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Abstract: Nowadays, the requiem sharks comprise one of the most diverse and widespread families
of selachians, i.e., Carcharhinidae. Among the carcharhinids, the genus Carcharhinus has the largest
number of living species, namely, at least 35. Known from fossils as old as the Cretaceous, the requiem
sharks did not significantly radiate before the Eocene (when Carcharhinus also appeared), and their
diversification mainly occurred in Neogene times. Here, we describe a new species of requiem shark,
Carcharhinus dicelmai sp. nov., based on fossil teeth from Lower Miocene (18.4–18.1 Ma) strata of the
Chilcatay Formation of the East Pisco Basin (southern Peru). Upper teeth of C. dicelmai sp. nov. are
typically provided with a slender, smooth-edged cusp; a marked coronal twist; and a distal heel
that bears 1–5 coarse, angularly lobate serrae that become more prominent toward the base of the
cusp. The dentition of C. dicelmai sp. nov. appears less akin to that of most other carcharhines to the
cutting-clutching type, and seemingly testifies to the development of more predominantly clutching
adaptations. A carcharhinid tooth from the Burdigalian to lower Langhian Cantaure Formation of
Venezuela is reassigned to C. dicelmai sp. nov., suggesting a trans-Panamanian distribution for this
extinct shark species.

Keywords: Burdigalian; Carcharhinidae; Carcharhiniformes; Carcharhinus dicelmai sp. nov.; Central Amer-
ican Seaway; clutching-type dentition; Elasmobranchii; systematics; taxonomy; vertebrate palaeontology

1. Introduction

Carcharhinidae, also known as requiem sharks, comprise one of the most diverse
and widespread families of modern selachians. Among the carcharhinids, the genus
Carcharhinus has the largest number of living species, at least 35 [1]. Typical field marks of
Carcharhinus include small, widely spaced nostrils; no spiracles; labial furrows confined
to mouth corners; usually serrated or crenulated upper teeth; no cusplets on lower teeth;
no keels on caudal peduncle; transverse, crescentic precaudal pits; first dorsal mid-base
closer to pectoral bases than to pelvics or, at most, about equidistant between them; second
dorsal fin less than half the height of first; second dorsal origin usually about opposite
anal origin; and anal fin with preanal ridges short to absent, as well as with a deeply
notched posterior margin [2]. Ranging in total body length between less than one and more
than three metres, Carcharhinus spp. inhabit a broad spectrum of frankly marine, mostly
warm-water environments, from shelfal to open-ocean settings, although some species (e.g.,
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Carcharhinus leucas and Carcharhinus melanopterus) can also enter brackish or even fresh
waters [2–7].

The evolutionary history of requiem sharks is relatively shallow if compared to that
of other carcharhiniform families such as Scyliorhinidae and Triakidae [8]; indeed, the
geologically oldest remains of Carcharhinidae date back to the upper part of the Up-
per Cretaceous [9], but carcharhinids did not significantly diversify before the Creta-
ceous/Palaeogene extinction event. A first, reef-associated requiem shark radiation began
ca. 45 million years ago and resumed during the Oligocene [10]; however, most of the car-
charhinid diversification occurred in Neogene times [9]. As regards the genus Carcharhinus,
it appears to have emerged in the framework of the first carcharhinid radiation, during the
Lutetian (early middle Eocene) [11]. Lately, our knowledge of the past diversity of the genus
Carcharhinus has been growing steadily, as evidenced by the ten extinct carcharhine species
that have been described during the last fifteen years based on fossil remains [12–19].

The fossil record of Carcharhinidae consists mostly of isolated teeth that were pre-
dominantly recovered from deposits of the Northern Hemisphere (Marramà et al. [20], and
references therein), and the same could be said for the genus Carcharhinus. One significant
exception is represented by the Middle Eocene to Pliocene sedimentary infill of the East
Pisco Basin of Peru—one of the most significant marine vertebrate Fossil-Lagerstätten
worldwide [21–66]. Indeed, starting in the last few years, investigations focused on excep-
tionally preserved specimens [42,67], rare and elusive taxa [68] and a handful of outstand-
ingly productive tooth-bearing localities [69,70] have disclosed a rich elasmobranch fossil
record that includes abundant and taxonomically diverse remains of Carcharhinidae, and
even ancient nurseries of Carcharhinus [70,71].

Our main aim here is to describe a new species of Carcharhinus based on teeth from the
Lower Miocene (18.4–18.1 million years ago) strata of the Chilcatay Formation of the East
Pisco Basin. In doing so, the palaeoecological affinities and palaeobiogeographic bearing of
the new species will also be discussed. Interestingly, the fossils dealt with in the present
paper also testify to the aftermath of a supposed extinction event in sharks, dated at about
19 million years ago (Sibert and Rubin [72], but see also Feichtinger et al. [73] and Naylor
et al. [74] for a rebuttal of Sibert and Rubin’s hypothesis).

2. Materials and Methods
2.1. Abbreviations

Ma = million years (ago); MUSM = Museo de Historia Natural de la Universidad
Nacional Mayor de San Marcos, Jesús María, Lima, Peru; RK = Haimuseum und Sammlung
R. Kindlimann (private collection with public access), Aathal, Zurich, Switzerland.

Open nomenclature abbreviations are used herein according to Bengtson [75]; when
reported from previous studies, they follow the same format as found in the original papers.

2.2. Nomenclatural Acts

The electronic edition of this article conforms to the requirements of the amended
International Code of Zoological Nomenclature (ICZN), and hence the new name contained
herein is available under that code from the electronic edition of this article. This published
work and the nomenclatural acts it contains have been registered in ZooBank, the online
registration system for the ICZN. The LSID for this publication is: urn:lsid:zoobank.org:pub:
478AE192-7F74-4C6C-9CAA-28864F511ED0.

