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Abstract: Against the backdrop of global environmental challenges and sustainable development
goals, this paper pioneers the application of social network analysis to the study of spatial associations
in China’s agricultural green development. It not only enhances the understanding of the spatial
interconnectivity and network structural characteristics of agricultural green developments, but
also captures the complex dependencies and interactions among provinces through a network lens,
offering a fresh perspective on regional agricultural cooperation and competition. The study reveals:
(1) The spatial network of China’s agricultural green development displays strong overall connectivity
and enhanced stability, with regional green development trends becoming increasingly interlinked
and interdependent. (2) The network exhibits a clear hierarchical and core-periphery structure which,
over time, shows signs of diminishing, indicating a narrowing of developmental disparities among
regions. (3) Significant shifts in the roles and positions of provinces within the network occur due to
the relocation of industrial focal points and adjustments in development strategies, highlighting the
complexity of dynamic changes among regions. (4) The spatial association network can be divided
into four main clusters: Net spillover block, Bidirectional spillover block, Net beneficial block, and
Broker block, with significant gradient characteristics in the relationships between these clusters,
suggesting directional and differential flows and exchanges of resources and information among
regions. (5) Geographic proximity, economic development level, informatization, and agricultural
technological advancement significantly influenced the development and structural evolution of
the network.

Keywords: agricultural green development; modified gravity model; spatial association network;
dynamic evolution; driving factors

1. Introduction

As economic and social development has progressed, the environmental challenges
posed by human economic activities. such as climate change, air pollution, water contami-
nation, and land degradation have emerged as formidable obstacles to global sustainability.
These issues are pervasive worldwide, affecting every nation, from the most developed
to the developing, with the pressures of ecological deterioration and the quest for sus-
tainable growth. Consequently, these concerns have become focal points of international
attention [1]. In response, the concept of green development, which advocates for the har-
monious progress of both society and the natural environment, has gained traction. Green
development promotes economic growth while safeguarding ecological balance, aiming
for sustainability across economic, social, and environmental spheres through efficient
resource use, reduced chemical consumption, and enhanced biodiversity. This philosophy
has received widespread recognition and adoption internationally [2]. In the realm of agri-
cultural production, which is fundamental to human survival and societal advancement,
the stakes involve food security and ecological equilibrium. With the global population on
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the rise and escalating food demands, agriculture faces heightened challenges. Traditional
farming methods, heavily reliant on the extensive use of fertilizers and pesticides, have
led to significant environmental issues such as soil degradation, water pollution, and a
reduction in biodiversity. Thus, promoting a shift towards agricultural green development
has become an imperative choice in global agricultural reform and a critical strategy to
ensure food security and achieve sustainability goals [3].

To propel agricultural green development, the European Union has implemented a
series of environmental policies for agriculture. These include measures to promote eco-
friendly farming practices through agricultural environmental actions and organic farming
initiatives, encouraging farmers to adopt sustainable methods [4]. In the United States, the
focus has been on fostering innovative agricultural technologies through the Sustainable
Agriculture Research and Education program, aimed at enhancing both the environmental
and economic efficiency of farming [5]. Meanwhile, Japan has concentrated on developing
precision and smart agriculture technologies to reduce resource wastage and increase
production efficiency [6]. In China, amid rapid economic growth and population expansion,
agricultural green development has become a critical focus for policymakers and academics
alike. The socio-economic conditions of a large population and limited per capita resources
mandate a green development path for Chinese agriculture [7]. The Chinese government
has established numerous policies and measures to support this green transformation,
including the “Zero Growth” action plan for chemical fertilizer and pesticide use, and
the promotion of integrated water and fertilizer management, green pest control, and
ecological breeding techniques [8].These initiatives aim to diminish the environmental
impact of agricultural production, improve efficiency and product quality, and achieve a
harmonious coexistence between agriculture and environmental conservation.

Agricultural green development is an integral part of China’s strategy to build a
strong agricultural nation and has garnered extensive attention from the academic com-
munity. Current research on this topic mainly focuses on three areas: firstly, exploring the
essence and connotations of agricultural green development [9–11]; secondly, constructing
and refining the evaluation systems for this development [12–14]; and thirdly, analyzing
the factors influencing agricultural green development [15–17]. With advances in spatial
econometric tools, the spatial distribution and dynamic changes in agricultural green de-
velopment have increasingly become a focal point of study. Scholars are beginning to use
spatial econometric models to explore the heterogeneity and spatiotemporal evolution
of agricultural green development [18–22]. In the context of China’s deepening unified
market strategy, the flow of technology, labor, and capital across regions is accelerating,
which makes the spatial relationships between economic development and agricultural
activities less constrained by geography and more complex and networked across regions.
Although existing studies have revealed the significant spatial effects of agricultural green
development, there are several limitations: Firstly, most studies rely on spatial econometric
models to explore spatial effects between specific regions, neglecting the spatial network ef-
fects at a national scale and lacking a holistic and systematic research perspective. Secondly,
these studies are primarily based on attribute data, failing to analyze the internal structure
characteristics of the spatial network in agricultural green development, which prevents a
comprehensive portrayal of the spatial network features of China’s agricultural develop-
ment. Lastly, research on agricultural spatial networks often relies on cross-sectional data
from a single time point, which does not adequately reveal how spatial network charac-
teristics evolve over time. This limitation hinders a deeper understanding of the dynamic
properties of the agricultural green development spatial network, thereby affecting the
effective advancement of related policies and practices.

Therefore, this study employs relational data and network analysis methods to deeply
explore and elucidate the spatial network characteristics and their dynamic changes in
China’s agricultural green development. Initially, an enhanced gravity model is introduced
to quantify and interpret the interaction strengths among various regions in China more
precisely. Additionally, utilizing social network analysis, the aim is to reveal the spatial
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network structure, evolutionary trends, and regional clustering characteristics of China’s
agricultural green development, and to discuss the roles and impacts of various provinces
within this network in depth. Moreover, the study incorporates the Quadratic Assignment
Procedure (QAP) analytical method to further examine the factors driving the formation of
the agricultural green development spatial network, offering new perspectives and empiri-
cal evidence for exploring resource flows and promoting coordinated regional agricultural
development. The principal contributions of this research are manifold: from a research
perspective, it integrates global network analysis and relational data, providing a novel
viewpoint for examining the spatial connections in China’s agricultural green development;
methodologically, this paper is the first to apply the modified gravity model, social network
analysis, and QAP method to analyze the spatial network characteristics of agricultural
green development and its influencing factors, demonstrating the effectiveness of these
methods in exploring spatial network structures and dynamics; from the scale of the study,
based on data from all 31 provinces in China, it comprehensively analyzes the spatiotempo-
ral evolution and driving forces behind the agricultural green development spatial network.
The structure of this article is organized as follows: the second part systematically reviews
the related literature; the third part details the research methodologies and data sources;
the fourth part delves into the structural characteristics and dynamic changes in China’s
agricultural green development spatial network; the fifth part discusses the driving factors
behind the formation of this spatial network; the sixth part systematically summarizes the
findings and proposes relevant policy recommendations and directions for future research
and improvement.

2. Literature Review

Agricultural green development underscores the importance of sustainable agricul-
tural practices, aiming to strike a balance between agricultural production and the natural
environment to fulfill the present and future demands for agricultural products while
safeguarding the ecological environment. The concept of agricultural green development
mirrors contemporary society’s new recognition and requirements for sustainable agricul-
tural advancement, eliciting widespread interest from the academic community upon its
introduction. Research within the academic realm concerning agricultural green develop-
ment predominantly concentrates on the following four areas.

2.1. Definition of the Essence of Agricultural Green Development

The essence of defining the connotation of agricultural green development is funda-
mental to research in this field. It aids in delineating the scope of study and establishing a
shared understanding. According to Kansanga (2019), agricultural green development was
defined as a process that respects the laws of nature, utilizing advanced scientific techniques
to explore the sustainability of agricultural development [23]. Jaung W (2016) posited that
agricultural green development is a fundamentally new developmental concept, demand-
ing a commitment to sustainable development with green institutional construction and
innovative mechanisms as safeguards [24]. Alsanius et al. (2021) asserted, after researching
the Norwegian agricultural and fisheries sectors, that agricultural green development in-
volves addressing agricultural environmental issues through innovative technologies and
maximizing the use of locally sustainable resources [25]. Gargano et al. (2021) contended
that agricultural green development involves applying various professional skills to clean
production in the agricultural sector, facilitating the transformation of agricultural ecologi-
cal development [26]. Huang T et al. (2022) viewed agricultural green development as an
extension and practice of the green development concept in the agricultural domain [9].
Liu Y et al. (2022) characterized agricultural green development as a systemic undertaking
encompassing the entire process of greening in six aspects: agricultural production layout,
resource utilization, technological means, industrial systems, agricultural product supply,
and consumption [10]. Zhou F et al. (2023) perceived agricultural green development
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as a comprehensive endeavor, including resource conservation, ecological stability, clean
production, supply security, and enhanced benefits [11].

