyage of the towing vessel and some guiding documents, the Discharge Standard for
Water Pollutants from Ships (GB 3552-2018) [39] and the Guidelines for Towage at Sea (GD
02-2012) [29], the voyage planning of the towing vessel is predetermined. For instance,
the ship’s speed in and out of the port is more than 4 kn, and the tugboat’s speed in calm
water is generally not less than 6 kn. Based on the above requirements, the details of an
assumption voyage are shown in Table 2. In the following, this study verifies the model’s
validity through the four perspectives in Sections 5.2–5.5 and analyzes the effect of different
parameters on the degree of calculated results.
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Table 2. AES voyage model parameters.

AES route parameters

4t = 15 min T = 20 Tdoc = {1, 2} Tdep = {14, 15}
Tcru = {3, 4, . . . , 7} Tdra = {8, 9, . . . , 13} Tber = {16, 17, . . . , 20} Vdoc = 6 kn
Vdep = 6 kn Vcru = 10 kn Vdra = 8.3 kn Vber = 0 kn
µ1 = 0.1 µ2 = 0.1 λ = 0.2 ε = 0.2
δAB = 0.01 δAC = 0.005 DAB = 15.5 nm DAC = 31 nm
TAB ∈ Tdoc ∪ Tcru TAC ∈ Tdra ∪ Tdoc c1 = 1.67× 10−3 c2 = 1.83
c3 = 0.147 c4 = 1.74 c5 = 0.15 ηpl = 0.97

AES main characteristics

Ltug = 38.5 m Btug = 10.6 m Dtug = 3.7 m CB,tug = 0.97
Lves = 91.5 m Bves = 24.5 m Dves = 2.5 m CB,ves = 0.95

5.2. Voyage and Generation Scheduling Results Analysis

To test the validity of the above model, the navigation of the tugboat offshore of
Yingkou is simulated. The economically optimal dispatch results under the given voyage
constraint are shown in Figure 5. The optimized voyage speed is higher than the nominal
speed in the docking and departure and slightly lower than in the towing condition with
a heavy load. By constraining the generator on/off status, only one generator operates
at the time of departure. The second generator is put into service as the tugboat enters
the cruising stage. At the same time, the battery units are properly discharged to improve
economic efficiency and reduce pollution emissions. When t ≥ 8, the tugboat performs
towing duties and the load level rises significantly, requiring three generators to be put in
simultaneously to meet the load demand. The ship’s docking speed decreases in t = 14–15,
and the third generator is withdrawn from operation to maintain the economy. After that,
the ship is at berth and the batteries are charged by shore power.

Figure 5. Optimization of power generation and navigation speed scheduling.

Three experimental cases are presented to compare the optimization results for differ-
ent optimization objectives. As shown in Table 3, Case 1 represents the scheduling result
without energy storage. Case 2 represents the result, including energy storage but not
considering its loss degradation. Case 3 represents the result with energy storage and adds
the loss factor of energy storage degradation to the objective function. The results show
that the Lolp of the system is only 0.02 after adding the energy storage device, while the
minimum load loss probability of the Case 1 system is 0.18. It follows that integrating
energy storage can reduce operating costs and greenhouse gas emissions. Its flexible power
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supply can mitigate load fluctuations caused by wave resistance during the voyage and
improve operational reliability. In addition, the operation results show that Case 3 has
7.43% lower life loss than Case 2.

Table 3. Comparison of results for different optimization objectives.

Operation Costs Life Loss Lolp

Case 1 5013 - 0.18
Case 2 4463 3.702 × 105 0.02
Case 3 4473 3.427 × 105 0.02

5.3. Effect of Wind Speed Distribution

The effect of different wind speed distributions on the optimization results is discussed
in this experiment. In the reliability constraint, the power increment4Pt

e (Vt
s ) is affected by

the wind speed. Therefore, to make the results more consistent with practical applications,
wind speed data from meteorological stations in three coastal cities, Weihai, Dalian, and
Yingkou, fit cumulative distribution functions separately. The wind data for weather
stations along the coast used herein are obtained from the SolarGIS dataset obtained by
MTSAT and HIMAWARI satellites. The fitting results are shown in Figure 6 by setting
Lolp = 0.1. The results after discretizing the continuous distribution by (46)–(48) are shown
in Table 4.

Figure 6. Cumulative distribution function of wind speed at different locations.

Table 4. Probability sequences of wind speed at various locations.