2.3. (Allo)Stratigraphic Context

The Chilcatay Formation was deposited between the latest Oligocene and the early
Miocene in the southern Peruvian East Pisco Basin (Figure 1a), which at that time was
shaped as a semi-enclosed, shallow-marine embayment bordered seaward by a chain of
basement islands (Figure 1b) [50,76–80].
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Slope Ridge. Redrawn and modified from Travis et al. [81] and Thornburg and Kulm [82]. (b) 
Schematic palaeogeographic map of the East Pisco Basin, showing the areas of the Cenozoic outcrop. 
Redrawn and modified from DeVries and Schrader [83]; the star indicates the type locality of 
Carcharhinus dicelmai sp. nov. at Zamaca. 

Along the right bank of the Ica River, including our study area of Zamaca (Figure 
1b), the Chilcatay Formation is Lower Miocene in age and consists of two distinct 
allomembers or depositional sequences (Ct1 and Ct2, from older to younger) that are 
separated from each other by an intraformational unconformity (CE0.2) [56–58,84,85] 
(Figure 2a). In addition, an older Chilcatay sequence (Ct0) has recently been recognised at 
the remote localities of Laberinto and Media Luna, in the southern and western parts of 
the Ica Desert, respectively [79,80]. Both the base of Ct1 and that of Ct2 are locally marked 
by a lag with boulders, pebbles with Gastrochaenolites borings, phosphatic nodules, shark 
teeth, fragmentary bones and large-sized Gyrolithes burrows. 

Figure 1. Geographic and geological setting. (a) Map of the major Cenozoic sedimentary basins along
the coast of Peru. Major structural highs are the Coastal Batholith, the Outer Shelf High and the
Upper Slope Ridge. Redrawn and modified from Travis et al. [81] and Thornburg and Kulm [82].
(b) Schematic palaeogeographic map of the East Pisco Basin, showing the areas of the Cenozoic
outcrop. Redrawn and modified from DeVries and Schrader [83]; the star indicates the type locality
of Carcharhinus dicelmai sp. nov. at Zamaca.

Along the right bank of the Ica River, including our study area of Zamaca (Figure 1b),
the Chilcatay Formation is Lower Miocene in age and consists of two distinct allomembers
or depositional sequences (Ct1 and Ct2, from older to younger) that are separated from
each other by an intraformational unconformity (CE0.2) [56–58,84,85] (Figure 2a). In
addition, an older Chilcatay sequence (Ct0) has recently been recognised at the remote
localities of Laberinto and Media Luna, in the southern and western parts of the Ica Desert,
respectively [79,80]. Both the base of Ct1 and that of Ct2 are locally marked by a lag
with boulders, pebbles with Gastrochaenolites borings, phosphatic nodules, shark teeth,
fragmentary bones and large-sized Gyrolithes burrows.

Three facies associations comprise the Ct1 allomember. In ascending stratigraphic
order, these facies associations are known as Ct1c (made of massive sandstones interbedded
with boulder-sized clasts and conglomeratic levels), Ct1a (made of sandstones and siltstones
intercalated with beds of coarse-grained sandstones and conglomerates) and Ct1b (made
of coarse-grained, mixed siliciclastic-carbonate, clinostratified deposits). Ct1c, Ct1a and
Ct1b reflect shoreface, offshore and submarine delta deposition, respectively. Two facies
associations comprise the Ct2 allomember, namely, Ct2a (made of highly fossiliferous,
massive, intensely bioturbated sandstones) and the overlying Ct2b (made of silty mud-
stones intercalated with minor, laterally persistent, very fine-grained sandstone interbeds
as well as submarine slump-related deformed strata), reflecting shoreface and offshore
deposition, respectively.
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amb, allomember; Fm, formation. (b) General view of the outcrop; notice that the Ct1b facies 
association is locally missing. (c) Close-up of the CE0.2 intraformational unconformity that separates 
the Ct2a facies association from the underlying Ct1a facies association; notice the damaged Gyrolithes 
burrow, indicated by an arrowhead, that penetrates the top of Ct1a. (d) Carcharhinid and 
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Figure 2. Stratigraphy, sedimentology and palaeontology of the type locality and horizon of Car-
charhinus dicelmai sp. nov. at Zamaca. (a) Schematic stratigraphic column of the Lower Miocene
succession exposed in the East Pisco Basin, and its internal subdivision into sequences/allomembers
and facies associations. Redrawn and modified from Di Celma et al. [57]; notice that the Ct0 se-
quence/allomember is not figured herein, as it has not been recognised anywhere in the Zamaca
area. The star indicates the type horizon of Carcharhinus dicelmai sp. nov., occurring at the base of the
Ct2a facies association and coinciding with the ShB-4 level of Landini et al. [70]. Abbreviations: amb,
allomember; Fm, formation. (b) General view of the outcrop; notice that the Ct1b facies association
is locally missing. (c) Close-up of the CE0.2 intraformational unconformity that separates the Ct2a
facies association from the underlying Ct1a facies association; notice the damaged Gyrolithes bur-
row, indicated by an arrowhead, that penetrates the top of Ct1a. (d) Carcharhinid and myliobatoid
teeth (indicated by arrowheads) cropping out from the Ct2a sandstones that comprise the ShB-4
tooth-bearing interval.

At the study site (approximate geographic coordinates: 14◦37′00.9” S, 75◦38′48.5” W),
the Ct1b facies association is locally missing, and Ct2a contacts the underlying Ct1a through
the CE0.2 intraformational unconformity (Figure 2b,c). Like several other elasmobranch
fossils (Figure 2d), all the specimens described herein originate from within the Ct2a strata.