2.2. Measurement and Evaluation of Agricultural Green Development

Currently, the academic community employs two primary approaches to measure
the level of agricultural green development. The first involves measurement through indi-
vidual indicators, primarily encompassing the comprehensive calculation of agricultural
green total factor productivity and agricultural carbon emissions [27]. Agricultural green
total factor productivity is determined by identifying input and output elements in the
agricultural production process, comprehensively assessing the level of agricultural green
development from the dimensions of production efficiency and resource consumption. A
higher numerical value of agricultural green total factor productivity indicates a faster pace
of agricultural green development [22,27–32]. Conversely, agricultural carbon emissions
are measured by the release of carbon dioxide (CO2) and other greenhouse gases into the
atmosphere during agricultural activities in the production and operation processes, gaug-
ing the degree of agricultural greening. A lower agricultural carbon emission quantity and
intensity indicates a higher level of agricultural green development [33–38]. The second
approach involves constructing composite indices for measurement from multiple perspec-
tives. Due to the complexity of agricultural green development as a systemic undertaking,
and its involvement in various aspects, a single indicator quickly falls short of reflecting its
entirety. Therefore, constructing a comprehensive evaluation index system can encompass
more abundant information, making the agricultural green development comprehensive
evaluation index relatively more convincing [11–14].

2.3. Spatiotemporal Distribution Characteristics of Agricultural Green Development

As spatial econometric tools and methods advance, the introduction of spatial econo-
metric models propels scholars to delve deeper into the spatial relationships of agricultural
green development. Therefore, some researchers utilize the Theil index, Moran index, and
spatial Durbin model to analyze the spatial pattern evolution characteristics of agricul-
tural green development [39–41]. Deng et al. (2022) found significant regional imbalances
in the level of agricultural green development in China, with inter-regional disparities
continuously widening, indicating a pronounced spatial correlation in agricultural green de-
velopment [19]. Liu et al. (2023) discovered significant spatial agglomeration characteristics
in the efficiency of agricultural green development in China, with the progression of time
posing spatial dispersion risks [20]. Zhou F et al. (2023) employed methods such as kernel
density estimation, Moran’s I index, and Markov chain to analyze regional differences
and spatial evolution of agricultural green development in China [11]. Zhu et al. (2022)
investigated the spatiotemporal convergence of agricultural green development in China
through sigma convergence, absolute beta convergence, conditional beta convergence, and
dynamic spatial convergence [22]. Yu et al. (2022) demonstrated a significant spatial corre-
lation among the agricultural green development of various provinces in China, without
exhibiting absolute α convergence and absolute β convergence characteristics [21].

2.4. Factors Influencing Agricultural Green Development

Regarding research on factors influencing agricultural green development, in terms
of economic factors, Wang et al. (2023) found that industrial agglomeration has a positive
promoting effect on agricultural green production efficiency. Under different scales of land
transfer, the impact of industrial agglomeration on agricultural green production efficiency
exhibits heterogeneity [42]. Ge et al. (2023) discovered that urbanization, as a measure to
facilitate the migration of rural populations, effectively promotes the transformation of
agricultural green development [43]. In terms of policy factors, Deng et al. (2023) found that
financial support for agriculture can significantly influence agricultural green development
by strengthening rural infrastructure [15]. Sun et al. (2022) found that when the level of
regional economic development is low, environmental regulations have limited impact
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on agricultural green development [16]. In the realm of financial service factors, Wang
et al. (2023) discovered that agricultural credit input significantly enhances the total factor
productivity of local agricultural green development [17]. Fang et al. (2021) found that
agricultural insurance has a significant positive impact on the total factor productivity of
agricultural green development [44]. However, Hou et al. (2022) reached the opposite
research conclusion, finding that agricultural insurance has an inhibitory effect on agricul-
tural green development [3]. Gao et al. (2022) found that digital inclusive finance promotes
agricultural green development by improving green technological levels [45]. Regard-
ing technological factors, Jiang et al. (2022) found that the digital economy significantly
enhances the level of green development in Chinese agriculture [46].

Amidst the global environmental challenges and the objectives of sustainable agricul-
tural development, the academic community has extensively studied the spatial effects of
China’s agricultural green development, yielding a wealth of research findings. However,
these studies have certain limitations. Firstly, while many studies have identified significant
spatial spillover effects in China’s agricultural green development, most have employed
tools like Moran’s I index and spatial econometric panel models. While these attribute
data-based analytical methods can reveal trends and patterns in spatial distribution to
a certain extent, they fail to delve into the complex interactions and network structures
between regions. The analysis of attribute data is constrained by the characteristics of
the data itself, making it difficult to capture dynamic relationships between regions and
the structural features of the overall network. Secondly, when discussing the spatial clus-
tering characteristics of agricultural green development, the existing literature often fails
to consider all 31 provinces as an interconnected network system, instead performing
analysis based on geographic “adjacency” effects alone. This approach overlooks the cross-
geographical influences and potential spatial connections between non-adjacent provinces,
thus failing to comprehensively reveal the spatial correlation network and overall structure
of China’s agricultural green development. Lastly, although traditional spatial econometric
methods have certain advantages in analyzing geographic spatial factors, they have not
fully considered the structural forms, spatial clustering patterns, and their underlying oper-
ational mechanisms of agricultural green development. As a result, these methods fall short
of thoroughly depicting and reflecting the intrinsic connections and impact mechanisms
between regions in agricultural green development.

In light of these deficiencies, this paper makes concerted efforts in several areas to
address the shortcomings of the existing research. Firstly, by introducing complex network
analysis methods and constructing a spatial correlation network of agricultural green
development, this paper overcomes the limitations inherent in analyses based solely on
“attribute data”. This method allows for a comprehensive consideration of both the direct
and indirect connections between regions, offering a more detailed depiction of the spatial
correlation network structure of agricultural green development across China, and captur-
ing the complex interactions between regions. Secondly, by viewing China’s 31 provinces
as a tightly connected network, this study transcends simple geographic “adjacency” or
“neighboring” effects. Utilizing a network perspective and methodology, it delves into
the nationwide spatial clustering characteristics and their evolutionary processes. This
approach enables a holistic understanding of the spatial relational structure of China’s
agricultural green development, identifying the interrelationships and key nodes within
the complex network structure, and providing a fresh perspective for understanding spatial
clustering characteristics.

Moreover, unlike traditional methods that focus solely on geographic spatial factors,
this paper further explores the structural forms, clustering patterns, and evolutionary trends
of the agricultural green development spatial correlation network. Utilizing tools such as
modular and centrality analyses from social network analysis, the paper not only reveals the
overall structure and group clustering patterns of China’s Agricultural green development
spatial relations but also analyzes the underlying mechanisms and operational dynamics
behind these network structures and clustering modes. Finally, this paper does not merely
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focus on a static description of the spatial correlation network, it also explores the dynamic
processes and driving factors behind the evolution of the agricultural green development
spatial correlation network structure. By integrating multi-dimensional factors, including
economic, social, and environmental aspects, it reveals the factors influencing the evolution
of the agricultural green development spatial correlation network, providing theoretical
foundations and practical guidance for policy formulation.

3. Data Sources and Methods
3.1. Methods
3.1.1. Refined Gravity Model

The spatial correlation network of agricultural green development constitutes a set of
relationships among various regions. Simultaneously, these regions act as “nodes” within
the network, and the connections between regions in agricultural green development form
the “links” of the network. The strength of connections between regions represents the
degree of correlation in agricultural green development. Following the approach of BAI
C [47], the traditional gravity model underwent refinement and improvement in this study.
The modified gravity model was employed to construct the spatial correlation matrix for
agricultural green development among Chinese provinces, portraying the spatial correla-
tion relationships between them. Subsequently, the obtained gravity matrix underwent the
removal of extreme values for each row, and the average value was taken as the threshold.
The values in the row above the threshold were set to 1, indicating the presence of a corre-
lation in agricultural green development between the provinces at the intersection of that
row and column. Conversely, the values below the threshold were set to 0, signifying the
absence of a correlation in agricultural green development between the provinces at the
intersection of that row and column. The formulated refined gravity model is as follows:

Rij = Lij

3
√

GiPi Hi 3
√

GjPj Hj(
Dij

gi−gj

) , Lij =
Hi

Hi + Hj
(1)

In Equation (1), the term Rij denotes the gravitational intensity between province i
and province j, while Lij signifies the gravitational coefficient reflecting the proportionate
contribution of province i to the connection with province j. Hi and Hj, respectively, stand
for the agricultural green development index of provinces i and j, whereas Gi and Gj
represent the total agricultural output of provinces i and j. Pi and Pj indicate the rural
population of provinces i and j, and gi and gj denote the agricultural per capita output
of provinces i and j. Dij represents the spatial distance between the provincial capitals,
and Dij/gi − gj encapsulates the economic-geographic distance between province i and
province j.

