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Abstract: Straw return is one of the main methods for protecting black soil. Efficient and accurate
straw return detection is important for the sustainability of conservation tillage. In this study, a rapid
straw return detection method is proposed for large areas. An optimized Sh-DeepLabv3+ model
based on the aforementioned detection method and the characteristics of straw return in Jilin Province
was then used to classify plots into different straw return cover types. The model used Mobilenetv2
as the backbone network to reduce the number of model parameters, and the channel-wise feature
pyramid module based on channel attention (CA-CFP) and a low-level feature fusion module (LLFF)
were used to enhance the segmentation of the plot details. In addition, a composite loss function
was used to solve the problem of class imbalance in the dataset. The results show that the extraction
accuracy is optimal when a 2048 × 2048-pixel scale image is used as the model input. The total
parameters of the improved model are 3.79 M, and the mean intersection over union (MIoU) is 96.22%,
which is better than other comparative models. After conducting a calculation of the form–grade
mapping relationship, the error value of the area prediction was found to be less than 8%. The results
show that the proposed rapid straw return detection method based on Sh-DeepLabv3+ can provide
greater support for straw return detection.

Keywords: conservation tillage; straw return detection; UVA remote sensing; deep learning; shallow
feature extraction

1. Introduction

The black soil area of Northeast China is an important producer of cereals such as
corn and rice. However, soil acidification and soil erosion of varying degrees have been
caused by irrational fertilization and the long-term removal of straw from fields [1,2]. This
not only affects China’s food security but also poses a serious threat to the environment [3].
Therefore, the conservation and sustainable utilization of black soil resources is a major
challenge worldwide. Straw return conservation tillage is a modern tillage technology
system that utilizes crop straw return, as well as no-till or less-till sowing, as its main
method [4]. It is the simplest and most effective technical measure to increase soil carbon
sinks, improve soil structure, fertilize the land, and reduce wind erosion [5]. To encourage
farmers in straw return and expedite the adoption of conservation tillage in the black soil
of Northeast China, the four northeastern provinces have introduced a subsidy policy for
straw return. Therefore, accurate and efficient straw return detection is an important part of
straw return subsidy work, and it is also of great significance in guiding the implementation
of conservation tillage and realizing sustainable agriculture.

The Ministry of Agriculture and Rural Affairs issued the Technical Guidelines for the
2021 Northeast Blackland Conservation Tillage Action Plan to standardize conservation
tillage technology. In addition, they formulated a detailed description of complete and
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partial straw cover, which can be divided into whole straw cover, root stubble cover, residue
stubble cover, and crushed cover according to the cover forms used [6,7]. According
to the cover rate, these methods can be divided into complete cover and partial cover
approaches. Crop straw or stubble covering more than 70% (inclusive) of the ground
surface is recognized as a complete cover approach. Crop straw or stubble covering more
than 30% (inclusive) of the ground surface is recognized as partial straw cover [8]. The core
of straw return subsidy work is to calculate the areas of complete, partial, and non-straw
return plots according to the above instructions. The traditional method for the vast area
of the Northeast is performed via visual inspection and rope pulling, but this has the
disadvantages of poor efficiency and the use of subjective factors [9].

With the development of computer science and technology, information-based detection
methods have gradually emerged. Liu et al. [10], Daughtry et al. [11], and Memon et al. [12]
used the remote sensing satellite Sentinel-1 and the multi-spectral satellites LANDSAT-8
and WORLDVIEW-3 to evaluate crop residual cover. However, satellite remote sensing has
the disadvantages of being susceptible to weather, having long revisit periods, and having
low spatial–temporal resolution, which makes it difficult to obtain higher resolutions. In studies
based on agricultural RGB images, traditional machine vision detection methods [13–16] and
deep learning methods [17,18] have been applied for the purposes of detecting the extent
of straw return to the field. However, although this method can accurately calculate the
straw cover rate by dividing the surface straw and determining the straw return grade
of the plots, this method has been mainly adapted to the straw crush form. Moreover,
there are certain limitations in the detection of complex straw return forms, and large-scale
calculations have also shown that it slows down the detection process to a certain extent.
Yu et al. [19] detected winter wheat straw based on UVA images; their method determines the
full straw return grade by incorporating ground survey information and visually interpreting
information such as plot texture and color in the UVA images. This method avoids extensive
straw coverage rate detection and can further accelerate the straw return process. In the same
way, we can judge the straw return status of the plots according to the corn straw return cover
types in the UVA images, which can realize rapid detection from the source. However, one
of the drawbacks of this method is that it requires personnel with specialized knowledge
to participate in the determination, which represents a great waste of manpower and time.
Therefore, it is imperative to seek an information-based detection method that is founded on
the classification and segmentation of plots by straw cover type.