2.4. Palaeontological Background

Fossil vertebrates from the Chilcatay Formation consist of cetaceans (both toothed
and baleen-bearing whales), seabirds, sea turtles, bony fishes and elasmobranchs (both
sharks and rays). Most cetaceans belong to Odontoceti, and specifically to Inticetidae
(Inticetus vertizi), the so-called “Chilcacetus-clade” of early toothed whales (Chilcacetus cavirhi-
nus), Platanistoidea (the squalodelphinids Furcacetus flexirostrum; Huaridelphis raimondii,
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Macrosqualodelphis ukupachai and Notocetus vanbenedeni; the platanistid aff. Araeodelphis
sp.; the basal platanistoid Ensidelphis riveroi and other indeterminate forms), Eurhinodel-
phinidae (represented by indeterminate forms only), Physeteroidea (cf. Diaphorocetus sp. and
Rhaphicetus valenciae) and Kentriodontidae (Kentriodon) [29,31,34,37,49,50,52,57,58,66,86,87].
Mysticetes are also present with rare, indeterminate specimens [58]. Seabirds consist
of Spheniscidae (Palaeospheniscus) [88]. Sea turtles are represented by a member of Der-
mochelyidae (possibly Natemys peruvianus) [50,58,89]. Bony fishes comprise indeterminate
Scombridae as well as Istiophoridae (aff. Makaira sp.) and scales that resemble the extant
genus Sardinops [50,57,58].

The Chilcatay strata feature an abundant and taxonomically rich content of fossil
elasmobranch remains (mostly teeth and spines) that concentrate in a few discrete horizons
of Ct0, Ct1 and Ct2 [50,57,58,70,80]. Though specific data on the Chilcatay fossil sharks
and rays were provided by Alván De la Cruz [90], Renz [91] and Shimada et al. [68], a
comprehensive overview of the shark and ray assemblage from the Chilcatay strata was
not available until the recent works by Bianucci et al. [50] and Landini et al. [70]. Focussing
on the Zamaca area, the latter study recognised the presence of four tooth-bearing intervals,
taking their place within Ct1a (i.e., ShB-1 and ShB-2), Ct1b (i.e., ShB-3) and Ct2a (i.e., ShB-4,
the richest such interval from which all the fossil specimens studied herein originate) [70].
As regards ShB-4, so far it has yielded more than 2300 teeth and dermal elements belonging
to Squatiniformes (Squatina sp.), Lamniformes (Alopias superciliosus, Alopias cf. vulpinus,
Anotodus agassizi, Cosmopolitodus hastalis (also known as Carcharodon hastalis), Cosmopolitodus
plicatilis (also known as Carcharodon plicatilis), Isurus oxyrinchus, Megachasma cf. applegatei,
Carcharias sp., Carcharocles chubutensis (also known as Otodus chubutensis), Megalolamna
paradoxodon and Parotodus benedeni), Carcharhiniformes (Carcharhinus brachyurus, Galeocerdo
aduncus, Negaprion brevirostris, Physogaleus contortus, Hemipristis serra and Sphyrna zygaena),
Myliobatiformes (Dasyatidae gen. et sp. indet. and Myliobatoidea gen. et sp. indet.) and
Rhinopristiformes (cf. Anoxypristis sp.) [70]. New sampling efforts conducted in 2019 led to
the discovery of some hundred new specimens, including the teeth of the new carcharhinid
taxon described herein as well as finds of Rhinoptera sp. (representing the first fossil record
of the myliobatiform family Rhinopteridae in the East Pisco Basin; A.C. and A.B., pers. obs.).

The shark and ray assemblage from ShB-4 can be briefly described as follows: its
taxonomic composition is dominated by two shark lineages, Lamniformes and Carcharhini-
formes, the former being dominant in terms of alpha-diversity; two taxa, C. brachyurus (the
commonest shark species) and C. hastalis, account together for more than three fifths of the
total number of specimens; and the entire assemblage exhibits a distinctly juvenile imprint.
On the whole, the ShB-4 elasmobranch assemblage recalls those from the Middle and lower
Upper Miocene strata of the East Pisco Basin [44,69,71], thus suggesting the persistence of
a similar ecological structure through most of the Miocene at least [72].

In addition to the aforementioned vertebrate taxa, the Chilcatay Formation also features
an abundant and rather diverse macroinvertebrate fossil fauna that includes bivalves,
gastropods, barnacles, crabs, bryozoans, cirratulids, echinids and brachiopods [57,78,92–98].

2.5. Geochronological Framework

At the localities of Ullujaya and Roca Negra, the Chilcatay beds have recently been
assigned to the Burdigalian (upper Lower Miocene) by means of biostratigraphy and
isotope geochronology. Micropalaeontological data concerning silicoflagellates, diatoms
and nannoplankton constrain the deposition of the Ct1 and Ct2 allomembers between ca.
19–18 Ma; this age range is further supported by 40Ar/39Ar ages obtained from two volcanic
ash layers from Ct1, dated at 19.25 ± 0.05 Ma (at Roca Negra) and 19.00 ± 0.28 Ma (at
Ullujaya), as well as from one volcanic ash layer occurring near the top of Ct2, dated at
18.02 ± 0.07 Ma (at Los Dos Cerritos) [34,57,99,100]. At Ullujaya and Roca Negra, 87Sr/86Sr
dates from well-preserved biogenic carbonates (oysters, pectinids and barnacles) from
the Ct1 sequence and gives concordant ages of 18.9–18.3 Ma [80,99]. At the study area
of Zamaca, strontium isotope stratigraphy on shark tooth enameloid assigns a preferred
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age of 18.25 Ma and an age range of 18.4–18.1 Ma to the tooth-bearing ShB-4 horizon, in
excellent agreement with other dates from both Ct1 and Ct2 [80].