3.1.2. Methodology of Social Network Analysis

Social Network Analysis (SNA) is a methodology delving into phenomena such as
network structures, organizational relationships, and the flow of resource elements. Em-
ploying “relations” as the fundamental unit of analysis, SNA utilizes graph theory tools and
algebraic modeling techniques to investigate the patterns of relationships among entities.
This approach unveils the interconnections and interactions between entities, and finds
broad applications in fields such as economics, management, and sociology [48]. This study
employs Social Network Analysis to scrutinize the overall structural characteristics, indi-
vidual structural features, and clustering characteristics of the interprovincial agricultural
green development spatial correlation network in China.

(1) Overall network structural characteristics.
The overall network structural characteristics delineate the relational structure and the

strength of associations between regions. Key metrics encompass network density, network
connectivity, network degree, and network efficiency [49]. Specifically, network density is
the ratio of the actual number of relationships in the network to the theoretically maximum
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number of relationships. It gauges the tightness of connections among nodes in the spatial
correlation network, reflecting the intensity of the associations between nodes [50]. In
this context, a higher network density implies a closer connection between provinces in
agricultural green development. The calculation formula is given by (2), where N represents
the number of nodes, and L represents the number of existing relationships in the network.

D =
L

N × (N − 1)
(2)

Network connectivity reflects the robustness of the spatial correlation network, empha-
sizing the impact of the logarithm of unreachable node pairs within the network. A value of
1 indicates the absence of unreachable node pairs in agricultural green development across
regions, signifying the robustness of the spatial correlation network [51].The calculation
formula is provided by (3), where N represents the number of nodes in the network, and V
represents the number of unreachable nodes in the network.

C = 1 − 2V
N × (N − 1)

(3)

The network degree signifies the asymmetrical reachability of the spatial correlation
network. A high value in network degree indicates that specific nodes assume a “leader-
ship” role in the spatial correlation network, exercising “control” over the flow of internal
elements within the network. However, if these “leadership” nodes encounter disruptions,
the supporting force contributing to the formation of the spatial correlation network weak-
ens. Hence, a lower network degree implies a reduced dependence of the spatial correlation
network on individual or a few nodes, enhancing the stability of the network [52]. The
specific calculation formula is given by (4), where D H represents the network degree,
K denotes the actual number of symmetrically reachable node pairs in the network, and
max(K) represents the maximum number of possible symmetrically reachable node pairs
in the network.

H = 1 − K
max(K)

(4)

Network efficiency reflects the abundance of network association lines, and a lower
network efficiency indicates greater stability in the overall spatial correlation network of
agricultural green development [53]. In this study, a higher efficiency in the agricultural
green development correlation network implies more redundant connections, indicating
lower stability in the spatial correlation network. The specific calculation formula is
presented as (5), where E represents network efficiency, M denotes the actual number of
redundant connections in the network, and max(M) signifies the maximum number of
redundant connections in the network.

E = 1 − M
max(M)

(5)

(2) Individual network structural characteristics.
In the context of spatial correlation networks, individual network characteristics refer

to the specific attributes and status of nodes within a network. Key measurement indicators
include: degree centrality, closeness centrality, and betweenness centrality [54]. A higher
degree centrality indicates that a region is closer to the center of the agricultural green
development spatial correlation network. When the degree centrality of a node is higher
than the mean, it is more likely to influence other nodes in the spatial correlation network of
agricultural green development. In a network, a higher degree centrality of a node implies
greater control over other members in the network [55]. The calculation is performed using
Formula (6), where N represents the total number of nodes in the network; inDC is the
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in-degree of the node; outDC is the out-degree of the node. DCi is the degree centrality of
node i, which is the sum of the in-degree and out-degree of node i.

DCi =
(inDC + outDC)

2(N − 1)
(6)

Closeness centrality in social network analysis measures the average shortest path
length from a node to other nodes. Closeness centrality represents a node’s ability to
remain unaffected by other nodes’ “control” in the network. When a node’s closeness
centrality is higher than the mean, it indicates that the node is closer to other nodes in the
spatial correlation network of agricultural green development. This proximity enhances
the advantage of transmitting information and driving the flow of elements [56]. Closeness
centrality also reflects the extent to which a node in the network remains unaffected by
other nodes. The specific calculation formula is provided as (7), where N is the number of
nodes in the network, and di is the geodesic distance from node i to other nodes.

di =
1

N − 1

N

∑
j=1

dij CCi =
1
di

(7)

Betweenness centrality is a metric in social network analysis that measures the number
of times a node serves as an intermediary or bridge in the network [57]. Betweenness
centrality reflects the role of a node as an intermediary in the spatial correlation network.
When a node lies on the shortcut paths between many node pairs, its betweenness centrality
is higher. When the betweenness centrality of a node exceeds the mean, its intermediary role
in the spatial correlation network becomes more pronounced, influencing and regulating
the agricultural green development in other regions. The specific calculation formula is
given by (8), where N is the number of nodes in the network, and gjk(i) represents the
number of shortest paths passing through node i between province j and province k, where
j ̸= k ̸= i and j < k.

BCi =

2
N
∑
j

N
∑
k

gjk(i)/gjk

3N2 − 3N + 2
(8)

3.1.3. Clustering Network Structural Characteristics

The analysis of clustering structural characteristics in spatial correlation networks
involves characterizing the internal structural state of the correlation network and the
roles and statuses of its members through spatial clustering. In this study, following the
approach of WANG H [58], the sectors in the agricultural green development spatial corre-
lation network are categorized into four types: “Net beneficial block”, “Net spillover block”,
“Broker block” and “Bidirectional spillover block”. The specific criteria for classification
involve defining a sector as a “Net beneficial block” when the actual internal relationship
proportion is greater than the expected internal relationship proportion, and the receiving
relationships are significantly greater than the relationships emitted by that sector. Sectors
with a clear balance between receiving and emitting relationships are classified as “Bidi-
rectional spillover blocks”. Sectors are labeled as “Net spillover blocks” when the actual
internal relationship proportion is less than the expected internal relationship proportion,
and the emitted relationships are significantly greater than the received relationships. Sec-
tors with a small difference between emitted and received relationships are designated as
“Broker blocks”.

3.1.4. QAP Analysis Method

The Quadratic Assignment Procedure (QAP) is a non-parametric method suitable for
situations where the data structures are complex and the relationships between variables
are intertwined. It objectively reflects the correlations and regression relationships between
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variables. After analyzing the structural characteristics of the agricultural green develop-
ment spatial correlation network, it is necessary to further examine the factors driving
changes in this network. These factors can induce variations in the network, leading to
different structural characteristics. Due to the presence of multicollinearity among variables
in the spatial correlation network, it can affect the estimation results of regression models.
The QAP model, not requiring assumptions of independence and normal distribution,
effectively addresses the issue of multicollinearity in relationship data. The application
of the QAP model to analyze relationship data yields more robust results [59]. There-
fore, this study utilizes the QAP model to analyze the driving factors of the agricultural
green development spatial correlation network. The selected influencing factors and their
representations are as follows.

(1) Geographical spatial proximity (Distance): represented using an interprovin-
cial adjacency weight matrix, with a value of 1 for adjacent provinces and 0 otherwise.
(2) Economic development level (Pgdp): represented by per capita GDP. (3) Environmental
regulation level (Envi): represented by the proportion of investment in completed industrial
pollution control projects to industrial GDP. (4) Industrial structure (Indus): represented
by the proportion of GDP from the tertiary industry to the region’s GDP. (5) Agricultural
technology investment level (AgriS): represented by the amount of agricultural science
and technology R&D investment. (6) Informationization level (Infor): represented by per
capita postal and telecommunication business volume. (7) Financial support for agriculture
(Fin): represented by the proportion of agricultural expenditure to total fiscal expenditure.
(8) Economic openness level (Open): represented by the proportion of import and export
trade to GDP. (9) Urbanization level (Urban): represented by the proportion of urban popu-
lation to total population. (10) Human capital level (Human): represented by the average
years of education for the population. Based on this analysis, a quantification model for
the driving factors of the agricultural green development spatial correlation network is
established (Formula (9)).

Agdij = f (Distance ij, Pgdpij, Indusij, AgriSij, Inforij, Enviij, Finij, Openij, Urbanij, Humanij) (9)

In Formula (9), Agdij represents the matrix of the agricultural green development
spatial correlation network, and Pgdpij, Enviij, Indusij, AgriSij, Inforij, Finij, Openij, Urbanij,
and Humanij are the standardized difference matrices for each respective factor. Distanceij
is the adjacency weight matrix.