Weihai Yingkou Qinhuangdao

s Speed Probability Speed Probability Speed Probability

1 0.0 0.000 0.0 0.000 0.0 0.000
2 1.6 0.049 1.1 0.045 1.0 0.029
3 3.2 0.154 2.2 0.126 2.0 0.114
4 4.8 0.218 3.3 0.176 3.0 0.190
5 6.4 0.218 4.4 0.187 4.0 0.219
6 8.0 0.169 5.5 0.165 5.0 0.193
7 9.6 0.106 6.5 0.125 6.0 0.134
8 11.2 0.054 7.6 0.083 7.0 0.074
9 12.8 0.022 8.7 0.049 8.0 0.032

10 14.4 0.008 9.8 0.025 9.0 0.011
11 16.0 0.003 10.9 0.019 10.0 0.004
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It can be seen that the probability of wind speed in the high-speed zone is higher in
Weihai compared to Yingkou. Secondly, the maximum wind speed in Qinhuangdao is only
10.0 m/s, which is significantly lower than the other two locations. Equation (6) shows that
the power increment required to maintain the sailing speed is exponentially related to the
wind speed, i.e., the power demand is more significant at more substantial wind speeds.
Therefore, the reserve power needs to be increased to respond quickly to fluctuations in
propulsion load to ensure the reliability of navigation, and the operating costs will increase
as a result. The results in Table 5 also confirm that the operating costs in Weihai are more
expensive than those in Qinhuangdao and Yingkou.

Table 5. Comparison of operating costs by locations.

Weihai Dalian Yingkou

Total operation cost (USD) 4136 3782 3511

5.4. Effect of Lolp on Operational Costs

To study the impact of load loss probability Lolp on operating costs and dispatch
results, 11 indicators in the interval [0.02, 1] are selected for simulation. The calculation
results are presented in Figure 7, and the system’s total operating cost decreases from
USD 4281 to USD 3516 as the reliability level gradually decreases. The higher level of
reliability imposes more stringent requirements on the spinning reserve of the system at
different moments. It is equivalent to transforming the chance constraint into a deterministic
constraint when Lolp = 1, i.e., it does not consider the impact of load randomness and
unexpected outage events on the system power balance.

Figure 7. Operating costs under different Lolp levels.

For observation purposes, the variation of the system reserve power for six different
loss-of-load probability indicators is analyzed. At Lolp = 1, the reserve power at each mo-
ment is zero, and the results are displayed in Figure 8. At t > 15, the shore power supplies
energy to the ship’s power system. Thus, it is considered that there is no possibility of load
loss. As reliability levels increase, power reserves consequently rise to meet operational
risk constraints. In addition, the towing condition requires a higher spinning reserve than
cruising. Due to the heavy load factor under towing conditions, the risk of the system being
affected by uncertainties increases, which requires focused attention.
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Figure 8. Reserve capacity under different Lolp levels.

5.5. Comparison of Different Piecewise Linearization Methods

The two linearization methods are tested for comparison. As speed variations will
cause power fluctuations and thus affect the optimization results, pre-set nominal ship
speeds are adopted for the experiments to exclude their effects. The actual values of the
nonlinear function at nominal speed are used as the propulsion load, and the optimization
result is recorded as the model baseline value. We compare the relative error between the
optimization results of the two methods and the benchmark value under different numbers
of segments from 3–10.

The results of the experimental comparison are shown in Table 6. The optimized
spaced method in the table represents the relative error calculated using the improved
piecewise linearization method. Equally spaced indicates the result of a piecewise lineariza-
tion method using equally spaced segments. The accuracy of the fitting of the two methods
increases with the number of segments. For convenience in measuring the experimental
results, this paper uses a relative error of 2% as the standard. The table shows that the
relative error of the improved piecewise linearization method is 1.566% at a segment num-
ber of 7. In contrast, the equally spaced method is still above 2% at a segment number of
10. With a segment number of 7, there are 576 fewer variables to optimize in the model
than when the segment number is 10. Therefore, if the optimized spaced method with the
number of segments set to 7 is used, the decision variables are reduced by 6.07% compared
to the equally spaced method with the number of segments set to 10. Moreover, the former
method is more precise in its calculation. The effectiveness of the presented approach for
balancing computational resources and model accuracy is verified.

Table 6. Comparison of results for different numbers of segments.

Segments Optimized Spaced Equally Spaced Time Variables

3 14.062% 38.244% 2.03 8145
4 9.337% 10.372% 2.13 8337
5 3.886% 9.813% 2.67 8529
6 3.383% 8.750% 5.02 8721
7 1.566% 6.206% 6.11 8913
8 1.510% 2.404% 9.52 9105
9 1.398% 2.153% 11.63 9297

10 0.587% 2.069% 15.83 9489
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6. Conclusions

This paper combines the operating conditions of electric tugboats and proposes a
new joint optimal scheduling model of navigation and power generation, considering the
reliability of tugboat operation. The relationship between propulsion load and voyage
as influenced by navigation speed and waves is first established. The risk scenarios
(equipment outages and load fluctuations) that occur in the system are transformed into
readily solvable mixed integer problems solved by probability distribution discretization
and an improved piecewise linearization method. Finally, it is calculated by the CPLEX
solver. The effect of various influencing factors on the scheduling results is verified and
compared through four simulation experiments so that operators can adjust the navigation
speed and generation scheme according to different demands.