3. Results

Systematics
Order Carcharhiniformes Compagno [101]
Family Carcharhinidae Jordan and Evermann [102]
Genus Carcharhinus de Blainville [103]
Type species: Carcharias melanopterus Quoy and Gaimard [104]
Carcharhinus dicelmai sp. nov.
2016—Carcharhinus cf. C. macloti; Carrillo-Briceño et al. [105], Figure 6, panels 9 and 10
Figures 3 and 4
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Figure 3. Carcharhinus dicelmai sp. nov., MUSM 4697 (holotype), left upper lateral tooth from the 
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Figure 3. Carcharhinus dicelmai sp. nov., MUSM 4697 (holotype), left upper lateral tooth from the
Lower Miocene (Burdigalian) of Zamaca (East Pisco Basin, Peru) in (a) apical; (b) labial; (c) lingual;
and (d) profile views.

LSID: urn:lsid:zoobank.org:act:C986B1DD-64B0-4C46-B7B6-7CA0442F7254
Etymology: Named after Claudio Di Celma, renowned stratigrapher and scholar of the

sedimentary successions of the East Pisco Basin.
Holotype: MUSM 4697, a left upper lateral tooth.
Type locality and collector: The holotype was collected by one of the authors (A.C.) at

Zamaca, East Pisco Basin, Peru. Approximate geographic coordinates of the type locality:
14◦37′00.9′ ′ S, 75◦38′48.5′ ′ W.

Type horizon: Chilcatay Formation, Ct2 allomember, base of the Ct2a facies association
(=ShB-4 tooth-bearing interval); Lower Miocene (Burdigalian), 18.4–18.1 Ma.

Referred material: MUSM 4698 to MUSM 4709, twelve upper teeth from the same
locality and horizon as the holotype.

Diagnosis: Carcharhinus dicelmai sp. nov. differs from all other extant and extinct
species of Carcharhinus as its upper teeth display the following unique combination of
characters: crown provided with a triangular, narrow-based, slender, smooth-edged cusp;
cusp labiolingually thick at base, semicylindrical, sigmoidal, exhibiting a marked coronal
twist that causes the labial face to be partially visible in apical view; cusp apex bending
towards the commissure in lateral teeth; mesial and distal heels much thinner labiolingually
than the cusp, the latter being separated from the distal heel by a clear notch; distal heel



J. Mar. Sci. Eng. 2022, 10, 1466 7 of 17

featuring one to five, coarse, angularly lobate serrae that become more prominent toward
the base of the cusp; similar serrae often present on the mesial heel too.
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Zamaca, East Pisco Basin, Peru. Approximate geographic coordinates of the type locality: 
14°37′00.9” S, 75°38′48.5” W. 

Type horizon: Chilcatay Formation, Ct2 allomember, base of the Ct2a facies association 
(=ShB-4 tooth-bearing interval); Lower Miocene (Burdigalian), 18.4–18.1 Ma. 

Referred material: MUSM 4698 to MUSM 4709, twelve upper teeth from the same 
locality and horizon as the holotype. 

Diagnosis: Carcharhinus dicelmai sp. nov. differs from all other extant and extinct 
species of Carcharhinus as its upper teeth display the following unique combination of 
characters: crown provided with a triangular, narrow-based, slender, smooth-edged cusp; 
cusp labiolingually thick at base, semicylindrical, sigmoidal, exhibiting a marked coronal 
twist that causes the labial face to be partially visible in apical view; cusp apex bending 
towards the commissure in lateral teeth; mesial and distal heels much thinner 
labiolingually than the cusp, the latter being separated from the distal heel by a clear 
notch; distal heel featuring one to five, coarse, angularly lobate serrae that become more 
prominent toward the base of the cusp; similar serrae often present on the mesial heel too. 

Description: Teeth of Carcharhinus dicelmai sp. nov. range between 5 and 9 mm in 
transverse width, and from slightly less than 5 mm to slightly more that 6.5 mm in 
apicobasal height. 

The holotype MUSM 4697 (Figure 3) is a left upper tooth. As it is wider than high and 
features a distally deflected cusp (Figure 3b,c); MUSM 4697 is here regarded as 
representative of a lateral position. The cusp is elongated, acutely pointed and completely 
smooth-edged (Figure 3b,c). It appears as distinctly sigmoid in profile view (Figure 3d); 
furthermore, it is provided with a marked coronal twist (i.e., coronal torque; see Richter 

Figure 4. Carcharhinus dicelmai sp. nov., referred specimens from the Lower Miocene (Burdigalian)
of Zamaca (East Pisco Basin, Peru). (a,b) MUSM 4698, right upper anterior tooth in (a) labial and
(b) lingual views. (c,d) MUSM 4699, right upper lateral tooth in (c) labial and (d) lingual views.
(e,f) MUSM 4700, right upper lateral tooth in (e) labial and (f) lingual views. (g,h) MUSM 4701,
right upper lateral tooth in (g) labial and (h) lingual views. All specimens from the type locality
and horizon.

Description: Teeth of Carcharhinus dicelmai sp. nov. range between 5 and 9 mm
in transverse width, and from slightly less than 5 mm to slightly more that 6.5 mm in
apicobasal height.

The holotype MUSM 4697 (Figure 3) is a left upper tooth. As it is wider than high
and features a distally deflected cusp (Figure 3b,c); MUSM 4697 is here regarded as rep-
resentative of a lateral position. The cusp is elongated, acutely pointed and completely
smooth-edged (Figure 3b,c). It appears as distinctly sigmoid in profile view (Figure 3d);
furthermore, it is provided with a marked coronal twist (i.e., coronal torque; see Richter
and Ward [106], Mannering and Hiller [107] and Carrillo-Briceño et al. [108]), so that the
labial cusp face can be partly seen in apical view (Figure 3a). The mesial and distal heels
are clearly demarked from the cusp (Figure 3b,c), the latter being labiolingually thicker
(especially at its base) and semicylindrical (Figure 3a). Both the heels bear coarse, angularly
lobate serrae that increase in prominence toward the base of the cusp (Figure 3b,c). The
root is bilobate. The root lobes are subequal in size, have rounded terminations and form
an obtuse, almost flat angle with each other (Figure 3b,c). A moderately prominent lingual
bulge is present (Figure 3c,d). The nutrient groove is vertically oriented and well developed
(Figure 3c), forming a notch at the root base (Figure 3b,c).