3.2. Data Sources

Based on the availability of data, this study focuses on the 31 provinces and munici-
palities within Mainland China, excluding Taiwan, Hong Kong, and Macau regions. This
study selects all 31 provinces of China as its research subjects, encompassing over 95% of
the country’s territory. Consequently, the sample provinces can, to a considerable extent,
represent the state of agricultural green development in China. The research timeline spans
from 2003 to 2020. Data regarding the evaluation indicators for China’s agricultural green
development, gravity model calculation data, and variables for driving factors are sourced
from the corresponding annual volumes of the “China Statistical Yearbook”, “China Envi-
ronment Statistical Yearbook”, “China Rural Statistical Yearbook”, “China Population and
Employment Statistics Yearbook”, and “China Agricultural Statistical Data”, along with
provincial statistical yearbooks and the provincial annual statistical data from the National
Bureau of Statistics of China’s website. The map data for China’s provincial administrative
boundaries are obtained from the National Geomatics Center of China. For instances where
certain regional variables are missing data, a linear interpolation method is employed for
supplementation.

3.3. The Measurement of Agricultural Green Development Levels

Agricultural green development is characterized by harnessing the initiative of agri-
cultural producers to harmonize the economic, social, and ecological benefits of agricultural
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development. It emphasizes an all-encompassing and comprehensive approach to greening,
fundamentally integrating “green” practices throughout the entire process and all aspects
of agricultural production, distribution, and consumption. This sustainable method of
agriculture aims to minimize the environmental impact while simultaneously enhancing
the agricultural productivity and economic benefits. As a systemic project, agricultural
green development encompasses a rich variety of content. Drawing upon the scholarly
work of Zhou (2023) on the construction and measurement of an evaluation index sys-
tem for green agricultural development, this paper develops an assessment framework
for agricultural green development from five dimensions: resource conservation, ecologi-
cal stability, clean production, secure supply, and enhanced efficiency [11], as illustrated
in Table 1.

Table 1. Comprehensive evaluation index system for agricultural green development.

Primary Indicator Secondary
Indicator Tertiary Indicator Measurement Method Weight Value

Resource Conservation

Conservation of cultivated
land resources

Cultivated land retention rate
(%)

(The current year’s arable land
area divided by the arable land

area of the previous year) ×
100%

0.0370

Per capita cultivated area (hm2)
(The arable land area divided by

the rural population) × 100% 0.0391

Conservation of water
resources

Proportion of water-saving
irrigation area (%)

(The area under water-efficient
irrigation divided by the total

irrigated area) × 100%
0.0382

Agricultural water accounted for
the proportion of total water use

(%)

(The agricultural water
consumption divided by the
total water usage) × 100%

0.0397

Ecological Stability

Ecological conservation

The proportion of forest in the
land area (%)

(The forested area in proportion
to the total land area) × 100% 0.0417

Proportion of wetland in land
area (%)

(The wetland area relative to the
national land area) × 100% 0.0394

Ecological restoration

Ecological afforestation country
area proportion (%)

(The afforested area for
ecological purposes in relation to
the national land area) × 100%

0.0371

Annual growth rate of soil
erosion control area (%)

(The difference between the
current year’s soil and water

conservation area and the
previous year’s soil and water
conservation area, divided by

the soil and water conservation
area of the previous year) ×

100%

0.0386

Clean Production

Energy factor
consumption

Diesel oil application rate
(kg/CNY 10,000)

The agricultural diesel
consumption in relation to the
total agricultural output value

0.0377

Electricity efficiency
(kW·h/CNY 10,000)

The rural electricity
consumption relative to the total

agricultural output value
0.0405

Chemical factor
consumption

Fertilizer application rate
(kg/CNY 10,000)

The fertilizer application rate in
relation to the total agricultural

output value
0.0395

Agricultural film application
rate (kg/CNY 10,000)

The quantity of agricultural film
usage in proportion to the total

agricultural output value
0.0410

Rate of pesticide application
(kg/CNY 10,000)

he amount of pesticide
application in relation to the

total agricultural output value
0.0408
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Table 1. Cont.

Primary Indicator Secondary
Indicator Tertiary Indicator Measurement Method Weight Value

Supply Security

Numerical security

Per capita grain production (kg) Statistical yearbook data. 0.0377
Meat production per capita (kg) Statistical yearbook data. 0.0387
Total grain production (10,000 t) Statistical yearbook data. 0.0388
Total meat production (10,000 t) Statistical yearbook data. 0.0393

Quality assurance

Number of certified green food
products Statistical yearbook data. 0.0381

Number of green food
enterprises Statistical yearbook data. 0.0371

Quality and safety of
agricultural products routine

inspection pass rate (%)

Data from the Market
Supervision Administration. 0.0371

Efficiency Enhancement

Economic benefits

Labor productivity (CNY 10,000)

The total agricultural output
value divided by the number of
people employed in the primary

sector

0.0372

Land yield rate (CNY
10,000/hm2)

The total agricultural output
value divided by the cultivated

crop area
0.0370

Disposable income of rural
residents (CNY)

Data from the National Bureau
of Statistics. 0.0373

Social benefits

Urban-rural income gap
Urban residents’ disposable

income divided by rural
residents’ disposable income

0.0371

Engel coefficient of rural
household (%) Statistical yearbook data. 0.0372

Agricultural carbon emission
intensity (t/CNY 10,000)

Agricultural carbon emissions
divided by the total agricultural

output value
0.0370

4. Results and Analysis
4.1. Analysis of the Overall Network Characteristics

Table 2 and Figure 1 revealed that the connectivity degree of the spatial correlation
network for agricultural green development in China was consistently registered at one,
maintaining a stable condition throughout the study period. The research indicates that
no province was isolated in China’s green agricultural progression during this time; each
maintained direct or indirect connections with others, ensuring robust network connectivity.
The network density fluctuated between 0.2978 and 0.3473, showing a slight downward
trend, yet remaining relatively stable. This reflects that, despite provinces maintaining some
level of agricultural green development ties, the closeness of these connections weakened
slightly. The primary reason for this is the rapid economic development and industrial
restructuring in China, with some provinces prioritizing industrial and service sectors,
potentially leading to reduced focus and investment in green agricultural initiatives, thus
diminishing inter-provincial collaboration in this area.

The network’s hierarchy level oscillated between 0.1250 and 0.3307, indicating a
degree of hierarchical structure within the network that generally showed a declining
trend. This suggests that, while some provinces held central positions in the network,
the prominence of these central positions has gradually lessened. This change is closely
linked to the implementation of China’s rural revitalization strategy. As the strategy
progresses, provinces previously on the periphery of the network have begun to enhance
their status, not only through advancements in agricultural green development within these
regions, but also due to increased agricultural technology and resource exchanges with
central provinces. Thus, the implementation of this strategy is instrumental in balancing
development across provinces and promoting a more equitable network of agricultural
green development. The network efficiency exhibited a fluctuating upward trend, ranging
from 0.5356 to 0.6115, indicating a multi-layered phenomenon of spatial spillover in China’s
agricultural sector, pointing to a need for further enhancement of the network’s stability.



Agriculture 2024, 14, 683 12 of 27

Table 2. Overall characteristic indicator values of the Spatial Connectivity Network.

Year Density Connectedness Hierarchy Efficiency

2003 0.3215 1 0.3307 0.5540
2004 0.3183 1 0.2921 0.5678
2005 0.3366 1 0.2921 0.5402
2006 0.3366 1 0.2921 0.5425
2007 0.3366 1 0.2876 0.5609
2008 0.3366 1 0.2876 0.5540
2009 0.3452 1 0.2876 0.5425
2010 0.3473 1 0.2861 0.5356
2011 0.3366 1 0.2861 0.5517
2012 0.3312 1 0.2407 0.5609
2013 0.3290 1 0.2407 0.5701
2014 0.3376 1 0.2401 0.5609
2015 0.3269 1 0.2401 0.5701
2016 0.3129 1 0.2381 0.5908
2017 0.3000 1 0.2381 0.6092
2018 0.2978 1 0.1806 0.6115
2019 0.3011 1 0.1806 0.6092
2020 0.3032 1 0.1250 0.6069

Agriculture 2024, 14, x FOR PEER REVIEW 13 of 28 
 

 

 
Figure 1. Trends in overall characteristic indicator changes in the Spatial Connectivity Network. 

4.2. Analysis of Individual Network Characteristics 
4.2.1. Analysis of Network Degree Centrality 

This paper selects data from the years 2003, 2010, 2015, and 2020, employing Ucinet 
6.0 software to calculate the centrality of the agricultural green development spatial asso-
ciation network. Through a temporal analysis and a comprehensive horizontal compari-
son among provinces, the study observes the dynamic evolution of the network’s degree 
centrality in agricultural green development, as illustrated in Table 3 and Figure 2. 

Table 3. Degree centrality of the spatial association network. 