Currently, traditional machine learning-based methods perform well in segmenting
regular plots [20–24]; however, for more complex farmland shapes, deep learning solu-
tions usually outperform traditional machine learning methods. Aung et al. [25] used a
spatio-temporal U-Net approach for segmenting farmland regions, and the pre-trained
models achieved a 0.81 Dice score and 0.83 accuracy. Feng et al. [26] used an improved
U-Net for the classification and extraction of crop plots. A U-Net incorporating spatial–
coordinated attention achieved better results on a multi-crop dataset, with an accuracy
of 92.20%. Huang et al. [27] used an improved OCRNet to detect zucchini intercropped
with sunflowers in unmanned aerial vehicle (UVA) visible-light images, and the improved
model possessed significant advantages in crop classification and intercrop recognition.

At present, the identification and segmentation of agricultural remote sensing images
from high-resolution UAVs have been widely studied and applied. However, these kinds
of images contain a large spatial range and more pixel information, which requires more
computing resources to process and analyze the data; thus, these features are not conducive
to the efficient operation of the model. Therefore, it is necessary to lighten the model and
reduce its consumption of computing resources, memory, and storage space. In addition,
since different sizes of straw returns have size diversity and morphological complexity
in images, the model should be able to effectively extract multi-scale features from the
different forms of corn straw return plots, which enables the model to capture various
levels of features, from texture details to the overall structure, and to improve segmenta-
tion accuracy. Finally, shallow features are enriched with spatial details and local texture
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information, which are crucial for capturing small-scale structures and achieving accurate
edge localization. We used an optimized Sh-DeepLabv3+ model (Shallow-DeepLabv3+,
Sh-DeepLabv3+) for classification based on straw cover form plots to ensure the perfor-
mance of the model in terms of multi-scale feature extraction and shallow feature capture.
A fast method for straw return detection based on the combination of a deep learning
Sh-DeepLabv3+ model and the threshold segmentation DE-AS-MOGWO method can
realize efficient and intelligent straw return detection.

2. Materials and Methods

In this paper, Jilin Province was taken as the study area, and the relationship between
corn straw return cover forms and straw return status was explored through field research
and expert appraisal. In addition, a mapping relationship between the straw return forms
and straw return grades was proposed. Nine types of straw return form images obtained
in the field study are shown in Figure 1.
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Figure 1. Field research images.

A fast straw return detection method was proposed by combining the two defining cri-
teria of the straw coverage form and straw coverage rate (SCR): Firstly, the Sh-DeepLabv3+
model was used to classify and segment the fields with different straw coverage forms in
the farmland. According to the mapping relationship, the plots were assigned as belonging
to the total straw return grade when straw vertical, straw level, and high stubble forms
were detected. When straw burn, straw bale, turn soil, and low stubble forms were detected,
the plots were understood as belonging to the non-straw return grade. When detected as
straw crush, we extracted the corresponding plots in the original map according to the
predicted image. Secondly, we calculated the SCR for each straw crush form plot with the
threshold segmentation algorithm DE-AS-MOGWO [15]. We classified the plots as follows:
the plot was of a total straw return grade when the SCR was found to be greater than or
equal to 70%; the plot was of a partial straw return grade when the SCR was greater than
or equal to 30% and less than 70%; and the plot was of a non-straw return grade when
the SCR was less than 30%. Finally, the number of pixels corresponding to the three straw
return grades was counted. The corresponding areas of the three straw return grades were
calculated according to the ground sampling distance (GSD). This method eliminates the
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need to calculate large-scale SCRs, and it also speeds up the straw return detection process.
The flowchart of the rapid straw return detection method is shown in Figure 2f.
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2.1. Data Acquisition

The images used for model training in this paper were collected from four farmlands in
Changchun, Yushu, Dewei, and Jilin Province (125.3893342◦ E, 43.8168784◦ N; 125.5002287◦ E,
43.8670143◦ N; 125.6564316◦ E, 44.5830458◦ N; and 126.2287119◦ E, 45.0979541◦ N, respec-
tively), and they were acquired via a DJI Matrice 200 V2 UVA equipped with a Zenmuse X5S
gimbal camera to take aerial photographs at a distance of 50 or 60 m from the ground
(Figure 2b). Acquisition took place between 8:00 am and 4:00 pm when the weather was
sunny or cloudy. During aerial photography, the lens was aimed vertically downward with
an 80% overlap on both the side and heading directions, and the raw images were stored in
JPG format with a resolution of 5280 × 2970 pixels.