Other upper lateral teeth (Figure 4c–e) mainly differ from the holotype as regards
the number, shape and extent of the serrae occurring on the mesial heel, which in some
specimens (e.g., MUSM 4699) appear as substantially absent (Figure 4c,d), as well as with
respect to the inclination of the cusp. Variations in the latter are likely related to some degree
of gradient monognathic heterodonty, as observed in other extinct and extant carcharhines;
that said, ontogenetic shifts in dental morphology may also have occurred. Differences also
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exist, among the upper laterals, regarding the extent of notching of the mesial cutting edge
(Figure 4c–f).

The upper anterior teeth are roughly as wide as high. Specimen MUSM 4698 (Figure 4a,b),
a right anterior tooth, displays a suberect cusp, a thoroughly smooth mesial cutting edge
and a single, elongated serra on the distal heel. The root lobes are relatively short, forming
an angle that is slightly more acute than typically observed in the upper laterals.

Comparisons and remarks: Among the many extant species of Carcharhinus, the upper
teeth of C. dicelmai sp. nov. are especially similar to those of the hardnose shark, Carcharhinus
macloti, and the Pondicherry shark, Carcharhinus hemiodon. These three species share the
essentially smooth-edged condition of the cusp as well as the occurrence of coarse, angularly
lobate serrae along the distal heel at least. Direct comparisons were thus performed between
the holotype and referred specimens of C. dicelmai sp. nov. and two dried jaws of C. macloti
stored in the RK collection (Figure 5). Based on our observations, the upper teeth of C.
dicelmai sp. nov. are unambiguously distinguishable from those of C. macloti by virtue of
the following characters:

(1) The cusp is transversely narrower and, especially, more narrowly based.
(2) The cusp exhibits a sigmoid profile (which is only incipient in C. macloti) and a distinct

coronal twist.
(3) The labial crown face is weakly convex transversely (rather than almost flat as in

C. macloti).
(4) In labial/lingual view, the cusp of the lateral teeth is characteristically “hook-shaped”,

with the crown apex bending distinctly toward the commissure. This is due to the
mesial and distal cutting edges of the cusp becoming progressively more convex and
concave, respectively.

(5) The cusp is labiolingually thick at the base and semicylindrical, whereas the distal and
mesial heels are remarkably thinner. In apical view, the cusp is clearly divided from the
distal heel by means of an abrupt variation of the labiolingual thickness of the crown.
In C. macloti, the cusp is proportionally thinner at the base and not semicylindrical,
and the thickness of the crown decreases regularly towards its distobasal end.
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Figure 5. Dried jaws of two specimens (a,c,e,g) and (b,d,f,h) tentatively identified as a male and a 
female, respectively) of the extant hardnose shark, Carcharhinus macloti, stored in the RK collection 
(both specimens from the Philippines). (a,b) General appearance of the jaws in labial view. (c,d) 
Close-up of the upper anterior teeth in labial view. (e,f) Close-up of the upper lateral teeth in labial 
view. (g,h) Close-up of the upper anterior and lateral teeth comprising the functional tooth row. For 
the dimensions of the details depicted in panels (c) to (h), please refer to the scale bar present in 
panels (a,b). 

Figure 5. Dried jaws of two specimens (a,c,e,g and b,d,f,h tentatively identified as a male and a
female, respectively) of the extant hardnose shark, Carcharhinus macloti, stored in the RK collection
(both specimens from the Philippines). (a,b) General appearance of the jaws in labial view. (c,d) Close-
up of the upper anterior teeth in labial view. (e,f) Close-up of the upper lateral teeth in labial view.
(g,h) Close-up of the upper anterior and lateral teeth comprising the functional tooth row. For
the dimensions of the details depicted in panels (c) to (h), please refer to the scale bar present in
panels (a,b).
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The Pondicherry shark, which strongly recalls C. macloti in terms of dental morphology,
further differs from C. dicelmai sp. nov. by displaying upper lateral teeth with essentially
straight mesial margins that form no distinct mesial heels and are often finely serrated (or
crenulated) basally [4,5].

Among the extinct carcharhines, Carcharhinus caquetius (known from the Middle–
Upper Miocene of Venezuela and the Upper Miocene of Ecuador; Carrillo-Briceño et al. [15])
resembles C. dicelmai sp. nov. more than any other formally named species by displaying
an elongated, sigmoidal cusp as well as a distal heel that is clearly separated from the cusp
by a deep notch. However, the upper teeth of C. dicelmai sp. nov. differ from those assigned
to C. caquetius by the following combination of characters:

(1) The mesial and distal cutting edges of the cusp are completely smooth (rather than
being finely serrated to approximately their mid-points);

(2) The distal heel bears one to five, coarse, angularly lobate serrae that become more
prominent toward the cusp (rather than finer, more abundant serrations).

Although the teeth of C. dicelmai sp. nov. clearly differ on morphological grounds from
those of all other extant and extinct species of Carcharhinus, their unambiguous identification
may sometimes prove difficult, especially when dealing with worn-out and/or substantially
incomplete teeth. The hopeful discovery of new specimens of C. dicelmai sp. nov. may
prove precious for further defining the dental morphology of this extinct requiem shark
species, possibly also by means of morphometric surveys [109].

4. Discussion
4.1. Palaeoecology

Four shark tooth-bearing intervals were recognised in the Zamaca area by
Landini et al. [70]. All the specimens of Carcharhinus dicelmai sp. nov. that are known
to date come from the uppermost of these intervals, namely, the ShB-4 shark tooth-bearing
bed of Landini et al. [70], which in turn corresponds to the basal 1–2 m of the Ct2a facies
association of Di Celma et al. [56–58,85]. The exquisite preservation state of the holotype
and referred specimens of C. dicelmai sp. nov. indicates that these teeth are not reworked
from older deposits (e.g., those comprising the underlying Ct1 sequence).