 2003 2010 2015 2020 
Province Centrality Ranking Centrality Ranking Centrality Ranking Centrality Ranking 
Beijing 62.5000 1 38.7931 6 27.6498 20 19.9005 26 
Tianjin 49.1071 3 21.5517 29 27.6498 21 17.4129 28 
Hebei 33.4821 11 38.7931 7 29.9539 17 29.8507 11 
Shanxi 17.8571 29 25.8621 22 32.2581 11 49.7512 5 

Inner Mongolia 20.0893 27 34.4828 11 27.6498 22 19.9005 27 
Liaoning 44.6429 4 43.1034 3 48.3871 3 22.3881 23 

Jilin 15.6250 30 25.8621 23 16.1290 31 22.3881 24 
Heilongjiang 11.1607 31 28.0172 20 39.1705 6 59.7015 2 

Shanghai 58.0357 2 53.8793 1 23.0415 27 14.9254 31 
Jiangsu 40.1786 5 45.2586 2 57.6037 1 62.1891 1 

Zhejiang 40.1786 6 36.6379 9 43.7788 4 54.7264 3 
Anhui 29.0179 18 30.1724 19 32.2581 12 44.7761 7 
Fujian 40.1786 7 32.3276 14 39.1705 7 52.2388 4 
Jiangxi 20.0893 28 15.0862 31 18.4332 29 17.4129 29 

Shandong 33.4821 12 40.9483 5 50.6912 2 29.8507 12 
Henan 31.2500 14 36.6379 10 36.8664 8 42.2886 8 
Hubei 24.5536 25 32.3276 15 36.8664 9 37.3134 9 
Hunan 26.7857 21 23.7069 26 27.6498 23 29.8507 13 

Guangdong 37.9464 9 21.5517 30 20.7373 28 27.3632 17 
Guangxi 22.3214 26 23.7069 27 18.4332 30 24.8756 21 

Figure 1. Trends in overall characteristic indicator changes in the Spatial Connectivity Network.

4.2. Analysis of Individual Network Characteristics
4.2.1. Analysis of Network Degree Centrality

This paper selects data from the years 2003, 2010, 2015, and 2020, employing Ucinet 6.0
software to calculate the centrality of the agricultural green development spatial association
network. Through a temporal analysis and a comprehensive horizontal comparison among
provinces, the study observes the dynamic evolution of the network’s degree centrality in
agricultural green development, as illustrated in Table 3 and Figure 2.
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Table 3. Degree centrality of the spatial association network.

2003 2010 2015 2020

Province Centrality Ranking Centrality Ranking Centrality Ranking Centrality Ranking

Beijing 62.5000 1 38.7931 6 27.6498 20 19.9005 26
Tianjin 49.1071 3 21.5517 29 27.6498 21 17.4129 28
Hebei 33.4821 11 38.7931 7 29.9539 17 29.8507 11
Shanxi 17.8571 29 25.8621 22 32.2581 11 49.7512 5

Inner Mongolia 20.0893 27 34.4828 11 27.6498 22 19.9005 27
Liaoning 44.6429 4 43.1034 3 48.3871 3 22.3881 23

Jilin 15.6250 30 25.8621 23 16.1290 31 22.3881 24
Heilongjiang 11.1607 31 28.0172 20 39.1705 6 59.7015 2

Shanghai 58.0357 2 53.8793 1 23.0415 27 14.9254 31
Jiangsu 40.1786 5 45.2586 2 57.6037 1 62.1891 1

Zhejiang 40.1786 6 36.6379 9 43.7788 4 54.7264 3
Anhui 29.0179 18 30.1724 19 32.2581 12 44.7761 7
Fujian 40.1786 7 32.3276 14 39.1705 7 52.2388 4
Jiangxi 20.0893 28 15.0862 31 18.4332 29 17.4129 29

Shandong 33.4821 12 40.9483 5 50.6912 2 29.8507 12
Henan 31.2500 14 36.6379 10 36.8664 8 42.2886 8
Hubei 24.5536 25 32.3276 15 36.8664 9 37.3134 9
Hunan 26.7857 21 23.7069 26 27.6498 23 29.8507 13

Guangdong 37.9464 9 21.5517 30 20.7373 28 27.3632 17
Guangxi 22.3214 26 23.7069 27 18.4332 30 24.8756 21
Hainan 26.7857 22 25.8621 24 25.3456 26 27.3632 18

Chongqing 31.2500 15 32.3276 16 29.9539 18 29.8507 14
Sichuan 33.4821 13 38.7931 8 32.2581 13 29.8507 15
Guizhou 40.1786 8 43.1034 4 34.5622 10 27.3632 19
Yunnan 31.2500 16 34.4828 12 32.2581 14 27.3632 20

Tibet 29.0179 19 28.0172 21 29.9539 19 29.8507 16
Shaanxi 26.7857 23 32.3276 17 32.2581 15 24.8756 22
Gansu 31.2500 17 34.4828 13 41.4747 5 49.7512 6

Qinghai 29.0179 20 25.8621 25 27.6498 24 17.4129 30
Ningxia 26.7857 24 23.7069 28 27.6498 25 22.3881 25
Xinjiang 35.7143 10 32.3276 18 32.2581 16 34.8259 10

Table 3 and Figure 2 revealed that, from 2003 to 2020, the spatial network of China’s
agricultural green development underwent significant transformations, with profound
shifts in the roles and influence of various regions. In the initial stages of development,
economically advanced areas such as Beijing, Shanghai, and Tianjin occupied central
positions within the network. These regions, boasting higher levels of agricultural economic
development and large agricultural product markets, had stringent demands for both the
quantity and quality of agricultural goods. Their advantages in attracting talent, capital
investments, and resource allocation cemented their central status in the network. However,
as urbanization accelerated and the industrial and service sectors became more prominent,
the scale of agricultural production in these areas rapidly diminished. The decreasing
proportion of agriculture in socio-economic activities led to a significant decline in their
roles and impact within the agricultural green development spatial network.

Simultaneously, the Heilongjiang Province in the Northeast, endowed with abundant
arable land, water resources, and favorable climatic conditions, displayed clear advantages
in transitioning towards agricultural green development. The province rapidly transformed
its agricultural sector by adopting advanced agricultural technologies, promoting large-
scale production, and implementing modern farm management models. Heilongjiang led
the nation in agricultural scale and mechanization. Coupled with the operation of large
state-owned farms and the application of agricultural science and technology, the province
progressively assumed a central position within China’s agricultural green development
spatial correlation network, exerting a strong exemplary influence on other regions.
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Moreover, coastal economically developed regions such as Jiangsu, Zhejiang, and
Fujian, benefiting from their rich arable lands and advantageous geographical conditions,
have consistently maintained core positions within the network. These areas, equipped
with advanced agricultural technologies and vast consumer markets, continuously attract
substantial agricultural resources. Their superior natural environments and high levels
of socio-economic development have enabled them to lead in the network over the long
term, significantly influencing the flow of agricultural green development resources in
other regions. Conversely, most areas in Northwest China, particularly provinces like
Gansu, Xinjiang, and western Tibet, due to environmental and geographical constraints,
have remained on the periphery of the agricultural green development spatial correlation
network, with relatively weak connections to the network’s central regions.

4.2.2. Analysis of Network Closeness Centrality

Utilizing data from the years 2003, 2010, 2015, and 2020, this study employs Ucinet 6.0
software to assess the closeness centrality within the agricultural green development spatial
association network. This analysis reveals the dynamic evolution of closeness centrality in
China’s agricultural green development spatial association network (Table 4 and Figure 3).



Agriculture 2024, 14, 683 15 of 27

Table 4. Closeness centrality in the spatial association network.

2003 2010 2015 2020

Province Closeness Ranking Closeness Ranking Closeness Ranking Closeness Ranking

Beijing 93.7500 1 69.7674 8 61.2245 22 57.6923 26
Tianjin 78.9474 3 57.6923 30 61.2245 23 53.5714 31
Hebei 66.6667 11 71.4286 6 63.8298 16 61.2245 16
Shanxi 56.6038 29 62.5000 22 63.8298 17 75.0000 5

Inner Mongolia 58.8235 26 68.1818 11 62.5000 20 57.6923 27
Liaoning 75.0000 4 75.0000 3 76.9231 3 58.8235 22

Jilin 56.6038 30 62.5000 23 56.6038 30 58.8235 23
Heilongjiang 53.5714 31 63.8298 20 69.7674 6 83.3333 2

Shanghai 88.2353 2 85.7143 1 60.0000 26 55.5556 30
Jiangsu 71.4286 5 76.9231 2 85.7143 1 85.7143 1

Zhejiang 71.4286 6 69.7674 9 73.1707 4 78.9474 3
Anhui 63.8298 18 65.2174 19 65.2174 11 71.4286 7
Fujian 71.4286 7 66.6667 14 69.7674 7 76.9231 4
Jiangxi 58.8235 27 54.5455 31 57.6923 27 56.6038 28

Shandong 66.6667 12 73.1707 5 78.9474 2 62.5000 11
Henan 65.2174 14 69.7674 10 68.1818 8 69.7674 8
Hubei 61.2245 23 66.6667 15 68.1818 9 66.6667 9
Hunan 62.5000 21 61.2245 24 62.5000 21 62.5000 12

Guangdong 69.7674 9 58.8235 29 56.6038 31 61.2245 17
Guangxi 60.0000 25 61.2245 25 57.6923 28 58.8235 24
Hainan 58.8235 28 60.0000 27 57.6923 29 60.0000 18