2.2. Dataset Production

We implemented photometric and color standardization at the image preprocessing
stage to reduce the differences between the images when subjected to different lighting
conditions, which involved white balance adjustments and exposure compensation of the
images to ensure image consistency. Stitching multiple images into one large image and
then segmenting them was performed to reduce the large sizes of the UVA aerial images.
This method can effectively reduce the image size required for inputting neural networks,
decrease memory consumption, and increase training efficiency. In this study, we used
Microsoft Image Composite Editor software (v 2.0.3.0) for image stitching. The stitched
Images I~IV are shown in Figure 1.

Nine types of straw cover forms in four of the stitched image plots were manu-
ally labeled with the labeling tool LableMe [28]. In addition, the labeled images were
single-channel with a depth of 8 bits, in which Label Color I represents other features,
Label Color II represents the straw burn form, Label Color III represents the strip tillage
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form, Label Color IV represents the straw bale form, Label Color V represents the straw
vertical form, Label Color VI represents the straw level form, Label Color VII represents the
high stubble form, Label Color VIII represents the turn soil form, Label Color IX represents
the low stubble form, and Label Color X represents the straw crush form (Figure 2e).

The stitched and labeled images were cropped at the scales of 512 × 512 pixels,
1024 × 1024 pixels, and 2048 × 2048 pixels, with cropping steps of 250 pixels, 500 pixels,
and 700 pixels, respectively. After deleting the images that had black borders occupying
more than 1/8 of the images (Figure 2c), the remaining images were then filtered and
randomly selected. There was a total of 16,070 images in the final dataset at each scale. The
three datasets were divided into training, validation, and test sets in the ratio of 7:2:1, and
they were produced as Pascal VOC 2007 format datasets.

2.3. Using the Sh-Deeplabv3+ Model in the Identification and Segmentation of Plots with Different
Straw Cover Forms
2.3.1. The Network Architecture

The DeepLab series is a pixel-level-based semantic segmentation model that was
proposed by Chen et al. [29–32]. Since the initial DeepLabv1, the aforementioned model
has seen its ability to capture valid information continuously improved by the introduction
of atrous convolution and pyramid pooling modules. DeepLabv3+ was chosen as the base
network architecture for this study due to its excellent segmentation accuracy. However,
due to the large number of DeepLabv3+ parameters, it is currently unable to meet the
lightweight application requirements of straw return detection. In addition, important
features such as the texture and color of plots with different straw cover forms need to be
extracted from the shallow layer of the network. Moreover, DeepLabv3+ has a weak ability
to extract shallow feature information, and although the fusion of multi-scale information
was performed through the Atrous Spatial Pyramid Pooling (ASPP) module, the shallow
feature extraction still has certain limitations compared to the deep feature one. Therefore,
making the model lightweight while strengthening the feature extraction capability is still
a challenge for the straw return detection task.

In this study, we named the optimized DeepLabv3+ model Sh-Deeplabv3+ (Figure 3).
We introduced the lightweight network MobileNetv2 [33] in the backbone feature network,
which reduced the model inference time and effectively improved the expressive power of
feature extraction, to improve the model recognition accuracy while reducing the model
parameters. We also replaced the ASPP module with CA-CFP, which can extract the
contextual information of straw return images of various scales sizes and can make the
models focus on the semantics of different straw cover forms. The LLFF module fuses the
shallow information extracted in the front part of the backbone network to further reduce
the loss of bottom-dimensional features. In addition, a composite loss function was utilized
to address the error due to the imbalance in the sample size of the dataset.

2.3.2. CFP Module Based on the CA Attention Mechanism (CA-CFP Module)

The original ASPP structure in the DeepLabv3+ model expands the sensory field
by connecting the feature maps that are formed via atrous convolutions with different
dilation rates such that the feature maps contain information at multiple scales. However,
in the straw return detection task, the model is better trained for large-scale data due to
the discontinuity of the plots in each input image; as such, it is usually necessary for the
image to have a large resolution to keep the training image content intact. Therefore, ASPP
requires a large dilation ratio to adapt to large-scale high-resolution images. Additionally,
as the expansion rate increases, the expansion convolution becomes increasingly ineffective,
thereby leading to a gradual loss in its modeling ability. To address this situation, we used
the introduction of CA-CFP (Figure 3d).
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The CFP [34] contains 4 channels, and each channel consists of an asymmetric con-
volutional FP module which uses the idea of factorization. (Figure 3e). Additionally,
the 3 asymmetric convolutional blocks in the FP have dimensions of M/16, M/16, and
M/8. Jointly forming the 4 FP channels into a parallel structure with an expansion rate of
{r1 = 1, r2 = 2, r3 = 4, r4 = 8} can reduce the channel parameters by allowing the module to
learn features from a range of sizes in the receptive fields. Finally, the hierarchical feature
fusion method was used to total up all the channel outputs in order to mitigate the mesh
artifacts generated during the feature fusion, as well as to compensate for the lack of feature
information generated via atrous convolution. Therefore, the CFP module does not require
an excessive expansion ratio; instead, the efficient extraction of features of different straw
cover forms and multi-scale feature aggregation can be achieved by multi-level convolution
and a channel feature pyramid structure. This, in turn, effectively avoids the ineffective
modeling that occurs when using expansion convolution in the ASPP module without
affecting the performance.