The Ct2a strata have been interpreted as reflecting deposition in a littoral, very shallow,
shoreface palaeoenvironment [57]. Although the apparent absence of teeth of C. dicelmai sp.
nov. from the other shark tooth-bearing beds of the Zamaca area could be partly explained
by evoking taphonomic or collection biases, it may suggest that C. dicelmai sp. nov. was a
very littoral shark. Furthermore, considering that various members of the elasmobranch
assemblages from the Chilcatay strata (including Anoxypristis sp., Carcharhinus cf. leucas
and Hemipristis serra) are regarded as suggestive of warm waters [50,70], C. dicelmai sp. nov.
may also have been an essentially thermophilic shark.

The dentition of most carcharhines has been identified as representative of the “cutting–
clutching” type; it features monocuspid lower teeth that enable the predator to hold the
prey, while the flattened upper teeth cut like a trimmer thanks to their finely serrated
cutting edges [8,110,111]. That said, the smooth-edged, semicylindrical, distinctly sigmoid
cusp of the upper teeth of C. dicelmai sp. nov. does not seem particularly fit for cutting. In
turn, a significant degree of coronal twist and the occurrence of few well-individualised
serrae (rather than finer serrations or crenulations) at one or both sides of the cusp evoke
some functional analogies with the more strictly clutching teeth of, e.g., frilled sharks. In
light of these considerations, the dentition of C. dicelmai sp. nov. appears less akin to that
of most other carcharhines to the cutting-clutching type, and seemingly testifies to the
development of more predominantly clutching adaptations. Similar considerations may
apply to other extinct requiem sharks such as Abdounia belselensis [112] and Kruckowlamna
costarricana. Although most extant carcharhinids display a cutting–clutching dentition,
some species in the family (e.g., Rhizoprionodon spp.) feature clutching-type teeth on both
the upper and lower jaws [113,114].
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Given the dimensions of its teeth, and similar to C. macloti, C. dicelmai sp. nov. was
likely a diminutive carcharhine. All things considered, C. dicelmai sp. nov. may have relied
on small-sized prey items (including, e.g., small bony fishes and invertebrates) that were
captured and ingested one-by-one through feeding actions that involved clutching.

4.2. Palaeobiogeography

The discovery of teeth belonging to a new species of Carcharhinus in the Lower Miocene
of Peru encouraged us to search the palaeoichthyological literature for illustrations and
descriptions of conspecific specimens. In doing so, we mainly focused on teeth that
had been assigned to the extant species Carcharhinus macloti, whose dental characters
are particularly reminiscent of those of C. dicelmai sp. nov. One interesting record from
the Burdigalian to lower Langhian Cantaure Formation of Falcón State (Venezuela) was
provided by Carrillo-Briceño et al. [105] and depicted in their Figure 6, panels 9 and 10.
It consists of an upper left tooth identified as belonging to Carcharhinus cf. C. macloti.
Though incomplete, lacking the tip of the cusp and the termination of the mesial root lobe,
this tooth compares favourably, in terms of both size and morphology, to the holotype
and referred specimens of C. dicelmai sp. nov. In particular, it conforms to C. dicelmai
sp. nov. by featuring a slender, semicylindrical cusp that displays a distinct degree
of coronal twist. The occurrence of C. dicelmai sp. nov. in the Burdigalian or lower
Langhian of the Caribbean palaeo-area is consistent with the palaeogeography of the
Central American region. Indeed, throughout the Miocene, the Central American Seaway
allowed for unrestricted communications and faunal interchanges between the low-latitude
Eastern Pacific and Western Atlantic water masses [51,115–121]. As a consequence of this,
some species of Carcharhinus (e.g., the copper shark C. brachyurus) had a trans-Panamanian
distribution that was subsequently lost with the eventual establishment of the Isthmus
of Panama in Pliocene times (Landini et al. [122]; but see also Collareta et al. [123]). In
addition to the aforementioned Venezuelan record, teeth that conform to C. dicelmai sp.
nov. may be searched for in the Lower Miocene collections of Carcharhinus macloti from
the eastern USA, including the Pungo River and Calvert formations [124,125]. That said,
the dispersal capabilities of C. dicelmai sp. nov. were likely low, as no occurrences—either
confirmed or presumed on the basis of records of similar species such as C. macloti—exist
for this form outside the Americas. This may be explained by a preference for nearshore
habitats, as hypothesised in the previous paragraph.

We take advantage of this section to rectify the taxonomic identification and palaeobio-
geographic affinities of another record of Carcharhinus aff. C. macloti from Central America.
This consists of teeth from the Upper Miocene (Tortonian) Chucunaque Formation of Lago
Bayano (Panama) that were described by Perez et al. [113] and depicted in their Figure 6,
panels 8–13. These specimens are slightly wider than high; they feature a slender, smooth-
edged cusp (which in at least one specimen displays a distinct degree of coronal twist); a
labial crown face that is rather convex at its base; well-developed mesial and distal heels
bearing up to three prominent, erect cusplets; a straight labial limit of the enameloid; and
a labiolingually thick root. In terms of both size and shape, the Lago Bayano specimens
appear as indistinguishable from those assigned by Laurito Mora [126] to Kruckowlamna
costarricana, an extinct Abdounia-like carcharhinid known so far only from the Messinian–
Zanclean of Costa Rica (see also Cappetta [8] and Maisey [127]). Thus, the teeth assigned by
Perez et al. [113] to Carcharhinus aff. C. macloti represent the geologically oldest occurrence
of K. costarricana, its first description from outside Costa Rica, and the first published record
of this taxon after its erection by Laurito Mora [126].