Chongqing 65.2174 15 66.6667 16 63.8298 18 62.5000 13
Sichuan 66.6667 13 71.4286 7 65.2174 12 62.5000 14
Guizhou 71.4286 8 75.0000 4 66.6667 10 60.0000 19
Yunnan 65.2174 16 68.1818 12 65.2174 13 60.0000 20

Tibet 63.8298 19 63.8298 21 63.8298 19 62.5000 15
Shaanxi 62.5000 22 66.6667 17 65.2174 14 60.0000 21
Gansu 65.2174 17 68.1818 13 71.4286 5 75.0000 6

Qinghai 63.8298 20 61.2245 26 61.2245 24 56.6038 29
Ningxia 61.2245 24 60.0000 28 61.2245 25 58.8235 25
Xinjiang 68.1818 10 66.6667 18 65.2174 15 65.2174 10

According to Table 4 and Figure 3, in the initial stages of agricultural green develop-
ment, the eastern coastal provinces established close ties with other regions by absorbing
key resources such as labor and agricultural products from the central and western areas,
along with external investments and technology exports. This strategy not only advanced
the local agricultural sustainability, but also enhanced the provinces’ network closeness cen-
trality through interaction and resource sharing within the network. However, provinces
like Jiangxi, Hainan, Shanxi, and Jilin, burdened by their relatively undeveloped agri-
cultural economies, unfavorable geographical positions, and transportation constraints,
maintained peripheral ties with other provinces, positioning them on the margins of the
agricultural green development spatial association network. This reveals that, in the early
phases, resource flow and information exchange within the network tended to concentrate
around economically developed provinces, seldom reaching those with lower economic
development levels.

As China’s economy rapidly expanded and underwent significant industrial restruc-
turing, major economic activities in regions like Shanghai, Beijing, and Tianjin increasingly
focused on non-agricultural sectors such as industry and services, significantly reducing
the scale and input in agricultural production. This shift weakened these areas’ agricultural
ties with other provinces, gradually marginalizing their positions in the agricultural green
development spatial association network. Concurrently, provinces such as Heilongjiang
leveraged their advanced agricultural technologies and abundant resources to swiftly en-
hance their level of agricultural green development. This not only spurred agricultural
growth within the province, but also, through close cooperation with other provinces,
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significantly reduced the developmental distance to other nodes, thereby elevating Hei-
longjiang’s network closeness centrality and establishing it as a pivotal player in agricultural
green development. Moreover, provinces like Jiangsu, Zhejiang, and Fujian, with their
solid agricultural foundations and strategic locations, have consistently maintained core
positions within the agricultural green development network, fostering tight connections
and consistently short developmental distances with other regions.
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4.2.3. Analysis of Network Betweenness Centrality

This study utilizes data from the years 2003, 2010, 2015, and 2020, employing Ucinet
6.0 software to calculate the betweenness centrality of the agricultural green development
spatial association network. This analysis aims to reflect the dynamic evolution of between-
ness centrality among provinces within China’s agricultural green development spatial
association network (Table 5 and Figure 4).
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Table 5. Betweenness centrality in the spatial association network.

2003 2010 2015 2020

Province Betweenness Ranking Betweenness Ranking Betweenness Ranking Betweenness Ranking

Beijing 8.8756 1 2.6894 7 0.9087 20 0.2492 24
Tianjin 6.0172 3 0.4269 29 0.9087 21 0.1731 29
Hebei 1.1923 15 2.0951 9 0.8860 22 1.2212 11
Shanxi 0.2311 28 0.6956 23 1.6602 11 4.2152 7
Inner

Mongolia 0.3505 27 1.5141 16 0.7623 26 0.2443 25

Liaoning 3.6892 4 3.8827 3 5.7401 3 0.1983 26
Jilin 0.1411 30 0.6355 25 0.1484 31 0.1983 27

Heilongjiang 0.0198 31 0.6662 24 2.6393 7 8.5752 2
Shanghai 8.2618 2 5.7491 1 0.3921 28 0.0692 31
Jiangsu 2.1939 7 4.1152 2 7.4408 1 8.6693 1

Zhejiang 2.1939 8 2.8035 6 3.9756 4 5.9466 3
Anhui 1.4630 12 1.6413 15 2.2278 9 4.9243 6
Fujian 2.2919 6 1.9650 11 2.9042 5 5.8058 4
Jiangxi 0.1576 29 0.2422 31 0.3826 29 0.1753 28

Shandong 1.2826 13 2.9000 5 5.9753 2 1.0745 13
Henan 1.7636 11 2.4623 8 2.7954 6 3.6522 8
Hubei 0.5843 25 1.7385 14 1.6142 13 1.3684 10
Hunan 0.8027 22 0.6032 27 0.7647 25 0.6123 17

Guangdong 1.9100 9 0.2763 30 0.3089 30 0.4960 21
Guangxi 0.4419 26 0.5913 28 0.4218 27 0.5319 19
Hainan 0.9786 16 1.2706 19 1.2778 18 1.1619 12

Chongqing 0.9011 19 1.3865 17 1.3042 17 0.7819 15
Sichuan 0.9150 18 1.8101 13 1.5298 14 0.6239 16
Guizhou 1.7830 10 3.4390 4 1.6491 12 0.6085 18
Yunnan 0.9011 20 1.9282 12 1.3491 16 0.5287 20

Tibet 0.8724 21 1.1916 20 1.4691 15 0.8442 14
Shaanxi 0.7753 23 1.3834 18 1.0919 19 0.2537 23
Gansu 0.9463 17 1.0367 21 2.2575 8 5.6451 5

Qinghai 1.1952 14 0.8766 22 0.8061 23 0.1324 30
Ningxia 0.6128 24 0.6165 26 0.8061 24 0.3280 22
Xinjiang 2.3468 5 2.0802 10 1.7633 10 2.3005 9

Table 5 and Figure 4 revealed that, during the initial stages of agricultural green
development, regions such as Beijing, Shanghai, Tianjin, and Liaoning emerged as key
convergence points within the agricultural sector, thanks to their ability to concentrate
a vast array of talents, capital, and informational resources. This aggregation not only
propelled the green agricultural development of these areas, but also significantly influ-
enced the developmental trajectories of other regions, endowing them with high network
betweenness centrality. However, as the economy progressed and industrial focus shifted,
these regions saw a diminished influence over the flow of agricultural green development
resources. This was due to economic diversification and a focus on high-tech and service
industries, which gradually decreased agriculture’s proportion relative to other industries,
thereby affecting these provinces’ mediating role in the agricultural green development
spatial network. Meanwhile, economically prosperous coastal provinces such as Jiangsu,
Zhejiang, and Fujian, with their robust agricultural bases, advanced agricultural technol-
ogy, and vast markets, continuously attracted various resources related to agricultural
development. These provinces maintained close cooperation in agricultural pursuits with
other regions, wielding long-term significant influence on the flow of green development
elements, reflected in their high and stable network betweenness centrality.
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Particularly noteworthy is Heilongjiang Province which, with its abundant arable land
and favorable natural conditions, has become one of China’s foremost areas in agricultural
mechanization and large-scale development. The province, hosting numerous state-owned
farms renowned for their advanced technology and standardized management, has become
a focal point for capital, information, and technological resources, thereby strengthening its
role as a bridge in linking regional agricultural green development. Heilongjiang’s role not
only fostered its own agricultural progress, but also positively impacted the surrounding
areas and the nation’s agricultural green development at large. Moreover, it was observed
that some provinces in central and western China, such as Gansu and Guizhou, due
to their geographical advantages and proximity to multiple provinces, became critical
intermediaries in cross-regional collaboration and agricultural resource flow, effectively
promoting regional agricultural green development and optimal resource allocation, thus
playing a pivotal role in the regional agricultural economic development.

4.3. Cluster Characteristic Analysis of Spatial Association Network

To further unveil the internal structure within China’s agricultural green development
spatial association network, following the approach of some scholars [58,59] the study
utilizes the iterative converging method (CONCOR) provided by Ucinet 6.0 software to
analyze the network’s clustering characteristics. The maximum module division depth
parameter is set to 2, and the convergence criterion parameter to 0.2, dividing the network
into four clustering modules. Based on indicators such as the number of incoming and
outgoing relationships and the proportion of internal relationships among the modules,
the roles of different blocks within the network are identified. The results are used to
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draw a diagram depicting the clustering block relationships in China’s agricultural green
development spatial association network (Figure 5).
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Figure 5 demonstrated that China’s agricultural green development exhibits pro-
nounced spatial clustering, with the spatial association network being divided into four
major blocks, totaling 282 relationships. Among these, internal relationships within blocks
number 39, while inter-block relationships count for 243, indicating significant connections
and spillover effects between blocks. The first block comprises six provinces and cities:
Beijing, Tianjin, Xinjiang, Chongqing, Inner Mongolia, and Shandong, with an internal
relationship count of 10, 45 outgoing relationships, and 31 incoming relationships. The
gap between the incoming and outgoing relationships is relatively small, and the actual
proportion of internal relationships exceeds the expected, categorizing it as a “Bidirectional
spillover block”. Within this block, Beijing and Tianjin, as significant economic and con-
sumption centers in China, import agricultural products from other regions and export
resources such as technology, capital, and information, displaying bidirectional resource
flow characteristics. Provinces like Xinjiang, Chongqing, Inner Mongolia, and Shandong,
endowed with rich natural resources and elements for agricultural green development, are
key production bases for agricultural products in China and serve as important consump-
tion and trading markets. The bidirectional flow of agricultural green resources with other
regions is markedly evident.