As the spatial distribution of the straw return plots in the farmland was relatively
regular, and as different categories of straw return forms have strong normality (such as
the strip tillage form category), the width of the strip was set according to the parameters
of the strip tillage machinery and the local common row spacing. In addition, the intervals
between them were relatively regular. Moreover, the straw crush form plots usually used
mechanical equipment for straw cover, the straw cover was uniform and regular, and
the form and distribution of the straw were also relatively uniform. To capture these
obvious and important characteristics, the overall network attention should be focused on
capturing the correlation and differences between the straw cover forms. In this paper, the
CA attention mechanism [35] (Figure 3f) was added after the CF module to ensure that the
model focuses on the key features that characterize different straw cover forms. This helps
to reduce the interference of other background information, such as roads and weeds, to
the model, thus improving the accuracy and reliability of the model’s identification.
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2.3.3. Low-Level Feature Fusion Module

The DeepLabv3+ decoder mainly improves the segmentation accuracy by fusing shal-
low and deep features [36]. Shallow features refer to the features that are extracted from
the first few layers of the backbone network, which mainly contain important features
such as color, edge texture, and other information. However, the shallow features are
only extracted with 1 × 1 conv, and the main factor affecting the performance is when the
semantic information extraction ability is weak and there is more noise in the features [37].
In the task of identifying different straw return forms in different plots, the main measure-
ments for distinguishing different straw return forms are found in the low-level features
such as texture and color, which are formed by the straw or soil on the ground. In the
original network, the low-level features are processed by 1 × 1 conv, which is an approach
that fuses and splices the shallow features with the deep features at 1/2 the size of the
original map. However, such an approach can likely lead to losing the low-level feature
information [38]. In this study, we used the LLFF module (Figure 3b) to fuse the different
scales of the underlying feature maps in the MobileNetv2 backbone network in order to
improve the ability of the model to characterize the information.

Firstly, the original 1/8-size feature map and 1/16-size feature map that were extracted
from the backbone network were used as inputs to the CFF module (Figure 3c). Bilinear
upsampling was performed on the 1/16th branch, and then a 3 × 3 atrous convolution
with a dilation rate of 2 was passed to make the size and receptive field consistent with the
1/8-size branch. Next, the number of channels in the two branches was unified. Then, the
fusion features were obtained by totaling up the features of the two branches. To further
fuse the shallow features, we aggregated the original 1/2-size feature map and the fused
features again to obtain the new fused features. Finally, the new fused features and the final
features obtained in the coding layer were superimposed, and the superimposed features
were then upsampled 4 times bilinearly in order to gradually recover the original image
semantic information.

2.3.4. Loss Function

Cross entropy loss (CE loss) [39] is a common loss function for image segmentation
tasks. It is used to evaluate the difference between the predicted value and the true value
of each pixel point. Its calculation formula is as follows:

CE loss = − 1
N

N

∑
i=1

M

∑
j=1

yijlog
(

pij

)
(1)

where N represents the number of pixels; M represents the number of categories;
yij represents the sign function, which takes a value of 1 if the true category of sample i is
equal to j and a value of 0 otherwise; and pij represents the predicted probability that pixel i
belongs to category j. However, as strip tillage is the main black soil conservation tillage
technique used in Jilin Province, the number of pixels in the strip tillage forms category in
the straw return dataset was found to be far more than the number of pixels in the straw
vertical forms category, etc. Such an imbalance in the categories will lead to creating a bias
in the model toward the strip tillage form category. Therefore, we introduced dice loss [40],
which is used to evaluate the similarity between the predicted segmentation image and the
real segmentation image as an auxiliary loss function, to solve this problem. Dice loss is
more robust to the unevenness of the category data in the straw return dataset than CE loss,
and it can also effectively alleviate the impact of large differences in the number of pixels in
each category. The formula for this is as follows:

Dice loss = 1 −
2∑

p
i=0 tiyi + ε

∑
p
i=1 t2

i + ∑
p
i=0 y2

i + ε
(2)
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where ti represents the predicted value of the model for sample i, yi represents the real
label corresponding to sample i, and ε is the moderating factor. Based on the above
considerations, we used the composite loss function Lloss, which is composed of CE loss
and Dice loss, to train the model. This composite function is computed as follows:

Lloss = CE loss + Dice loss (3)