5. Conclusions

A new requiem shark species, Carcharhinus dicelmai sp. nov., has been described on
the basis of Lower Miocene (18.4–18.1 Ma) fossils from the Chilcatay Formation of Peru.
This new taxon is represented by upper teeth that resemble those of Carcharhinus caquetius,
Carcharhinus hemiodon and Carcharhinus macloti, but with unique features. In particular, C.
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dicelmai sp. nov. characteristically displays the following dental traits: a slender, smooth-
edged cusp; a distinct coronal twist; and a distal heel that bears a few coarse, angularly
lobate serrae that increase in prominence toward the cusp. The dental morphology of
C. dicelmai sp. nov. appears as more akin to the so-called clutching-type than that of
most other carcharhines. A roughly coeval requiem shark tooth from Venezuela has been
re-assigned to C. dicelmai sp. nov., thus evoking a trans-Panamanian distribution for this
extinct elasmobranch species.
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97. Kočí, T.; Bosio, G.; Collareta, A.; Sanfilippo, R.; Ekrt, B.; Urbina, M.; Malinverno, E. First report on the cirratulid (Annelida,
Polychaeta) reefs from the Miocene Chilcatay and Pisco Formations (East Pisco Basin, Peru). J. S. Am. Earth Sci. 2021, 107, 103042.
[CrossRef]

98. Sanfilippo, R.; Kočí, T.; Bosio, G.; Collareta, A.; Ekrt, B.; Malinverno, E.; Di Celma, C.; Urbina, M.; Bianucci, G. An investigation of
vermetid reefs from the Miocene of Peru, with the description of a new species. J. S. Am. Earth Sci. 2021, 108, 103233. [CrossRef]

99. Bosio, G.; Malinverno, E.; Collareta, A.; Di Celma, C.; Gioncada, A.; Parente, M.; Berra, F.; Marx, F.G.; Vertino, A.; Urbina, M.; et al.
Strontium Isotope Stratigraphy and the thermophilic fossil fauna from the middle Miocene of the East Pisco Basin (Peru). J. S.
Am. Earth Sci. 2020, 97, 102399. [CrossRef]

100. Bosio, G.; Malinverno, E.; Villa, I.M.; Di Celma, C.; Gariboldi, K.; Gioncada, A.; Barberini, V.; Urbina, M.; Bianucci, G.
Tephrochronology and chronostratigraphy of the Miocene Chilcatay and Pisco formations (East Pisco basin, Peru). Newsl.
Stratigr. 2020, 53, 213–247. [CrossRef]

101. Compagno, L.J.V. Interrelationships of living elasmobranchs. In Interrelationships of Fishes; Greenwood, P.H., Miles, R.S.,
Patterson, C., Eds.; Academic Press: London, UK, 1973; pp. 15–61.

102. Jordan, D.S.; Evermann, B.W. A Check-List of the Fishes and Fish-Like Vertebrates of North and Middle America; Report of the
Commissioner; Government Printing Office: Washington, DC, USA, 1896; pp. 207–584.

103. De Blainville, H.M.D. Prodrome d’une nouvelle distribution systématique du règne animal. Bull. Soc. Philomath. 1816, 8, 105–124.
104. Quoy, J.R.C.; Gaimard, J.P. Description des poissons. In Voyage Autour du Monde, Entrepris par Ordre du Roi, Execute Sur les les

Corvettes de L.M. “L’Uranie” et “La Physicienne”, Pendant les Années 1817, 1818, 1819 et 1820; Chapter IX; de Freycinet, M.L., Ed.;
Pillet Aîne: Paris, France, 1824; pp. 192–401.

105. Carrillo-Briceño, J.D.; Aguilera, O.A.; De Gracia, C.; Aguirre-Fernàndez, G.; Kindlimann, R.; Sànchez-Villagra, M.R. An early
Neogene elasmobranch fauna from the southern Caribbean (western Venezuela). Palaeontol. Electron. 2016, 19.2.28A. [CrossRef]

106. Richter, M.; Ward, D.J. Fish remains from the Santa Marta Formation (Late Cretaceous) of James Ross Island, Antarctica. Antarct.
Sci. 1990, 2, 67–76. [CrossRef]

107. Mannering, A.A.; Hiller, N. An early Cenozoic neoselachian shark fauna from the Southwest Pacific. Palaeontology 2008, 51,
1341–1365. [CrossRef]

108. Carrillo-Briceño, J.D.; Aguilera, O.A.; Rodriguez, F. Fossil Chondrichthyes from the central eastern Pacific Ocean and their
paleoceanographic significance. J. S. Am. Earth Sci. 2014, 51, 76–90. [CrossRef]

109. Naylor, G.J.; Marcus, L.F. Identifying isolated shark teeth of the genus Carcharhinus to species: Relevance for tracking phyletic
change through the fossil record. Am. Mus. Novit. 1994, 3109, 1–53.

110. Bourdon, J. The Life and Times of Long Dead Sharks. 1999. Available online: www.elasmo.com (accessed on 27 August 2022).
111. Whitenack, L.B.; Motta, P.J. Performance of shark teeth during puncture and draw: Implications for the mechanics of cutting. Biol.

J. Linn. Soc. 2010, 100, 271–286. [CrossRef]
112. Mollen, F.H. A new species of Abdounia (Elasmobranchii, Carcharhinidae) from the base of the Boom Clay Formation (Oligocene)

in northwest Belgium. Geol. Belg. 2007, 10, 69–79.
113. Perez, V.J. The chondrichthyan fossil record of the Florida Platform (Eocene–Pleistocene). Paleobiology, 2022; ahead-of-print.