This paper innovatively incorporates operational reliability opportunity constraints
into the joint optimization to balance economy and reliability by adequately scheduling
system reserve power. The simulation results show that the system can satisfy the power
increment demand caused by wind and waves by enhancing the reserve power after adding
the operational risk constraint and guaranteeing the operational safety of the ship through-
out the voyage. Furthermore, the effect of segmentation points on precision is not studied
in the traditional piecewise linearization method. In this paper, the improved linearization
method with optimized segment points reduces the decision variables by 6.07% while
ensuring the accuracy of the operation and improving the computational efficiency. Mean-
while, the economic indicator of battery degradation added to the optimization objective
effectively avoids frequent charging and discharging, and the results show that the battery
life loss is decreased.

The proposed scheduling model can be improved to consider other practical factors.
The configuration and sizing of the energy storage system, combined with the tugboat’s
working conditions, is essential. These will be further investigated.
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Nomenclature

Acronyms
AES All-electric ship
GHG Greenhouse gas
SOC State of charge
ESS Energy storage system
MILP Mixed-integer linear program
Sets and indices
k, K Index and set of generator units.
n, N Index and set of battery units.
i, T Index and set of time periods.
w, W Index and set of risk scenarios.
z, Z Index and set of wind speed discrete step size.
Tdoc Set of docking time periods.
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Tcru Set of cruising time periods.
Tdep Set of departure time periods.
Tber Set of berthing time periods.
Tdra Set of dragging time periods.
Parameters
4Pi

e(·) Propulsion power increment.
∆t Time interval for each dispatch.
ηn

c , ηn
dc Charging and discharging efficiency.

ηpl Propulsion efficiency.
ρw Probability of risk scenarios.
En

B Rated capacity of the battery.
Lolp Probability of load loss.
Pn

c,max Maximum charging power of battery.
Pn

c,min Minimum charging power of battery.
Pn

dc,max Maximum discharging power of battery.
Pn

dc,min Minimum discharging power of battery.
Pk

G,max Maximum value of generator output power.
Pk

G,min Minimum value of generator output power.
Pt

ser System service load.
Sk,w,t

G Operational status of generator risk scenarios.
Sn,w,t

B Operational status of battery risk scenarios.
SOCn

max Maximum SOC of the battery.
SOCn

min Minimum SOC of the battery.
TFk

min Minimum off time period of generator.
TNk

min Minimum on time period of generator.
Vs,max Maximum in the historical wind speed statistics.
Fk

G Reserve cost for unit capacity of generator.
Fn

B Operation cost for per unit power of battery.
Fn

Br Reserve cost for unit capacity of battery.
Fn

Bl Investment cost of battery.
Fk

up Fixed start-up cost of generator.
Vdoc, Vdep, Vcru, Vdra Nominal speed for docking, departure, cruising, and berthing.
µ1, µ2, λ, ε Maximum allowable docking, departure, cruising, and berthing

speed variation factors.
DAB, DAC Nominal distance from port A to B and total distance of voyage.
δAB, δAC Maximum allowable voyage deviation factor.
Ltug,Btug,Dtug, CB,tug Tugboat’s length, breadth, draft, and block coefficient.
Lves,Bves,Dves, CB,ves Towed vessel’s length, breadth, draft, and block coefficient.
Variables
Pt

pl Propulsion load.
Vt Optimized ship speed.
Rt

F Friction resistance of the ship.
Rt

R Residuary resistance of the ship.
Nn,t

cycle Battery life cycle time.
Lossn,w,t Battery life loss.
Cw,t

G Total cost of generator operation.
Cw,t

B Total cost of battery operation.
Rw,t

G Reserve cost of generator.
Qk,w,t

G Reserve power of generator.
Rw,t

B Reserve cost of battery.
Qn,w,t

B Reserve power of battery.
Lw,t

B Cost of battery degradation.
Fn

Bl Cost of battery investment.
Cw,t

f Cost of generator fuel consumption.

Cw,t
s Cost of generator start-up.
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Pn,t
dc Discharge power of the battery.

Pn,t
c Charge power of the battery.

Pk,t
G Output power of generator.

uk,t Operating status of the generator, 0–1.
SOCn,t Battery state of charge.
TNk,t Number of periods the generator has been online continuously.
TFk,t Number of periods the generator has been offline continuously.
rk,t

G Loading factor of generator.
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