2.4. Experient Platform and Parameter Settings

The computing equipment used in this study was as follows: an AMD EPYC 7532
32-Core Processor (i.e., the central processor of the mainframe), an NVIDIA GeForce
RTX 3090 with a 24 GB video memory graphics card, and the Ubuntu 18.04 operating
system. We also used Python version 3.8 and Torch version 1.7.0 software. In addition,
over the course of several trials, we chose stochastic gradient descent as the optimizer,
with a momentum parameter of 0.9 and an initial learning rate of 7 × 10−3. The minimum
learning rate of the model was 0.01 times that of the maximum learning rate, the learning
rate descending mode was cos, and the weight decay coefficient was set to 1 × 10−4. The
image resolution of the input network was set to 512 × 512 pixels, the model was trained
for 100 epochs, and the batch size was set to 8. In addition, the number of threads was set
to 16 in order to run the program efficiently.

2.5. Evaluation Indices

In this study, total parameters and FLOPs [41] were selected as the evaluation metrics for
evaluating the model’s complexity. Mean intersection over union (MIoU) [41], mean average
precision (mAP) [42], and precision [43] were used as the metrics for evaluating the segmentation
accuracy. The formulas for the aforementioned metrics were calculated as follows:

MIoU =
1
c

c

∑
C=1

TP
TP + FP + FN

(4)

AP =
TP + TN

TP + TN + FP + FN
(5)

mAP =
1
c

c

∑
C=1

AP (6)

Precision =
1
c

c

∑
C=1

TP
TP + FP

(7)

where TP, FP, FN, and TN are the number of pixels for which the model correctly predicted the
straw cover form, the number of pixels for which the model incorrectly predicted the samples
of other straw cover forms as the correct straw cover form, the number of pixels for which
the model incorrectly predicted the samples of the correct straw cover form as the other straw
cover forms, and the number of pixels for which the model correctly predicted samples of
other straw cover forms, respectively. In addition, c is the total number of categories.

3. Results
3.1. Comparison of Segmentation Accuracy under Different Scale Datasets

As shown in Table 1, we used the DeepLabv3+, UNet [44], and Segformer [45] models
to explore the results in order to investigate the effect of the three scale sizes in the straw
return dataset on the model’s accuracy.

According to the experimental results shown in Table 1, the segmentation accuracy of the
datasets with different scales via the three semantic segmentation models was quite different.
The prediction accuracy of the 512 × 512-pixel dataset was low in the DeepLapv3+, UNet,
and Segformer models, and the prediction accuracy of the 2048 × 2048-pixel dataset was
found to be the highest. In the Segformer model, the MIou, mPA, and precision for the
2048 × 2048-pixel dataset were 9.46, 7.08, and 1.33 higher than those for the 1024 × 1024-pixel
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dataset and 11.68, 5.08, and 1.53 higher than those for the 512 × 512-pixel dataset (which
were also significantly higher than those in the DeepLabV3+ and UNet models), respectively.
This shows that Segformer is more sensitive to the dataset scale and that DeepLabV3+
and UNet are relatively stable. In the straw return dataset at both the 512 × 512-pixel
and 1024 × 1024-pixel scales, the prediction accuracy of UNet was found to be generally
higher than that of the DeepLabv3+ model. However, with the exponential growth of
the dataset size rising up to 2048 × 2048 pixels, we could see that the MIoU and mPA
of the DeepLabv3+ model surpassed the MIoU and mPA of the UNet model. Thus, the
DeepLabv3+ model showed better potential as it is more adaptable to large-scale straw
return images. Additionally, we could see that, with the exponential growth in the dataset
scale, the prediction accuracy of the model also increased. The reason for this phenomenon
is that the model unifies the size of the input images and resizes all the input images to
512 × 512 pixels. The image only loses a small part of the feature information after resizing
with respect to the low-altitude remote sensing image characteristics of the straw return;
having said that, the image retains more of the straw cover form feature information, which
increases the receptive field of the image. When training the model, we speculated that the
images that were too large would lose too much of the feature information, and the model
training time would be longer. According to the selected model and hardware performance
of the experimental computer setup, we chose the dataset with a 2048 × 2048-pixel scale as
the input of the model in the subsequent experiments.

Table 1. Comparison of the segmentation accuracy under different scale datasets.