[CrossRef]

http://doi.org/10.1080/14772019.2020.1805520
http://doi.org/10.1016/j.crpv.2014.08.003
http://doi.org/10.7203/sjp.20.1.20542
http://doi.org/10.3390/jmse9111188
http://doi.org/10.1515/geoca-2018-0034
http://doi.org/10.1127/njgpa/2019/0856
http://doi.org/10.1127/njgpa/2019/0825
http://doi.org/10.1016/j.jsames.2020.103042
http://doi.org/10.1016/j.jsames.2021.103233
http://doi.org/10.1016/j.jsames.2019.102399
http://doi.org/10.1127/nos/2019/0525
http://doi.org/10.26879/664
http://doi.org/10.1017/S0954102090000074
http://doi.org/10.1111/j.1475-4983.2008.00812.x
http://doi.org/10.1016/j.jsames.2014.01.001
www.elasmo.com
http://doi.org/10.1111/j.1095-8312.2010.01421.x
http://doi.org/10.1017/pab.2021.47


J. Mar. Sci. Eng. 2022, 10, 1466 17 of 17

114. Perez, V.J.; Pimiento, C.; Hendy, A.; González-Barba, G.; Hubbell, G.; MacFadden, B.J. Late Miocene chondrichthyans from Lago
Bayano, Panama: Functional diversity, environment and biogeography. J. Paleontol. 2017, 91, 512–547. [CrossRef]

115. Jacobs, D.K.; Haney, T.A.; Louie, K.D. Genes, diversity, and geological process on the Pacific coast. Annu. Rev. Earth Planet. Sci.
2004, 32, 601–652. [CrossRef]

116. Coates, A.G.; Stallard, R.F. How old is the Isthmus of Panama? Bull. Mar. Sci. 2013, 89, 801–813. [CrossRef]
117. Bianucci, G.; Collareta, A.; Post, K.; Varola, A.; Lambert, O. A new record of Messapicetus from the Pietra Leccese (Late Miocene,

Southern Italy): Antitropical distribution in a fossil beaked whale (Cetacea, Ziphiidae). Riv. Ital. Paleontol. Stratigr. 2016, 122,
63–74.

118. Bianucci, G.; Llàcer, S.; Cardona, J.Q.; Collareta, A.; Florit, A.R. A new beaked whale record from the upper Miocene of Menorca,
Balearic Islands, based on CT-scan analysis of limestone slabs. Acta Palaeontol. Pol. 2019, 64, 63–74. [CrossRef]

119. O’Dea, E.; Furner, R.; Wakelin, S.; Siddorn, J.; While, J.; Sykes, P.; King, R.; Holt, J.; Hewitt, H. The CO5 configuration of the 7 km
Atlantic Margin Model: Large-scale biases and sensitivity to forcing, physics options and vertical resolution. Geosci. Model Dev.
2017, 10, 2947–2969. [CrossRef]

120. Jaramillo, C.; Montes, C.; Cardona, A.; Silvestro, D.; Antonelli, A.; Bacon, C.D. Comment (1) on “Formation of the Isthmus of
Panama” by O’Dea et al. Sci. Adv. 2017, 3, e1602321. [CrossRef]

121. Peri, E.; Collareta, A.; Insacco, G.; Bianucci, G. An Inticetus-like (Cetacea: Odontoceti) postcanine tooth from the Pietra leccese
(Miocene, southeastern Italy) and its palaeobiogeographical implications. Neues Jahrb. Geol. Paläontologie Abh. 2019, 291, 221–228.
[CrossRef]

122. Landini, W.; Collareta, A.; Bianucci, G. The origin of biogeographic segregation in the copper shark (Carcharhinus brachyurus): An
integrative reconstruction based on neontological and paleontological data. Vie Milieu 2020, 70, 117–132.

123. Collareta, A.; Landini, W.; Bianucci, G.; Di Celma, C. Until Panama do us part: New finds from the Pliocene of Ecuador provide
insights into the origin and palaeobiogeographic history of the extant requiem sharks Carcharhinus acronotus and Nasolamia velox.
Neues Jahrb. Geol. Paläontol. Abh. 2021, 300, 103–115. [CrossRef]

124. Purdy, R.W.; Schneider, V.P.; Applegate, S.P.; McLellan, J.H.; Meyer, R.L.; Slaughter, R.T. The Neogene sharks, rays, and bony
fishes from Lee Creek Mine, Aurora, North Carolina. Smithson. Contrib. Paleobiol. 2001, 90, 71–202.

125. Kent, B.W. The Cartilaginous fishes (chimaeras, sharks, and rays) of Calvert Cliffs, Maryland, USA. Smithson. Contrib. Paleobiol.
2018, 100, 45–160.

126. Laurito Mora, C.A. Los Seláceos Fósiles de la Localidad de Alto Guayacán (y Otros Ictiolitos Asociados): Mioceno Superior-Plioceno Inferior
de la Formación Uscari; ScienceOpen: San José, CA, USA, 1999; p. 567.

127. Maisey, J.G. What is an ‘elasmobranch’? The impact of palaeontology in understanding elasmobranch phylogeny and evolution.
J. Fish Biol. 2012, 80, 918–951. [CrossRef]

http://doi.org/10.1017/jpa.2017.5
http://doi.org/10.1146/annurev.earth.32.092203.122436
http://doi.org/10.5343/bms.2012.1076
http://doi.org/10.4202/app.00593.2019
http://doi.org/10.5194/gmd-10-2947-2017
http://doi.org/10.1126/sciadv.1602321
http://doi.org/10.1127/njgpa/2019/0799
http://doi.org/10.1127/njgpa/2021/0981
http://doi.org/10.1111/j.1095-8649.2012.03245.x

	Introduction 
	Materials and Methods 
	Abbreviations 
	Nomenclatural Acts 
	(Allo)Stratigraphic Context 
	Palaeontological Background 
	Geochronological Framework 

	Results 
	Discussion 
	Palaeoecology 
	Palaeobiogeography 

	Conclusions 
	References