The second block consists of six provinces and cities: Jiangsu, Zhejiang, Hainan, Hubei,
Heilongjiang, and Fujian. This block has an incoming relationship count of 96, significantly
exceeding its outgoing relationship count of 48, with the actual proportion of internal
relationships being greater than the expected, categorizing it as a “Net beneficial block”.
Hainan Province, with its unique tropical climate, warm and moist conditions, and abun-
dant sunshine, emerges as an important area for the cultivation and processing of tropical
crops in China. The province’s distinctive resource and environmental advantages in
tropical agriculture attract substantial inflows of capital, talent, and technological resources,
positioning Hainan within the “Net Gain block”. Jiangsu, Zhejiang, Hubei, Heilongjiang,
and Fujian provinces, with their natural advantages and market superiority in agricultural
green development, have a solid foundation in agricultural development. These provinces
have achieved high levels of agricultural production technology, management, and green
agricultural standards, attracting and acquiring agricultural green development resources
from other regions. The quantity of external resources these provinces attract and absorb
significantly surpasses what they release, thus also categorizing them within the “Net
beneficial block”.
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The third block is composed of six provinces: Shanxi, Jiangxi, Anhui, Hebei, Gansu,
and Henan. This block has an incoming relationship count of 84 and an outgoing rela-
tionship count of 45, indicating a considerable volume of both incoming and outgoing
relationships. However, the actual proportion of internal relationships is less than expected,
categorizing it as the “Broker block”. These provinces serve as geographical connectors
facilitating the flow of agricultural resources between the eastern and western regions of
China. Shanxi and Hebei provinces, located in North China, connect agricultural produc-
tion areas and markets in the Northeast, East, and North China regions, playing a crucial
“West-to-East” bridging role. Jiangxi and Anhui provinces, situated in the East China
region, connect the flow of agricultural resources between South China and East China,
acting as significant hubs. Gansu province, positioned in Northwest China, serves as an
essential passage connecting the Northwest and Southwest regions, playing a vital role in
the circulation and exchange of regional agricultural resources. These areas function as
“bridges” and “intermediaries” in the circulation of agricultural products, resource allo-
cation, and technology dissemination, making these provinces part of the “Broker block”
within China’s agricultural green development spatial association network.

The fourth block consists of 13 provinces and cities: Shanghai, Guangdong, Guangxi,
Jilin, Sichuan, Hunan, Yunnan, Tibet, Shaanxi, Liaoning, Qinghai, Ningxia, and Guizhou.
It has an outgoing relationship count of 105 and an incoming relationship count of 32,
with the number of outgoing relationships far exceeding incoming ones. Additionally, the
actual proportion of internal relationships is less than expected, categorizing it as a “Net
spillover block”. Shanghai and Guangdong, as economically developed areas of China,
have industries dominated by manufacturing and services, with agriculture representing a
very low proportion of the socioeconomic structure. The agricultural development potential
in these regions is extremely limited, leading to an outflow of agricultural development
funds, technology, and market resources.

The region of Heilongjiang, with its clear agricultural development advantages, exerts
a strong attraction for agricultural resources in neighboring provinces such as Liaoning
and Jilin, making these provinces part of the “Net spillover block”. Provinces like Hunan,
Sichuan, and Yunnan have advantages in agricultural technology, information, and talent
within their regions, spilling over agricultural green development resources to surrounding
provinces, thus also categorized as “Net spillover block”. Western provinces such as
Shaanxi, Guangxi, Sichuan, Yunnan, Tibet, Qinghai, Ningxia, and Guizhou, with their
remote geographical locations and harsh ecological and climatic conditions, have weakened
agricultural green development potential within their regions. This leads to an outflow
of local agricultural resources, displaying a clear characteristic of resource outflow and
categorizing them as “Net spillover block”.

4.4. Analysis of Driving Factors in China’s Spatially Correlated Network

To identify the driving factors for the development of the spatial network in China’s
agricultural green development, this study selects variable data from the years 2003, 2006,
2011, 2014, 2017, and 2020, based on the criteria established earlier. The number of random
permutations was set at 5000 (Table 6). The adjusted goodness of fit, R², ranged between
0.368 and 0.522, indicating an overall satisfactory fit.

From Table 6, it is discernible that: (1) The coefficient of geographical spatial proximity
is significantly positive, indicating that neighboring regions are more likely to facilitate
the exchange of elements, thereby forming spatial associations. Observing the changes
in coefficients, the coefficient of geographical spatial proximity grew from 0.160 to 0.277,
suggesting that as time progresses, the role of geographical spatial proximity in enhancing
the spatial associations of agricultural green development becomes increasingly significant.
(2) The coefficients for the difference in economic development levels across regions are
significantly negative, indicating that the closer the economic development levels between
regions, the stronger the spatial association in agricultural green development. This is
because when economic development levels are similar, land use patterns and demands
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for technology and labor in the two regions are alike. Additionally, under the influence of
market mechanisms, agricultural resource elements are more easily transferred between
regions with similar levels of economic development. (3) The coefficients for the difference
in informatization levels between regions were not significant initially, but became signif-
icantly negative later on, indicating an increasing significance of informatization levels
on the spatial associations of agricultural green development. This is primarily due to
the advancement of the digital economy, where similar levels of informatization between
regions facilitate the easier spread and sharing of technology, knowledge, and informa-
tion. (4) The coefficients indicating the difference in openness levels between regions are
significantly negative, showing that the closer the openness levels between regions, the
stronger the spatial association in agricultural green development. The reason is that similar
levels of openness allow agricultural producers and related industries to introduce and
share resources, information, and market opportunities, fostering a synergistic effect on
agricultural green development and reflecting tighter economic ties and market integration
between regions more easily. (5) The coefficient for the difference in agricultural science
and technology investment levels between regions is significantly negative, suggesting
that the closer the agricultural science and technology investment levels between regions,
the easier it is for technology and knowledge to spread and be shared, strengthening the
spatial association in agricultural green development. (6) The coefficient for the difference
in fiscal support for agriculture between regions is significantly positive, indicating that the
greater the gap in fiscal support for agriculture between regions, the stronger the spatial
association in agricultural green development. This may be because regions with greater
fiscal support for agriculture can effectively attract resources such as technology, talent, and
research and development funds, enhancing the spatial association in agricultural green
development. (7) The coefficients for the difference in levels of environmental regulation,
human capital, industrial structure, and urbanization between regions are not significant
and all negative, indicating that the closer the levels of human capital, industrial structure,
and urbanization between regions, the stronger the spatial association in agricultural green
development. However, their current role and impact are very limited.

Table 6. QAP regression results for driving factors.

2003 2006 2009 2011 2014 2017 2020

Distance 0.160 ***
(0.000)

0.170 ***
(0.000)

0.200 ***
(0.000)

0.190 ***
(0.000)

0.207 ***
(0.000)

0.268 ***
(0.000)

0.277 ***
(0.000)

Pgdp −0.020 **
(0.036)

−0.070 ***
(0.010)

−0.096 **
(0.028)

−0.088 **
(0.047)

−0.054 *
(0.088)

−0.011 **
(0.043)

−0.036 **
(0.026)

Infor −0.006
(0.452)

−0.006
(0.461)

−0.018
(0.361)

−0.024 **
(0.029)

−0.057 **
(0.036)

−0.009 **
(0.043)

−0.105 **
(0.039)

Open −0.106 **
(0.016)

−0.003 **
(0.047)

−0.081 **
(0.032)

−0.070 **
(0.048)

−0.132 ***
(0.001)

−0.100 **
(0.015)

−0.007 **
(0.043)

AgriS −0.050
(0.184)

−0.124 ***
(0.003)

−0.060 **
(0.089)

−0.049 **
(0.012)

−0.031 **
(0.021)

−0.164 ***
(0.000)

−0.126 ***
(0.005)

Envi −0.001
(0.482)

−0.052
(0.128)

−0.055
(0.108)

−0.032
(0.248)

−0.027
(0.244)

−0.089 **
(0.034)

−0.050
(0.156)

Fin 0.078 **
(0.035)

0.061 *
(0.082)

0.109 **
(0.013)

0.118 ***
(0.006)

0.063 *
(0.072)

0.009 **
(0.042)

0.035 **
(0.028)

Human −0.081 **
(0.045)

−0.071 *
(0.075)

−0.059
(0.109)

−0.009
(0.451)

−0.019
(0.324)

−0.019
(0.354)

−0.013
(0.385)

Indus −0.009
(0.423)

−0.037
(0.216)

−0.088 **
(0.028)

−0.082 **
(0.034)

−0.035
(0.171)

−0.036
(0.240)

−0.054
(0.159)

Urban −0.111 **
(0.022)

−0.011
(0.121)

−0.086 *
(0.053)

−0.050
(0.176)

−0.074 *
(0.058)

−0.061
(0.115)

−0.044
(0.211)

Adj-R2 0.522 0.498 0.401 0.368 0.506 0.454 0.374
Number 5000 5000 5000 5000 5000 5000 5000

Note: ***, ** and * indicate that coefficients are statistically significant at 1%, 5% and 10%, respectively.
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5. Discussion

This paper analyzed the interprovincial panel data on agricultural green development
of 31 provinces in China from 2003 to 2020, employing social network analysis and QAP
regression methods to deeply explore the structure and evolution of the spatial association
network in agricultural green development, as well as its driving factors. The findings not
only reveal the spatial associations and network characteristics of China’s agricultural green
development, but also identify the key factors influencing the formation and evolution of
these spatial relationships.