Network Model Resolution Ratio/Pixels MIoU/% mAP/% Precision/%

DeepLabV3+
512 × 512 87.39 97.05 89.88

1024 × 1024 89.70 97.46 92.72
2048 × 2048 94.26 98.01 95.63

Unet
512 × 512 88.53 95.32 92.57

1024 × 1024 90.56 96.23 93.74
2048 × 2048 94.22 98.14 95.33

Segformer
512 × 512 42.40 53.38 58.07

1024 × 1024 44.62 55.38 58.27
2048 × 2048 54.08 60.46 59.60

3.2. Comparative Experiments on Different Backbone Networks

Xception [46], MobileNetv2 [33], MobileNetv3-small, and MobileNetv3-large [47] were
selected as the backbone networks of DeepLabv3+ to investigate the effect of different
backbone networks on the model, the experimental results of which are shown in Table 2.
As can be seen from Table 2, when MobileNetv2 was used as the backbone network, the
MIoU, mAP, and precision of the model on the straw return dataset were 93.37%, 97.96%,
and 95.20%, respectively. Each evaluation metric was less than one percentage point
lower than when Xception was the backbone network; furthermore, the MIoU, mAP, and
precision metrics were found to be much higher than when MobileNetv3 was used as the
backbone network. When Xception was used as the backbone network, its total params
were 9.4 times higher than when MobileNetv2 was used as the backbone network. This
was due to the fact that several of the lightweight models were designed to reduce the
computational parameters with the help of replacing ordinary convolution with deep
separable convolution; however, Xception does not make adjustments on the residual
structure, which leads to a fragmented computational process that can achieve better
results at the cost of more parameters. MobileNetv3 uses the neural network architecture
search technique to construct a network structure, which thus makes the model structure
more rationalized and means it can deliver a better performance; having said this, its
accuracy still needs to be improved. MobileNetv2 uses a linear bottleneck and inverse
residual structure, which effectively balances the total params and accuracy. Therefore,



Agriculture 2024, 14, 628 10 of 19

MobileNetv2 was used as the backbone feature extraction network for DeepLabv3+, which
ensured that the model was lightweight and had high feature extraction capability.

Table 2. Comparative experiments on the different backbone networks.

Network Model Backbone MIoU/% mAP/% Precision/% Total Params/M

Deeplabv3+

Xception 94.26 98.01 95.63 54.71
MobileNetv2 93.37 97.96 95.20 5.82

MobileNetv3-small 92.95 97.47 95.20 3.21
MobileNetv3-large 92.92 97.51 95.12 5.63

3.3. Ablation Experiments

In order to verify the contribution of introducing CA-CFP, the LLFF model, and Lloss,
MobileNetv2 was used as the backbone feature extraction network in the basic model. The
ablation experiments were carried out based on this model, and the experimental results
are shown in Table 3. After the introduction of the CFP module, the MIoU, mAP, and
precision of the model were improved by 1.04%, 0.21%, and 0.89%. After the introduction
of the CA attention mechanism in CFP, it could be seen that the model with the CA-CFP
module improved in all metrics over those with the CFP module, which proved that the
incorporation of the CA attention mechanism generates a set of weight parameters and
makes the model more effective at catching the interested straw cover form features. When
the LLFF module was introduced, it improved the base model by 1.16%, 0.08%, and 1.28%
in terms of MIoU, mAP, and precision, respectively. This further helped with integrating the
information of the low-level features and further enhanced the information characterization
ability of the final fused features. The composite loss function Lloss balanced the effect
of the difference in the number of pixels in each category, such that the MIoU, mAP, and
precision of the model were improved by 0.97%, 0.06%, and 0.96%, respectively. In addition,
the composite loss function was able to more accurately measure the performance of the
model and optimize the training process. In summary, in this paper, we propose that the
introduction of CA-CFP, the LLFF model, and Lloss into the model helps to improve the
accuracy, and it can also aid in the model better recognizing and segmenting the plots that
have different straw cover forms.

Table 3. The ablation experiments conducted with the Sh-DeepLabv3+ model.

Network Model CFP CA-CFP Lloss LLFF MIoU/% mAP/% Precision/% Total Params/M

Deeplabv3+
(Mobilenetv2)

93.37 97.96 95.20 5.82√
94.41 98.17 96.09 3.59√
95.23 98.37 96.74 3.60√
94.34 98.02 96.16 5.82√
94.53 98.04 96.48 5.87√ √ √
96.22 98.52 97.91 3.79

3.4. Comparison of the Different Semantic Segmentation Models

To verify the effectiveness of the model proposed in this paper with respect to
corn straw return cover form plot identification and segmentation, FCN, Lraspp, UNet,
Segformer, DeepLabv3, and DeepLabv3+ were selected to be compared with the improved
DeepLabv3+(Sh-DeepLabv3+) model. The experimental results are shown in Table 4, and
a comparison of the accuracy of the different models is shown in Figure 3a. The mem-
ory usage of the improved Sh-DeepLabv3+ model was 15.6 MB. Although the model
memory usage of Lraspp and Segformer was 2.72 MB and 1.42 MB less, respectively, com-
pared with Sh-DeepLabv3+, the accuracy was also much lower than that of the improved
Sh-DeepLabv3+ model. Compared with FCN, Lraspp, UNet, DeepLabV3, and DeepLabV3+,
the memory of the Sh-DeepLabv3+ model was reduced by 8.06, 10.74, 5.97, and 13.38 times,
respectively. The total params and FLOPs were lower than those of FCN, Lraspp, UNet,
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Deeplabv3, and Deeplabv3+, and the improved model could also meet the requirements of
the lightweight models. In terms of segmentation accuracy, our model achieved the best
results with respect to the evaluation metrics (MioU: 96.22%, mAP: 98.52%, and precision:
97.91%). It can be seen from Figure 4b that the model delivered an excellent performance in
the classification of all kinds of straw return forms. The MIoU, mAP, and precision were, at
least, 1.96%, 0.38%, and 2.28% higher, respectively, compared to the other network models.
The accuracy of DeepLabv3+ was the second highest, and the lowest accuracy of the three
evaluation indexes was for Segformer (i.e., its MIoU was 54.08% and the precision was only
60.46%, which was 38.31% lower compared to the improved Sh-DeepLabv3+ model).

Table 4. Detection results of the different semantic segmentation models.

Network Model MIoU/% mAP/% Precision/% Total Params/M FLOP/G Params Size/MB

FCN 84.93 87.24 86.51 32.95 138.88 125.70
Lraspp 78.73 80.98 79.68 3.22 2.08 12.88
Unet 94.22 98.14 95.33 43.93 184.37 167.59

Segformer 54.08 60.46 59.60 3.72 13.60 14.18
DeepLabv3 80.55 83.76 81.62 39.64 164.13 93.19

DeepLabv3+ 94.26 98.01 95.63 54.71 166.91 208.70
Sh-DeepLabv3+ 96.22 98.52 97.91 3.79 60.96 15.6
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Five test set images were selected to help compare the prediction effect of the seven dif-
ferent models, the results of which are shown in Figure 5. It can be seen that the FCN model
delivered rough edge processing when segmenting the plots that had different straw cover
forms, as can be seen in Image II, Image IV, and Image V. In addition, certain categories
such as low stubble and grass (background) were misclassified as other categories, and the
recognition effect of roads was also poor in Image I. Lraspp delivered a large recognition
error on Image V, and it did not extract the semantic feature information of low stubble
form plots well, thereby resulting in an incomplete segmentation of such plots. This was
due to the use of a lightweight RedinNet structure and atrous convolution pyramid pool-
ing. Although these functions can make the model better and faster when deployed in a
production environment, its lightweight build can also lead to a certain degree of informa-
tion loss as it cannot accurately extract the plot category information as well as the small
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target features. The UNet model was relatively accurate for the classification of the large
regions of the image, but the segmentation boundary was still heavily jagged and some
of the regions were even processed with the islanding phenomenon. This was due to the
symmetric encoder–decoder structure of the UNet model, which leads to a weak extraction
ability with respect to contextual information; moreover, there were also certain difficulties
that were encountered in the segmentation of complex scenes. The hierarchical transformer
structure was used in the Segformer model for the purpose of extracting multi-scale struc-
tural features. However, as it operates at the block level, it does not have sufficient ability
to perceive the details of the image. Therefore, the segmentation of the edge details was not
strong enough, which led to the straw level form being recognized as the straw bale form
in Image III. DeepLabv3+, in the recognition and segmentation of the image, was found
to be better than DeepLabv3 as the decoder module introduced in DeepLabv3+ via the
anti-convolution and jump connection was able to gradually restore the original resolution
features. However, DeepLabv3+ still produced wrong segmentations, as can be seen in
the strip tillage form plot that was partially identified as the low stubble form category in
Image V. Therefore, the model still has a great deal of room for optimization with respect to
the extraction of low-level features. According to the extraction results, the Sh-DeepLabv3+
model can maintain the boundary information between plots well with different coverage
forms when compared with the other six models. In addition, the whole segmented image
is presented more smoothly with fewer islands, and it is less prone to mis-segmentation
due to being highly robust.

Figure 5. Cont.
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Figure 5. Comparison of the recognition and segmentation effects of the different models.

3.5. Application Experiments

We applied the rapid straw return detection method to verify the accuracy and speed
of the improved Sh-DeepLabv3+ model in the field experiments. The UVA aerial images of
the four regions, located in Donggang Village, Dewei City (125.6507532◦ E, 44.5846345◦ N)
and Dagang Village, Yushu City (126.2232495◦ E, 45.0978996◦ N), that were selected for this
experiment were captured in November 2023. The images used for the experiment were
captured in the same way as the training images; however, the regions used for the training
stage were different than the regions used for the experiment. The selection of the shooting
area of this image was different from the training area of the model, so we can further
explore the generalization and detection effect of the model through this experiment.