Initially, unlike current academic achievements regarding the spillover effects of agri-
cultural green development [18–22,39–41], this paper is the first to apply social network
analysis to this field. It meticulously examines the structure and evolution of the inter-
provincial agricultural green development network in China. By constructing a spatial
association network, it reveals dynamic changes in the network structure, offering a fresh
perspective for understanding the spatial patterns of agricultural green development.
It also highlights the changing roles of regions within the network, particularly noting
the long-standing central positions of Jiangsu, Zhejiang, and Fujian, due to their natural
conditions and market advantages. Thus, it underscores the importance of considering
regional characteristics and the necessity of optimizing agricultural resource allocation
when formulating related policies.

Furthermore, the study finds that the overall connectivity of China’s agricultural
green development spatial association network is robust, with no isolated entities. This
indicates that agricultural green development relationships are tightly interwoven and
mutually dependent across the country, exhibiting a clear spatial spillover effect, consistent
with findings from other researchers [11,14,60,61]. However, there is significant room to
enhance the connectivity and stability of China’s agricultural green development network,
suggesting a future need to further strengthen regional cooperation and resource sharing.

Additionally, this paper analyzes the internal structure of China’s agricultural green
development network, classifying it into four distinct functional blocks, thereby deepening
understanding of interactive patterns between regions in the process of agricultural green
development. The identification of the Broker block, in particular, provides evidence of the
key role in regional information flow and resource sharing, a topic seldom discussed in
previous studies. Finally, the research on the drivers of the agricultural green development
spatial association network reveals that geographic proximity and economic development
levels significantly influence the formation of this network, aligning with conclusions from
other scholars. These insights offer a foundation for devising targeted policies aimed at
reinforcing regional cooperation and promoting coordinated development.

Although this study provides a deep understanding of the structure and evolution of
China’s agricultural green development spatial association network, it has its limitations.
Firstly, due to data availability constraints, this study could not incorporate data at the
prefectural city level, which could enhance the precision of future analyses if included.
Additionally, agricultural green development is influenced by a myriad of complex factors,
and while this study focused on specific ones, future research should consider a broader
array of potential influencing factors to gain a more comprehensive understanding. In
summary, by systematically analyzing and discussing the spatial association network
and its drivers in China’s agricultural green development, this study not only enriches
existing research, but also offers valuable insights for formulating policies that promote
agricultural green development. Future studies could delve deeper into the characteristics
and changes in the spatial association network under different geographical and socio-
economic backgrounds, providing more detailed strategies and recommendations for
achieving sustainable development goals in Chinese agriculture.

6. Conclusions and Policy Implications

This study utilized provincial panel data from China spanning 2003–2020, employing
social network analysis and QAP regression methods to systematically explore the spatial
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association network structure of China’s agricultural green development and its evolution-
ary process, as well as to analyze the factors driving these network changes. The main
findings are as follows:

(1) From an overall network perspective, there is a significant spatial association
effect in the interprovincial agricultural green development of China. No province is
isolated within the network; each is connected directly or indirectly with others, showing
good connectivity and accessibility. The network has a hierarchical nature, although this
hierarchy is on a declining trend. The agricultural green development network in China
experiences considerable overlapping, indicating that network stability needs further
enhancement.

(2) From the perspective of individual network characteristics, as urbanization and
industrialization progress in China, regions such as Beijing, Shanghai, and Tianjin have
seen a declining trend in their status within the agricultural green development spatial
association network. Provinces like Jiangsu, Zhejiang, and Fujian, with superior agricul-
tural development conditions, advanced agricultural technologies, and large consumer
markets, have a significant impact on the agricultural green development of other regions
and maintain a core position in the network over the long term. Heilongjiang Province,
leveraging its abundant arable land, water resources, and favorable climatic conditions, has
rapidly developed its green agriculture, increasingly influencing other regions and rapidly
rising in role and influence within the network. Some central and western provinces, such
as Gansu, Shanxi, and Guizhou, also play vital roles in regional agricultural cooperation
and resource flow.

(3) From the perspective of spatial clustering features, the network of China’s agri-
cultural green development can be divided into four blocks. The first block, the “Bilateral
spillover block”, consists of Beijing, Tianjin, Xinjiang, Chongqing, Inner Mongolia, and
Shandong. These regions are characterized by a bidirectional flow of agricultural green
resources. The second block, the “Net beneficiary block”, includes Jiangsu, Zhejiang, Hei-
longjiang, Fujian, Hainan, and Hubei, where there is a predominant inflow of agricultural
green development resources. The third block, the “Broker block”, is made up of Shanxi,
Jiangxi, Anhui, Hebei, Gansu, and Henan. Due to socio-economic development and geo-
graphical factors, these provinces play a pivotal “East-to-West gateway” role in China’s
agricultural green development spatial association network. The fourth block, the “Net
spillover block”, comprises Shanghai, Guangdong, Guangxi, Jilin, Sichuan, Hunan, Yunnan,
Tibet, Shaanxi, Liaoning, Qinghai, Ningxia, and Guizhou. Influenced by socio-economic
development and agricultural resource endowments, these regions function as a “Net
spillover block” within the network.

(4) As for driving and influencing factors, geographical proximity, economic devel-
opment level, level of informatization, openness, and agricultural technology investment
significantly impact the formation of China’s agricultural green development spatial asso-
ciation network. This indicates that the closer these factors align, the stronger the spatial
network association between regions.

Based on the conclusion of this study, the following policy recommendations can
be extended:

(1) To optimize the top-level design of agricultural green development, it is imperative
that the nation strengthen the regulation and formulation of macro policies to ensure that
the overarching plans for agricultural green development align with their execution. This
includes establishing and enhancing laws and regulations related to agricultural green
development, providing policy guidance, and fiscal support to ensure the coherence and
effectiveness of agricultural green development policies. Additionally, it is crucial to bol-
ster interprovincial agricultural cooperation mechanisms to facilitate the cross-regional
flow and sharing of technology, capital, and information. Finally, the government should
promote dialogues and cooperation on agricultural green development between regions, es-
tablish win–win mechanisms, and address potential conflicts and barriers in cross-regional
cooperation, thereby optimizing the allocation and flow of agricultural resources.
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(2) To implement targeted agricultural green development policies, it is crucial to
develop differentiated strategies based on the status and role of each province within the
agricultural green development network. For instance, core provinces such as Jiangsu
and Zhejiang could be governed by policies that encourage them to continue leading in
technological innovation and resource allocation. For provinces serving as “brokers” like
Gansu and Henan, their functions in regional coordination and resource distribution should
be strengthened by providing specific incentives and resource support to enhance their
intermediary roles. Furthermore, establishing support mechanisms that enable resource-
rich provinces to assist less developed ones should be explored. This could include sharing
and promoting funds, technology, and management expertise, thus fostering balanced
green development across regional agriculture.

(3) To deeply implement a strategy of coordinated regional development, firstly,
explore reforms in market systems and the market-oriented allocation of production factors
to enhance the efficiency and effectiveness of agricultural resource allocation. This includes
simplifying administrative procedures, reducing barriers to agricultural mobility across
provinces and cities, enhancing market transparency and fairness, and facilitating the free
flow of capital, technology, and labor nationwide. Secondly, strengthen inter-regional
cooperation in agricultural science and technology, particularly in the fields of digital
and smart agriculture. Utilize modern information technologies such as big data, cloud
computing, and the Internet of Things to increase the precision and sustainability of
agricultural production. Lastly, further enhance the openness of central and western
regions by introducing advanced agricultural technology and production experience from
developed countries and regions to promote green agricultural development in these areas.
Simultaneously, increase fiscal support for agriculture in the central and western regions,
optimize the agricultural investment environment, and strengthen agricultural production
technology education and training. These measures aim to enhance the attractiveness of
these regions for green agricultural development, promoting the inflow of capital, talent,
and technology, and thus supporting the transformational goals of green agricultural
development in the central and western regions.
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