First, the aerial images were preprocessed. After stitching and labeling the image, the seg-
mentation of the image was conducted in steps of 2048 in accordance with a 2048 × 2048 pixel
size (Figure 2d). The inputs for Sh-DeepLabv3+, DeepLabv3+, and UNet were used in the
predictions of what straw cover forms were present in the plots. The prediction results and
prediction process diagram are shown in Table 5 and Figure 6, respectively. It can be seen that
the prediction accuracy of the model proposed in this paper was 1.11% and 0.89% higher than
that of the other two models, and the running time was short.
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Figure 6. Region 1 prediction process diagram. (a) Stitched image; (b) straw cover form prediction
image; (c) straw crush form plot extraction; (d) multi-threshold segmentation result; and (i,ii) multi-
threshold segmentation detail map.

Table 5. The predictions of the straw mulch forms in the four regions by the different models.

Model
Accuracy

Mean Accuracy/% Mean Time/s
Region 1 Region 2 Region 3 Region 4

Sh-deepLabv3+ 95.32 97.18 96.06 95.45 96.00 27.85
DeepLabv3+ 94.63 96.12 94.74 94.04 94.89 31.75

UNet 94.71 96.25 95.32 94.17 95.11 32.5

The confusion matrices for the four regions are shown in Figure 7. From Figure 7, it can
be seen that the elements on the diagonal line in the confusion matrix plot are brighter than
those in other positions, which indicates that the improved model had a higher accuracy
in its segmentation of the straw return forms. The predictions of the different straw cover
forms in the four regions, as well as the statistics of the number of labeled pixel points and
the SCR calculation results of the extracted plots of the straw shredded forms, are shown in
Tables 6 and 7.

Table 6. The prediction and labeling pixel point count results.

Straw Cover Form

Region

1 2 3 4
Predicted|True (Pixel) Predicted|True (Pixel) Predicted|True (Pixel) Predicted|True (Pixel)

straw vertical 643|0 447|0 184|0 130,697|132,523
straw level 379|0 7549|0 430|0 295,929|304,503
straw crush 1,922,864|1,986,809 557,637|579,862 437,997|448,769 3,382,231|3,396,545
high stubble 2194|0 3678|0 7895|0 66,289|70,275
strip tillage 3,601,647|3,636,536 2,197,523|2,200,104 788|0 8853|0
low stubble 487,980|484,262 658,754|647,981 9575|0 1077|0
straw bale 131,550|141,037 779|0 9096|0 369,387|372,160

turn the soil 7926|0 1986|0 330,044|344,557 1,822,843|1,906,007
straw burn 166|0 979|0 642,357|656,624 8608|0
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Table 7. Calculation of the pixel points and SCR for each straw shredded cover form plot in the
four regions.

Region

Straw Crush Form Plot

1 2 3 4 5 6
Pixel

Points|SCR
(Pixel/%)

Pixel
Points|SCR

(Pixel/%)

Pixel
Points|SCR

(Pixel/%)

Pixel
Points|SCR

(Pixel/%)

Pixel
Points|SCR

(Pixel/%)

Pixel
Points|SCR

(Pixel/%)

1 66,940|13.56 185,728|63.89 136,445|79.64 141,180|75.78 218,691|77.34 1,173,880|68.48
2 173,052|76.64 179,236|30.84 205,349|67.83 - - -
3 211,658|78.54 226,339|77.62 - - - -
4 251,572|79.74 471,980|82.66 853,306|81.78 1,805,373|48.64 - -
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Figure 7. Sh-DeepLabv3+-based confusion matrix for the four regions.

The number of pixels was calculated based on the form of straw coverage and the SCR
results of the area in order to determine whether the straw return forms were complete
return, partial return, or non-return, and the predicted area was calculated based on
the corresponding ground sample distance (GSD) (cm/pixel). The aerial height of this
experiment was 50 m, where one pixel represents a 1.1 cm distance on the ground. The
calculation results are shown in Table 8.
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Table 8. Calculation of the area of complete return, partial return, and non-return straw cover in the
four regions.

Region
Straw Return Grade

Complete Return Partial Return Non-Return
Predicted Area|Labeled Area (m2) Predicted Area|Labeled Area (m2) Predicted Area|Labeled Area (m2)

1 496.24|500.28 164.51|175.37 84.04|82.84
2 288.25|286.18 46.53|43.33 80.16|78.41
3 54.12|51.88 0|0 119.92|121.14
4 251.51|242.21 218.45|230.25 266.43|275.66

The results of the calculation of the areas with a complete return of straw, partial return
of straw, and a non-return of straw for the four areas are shown in Table 8. According to
Table 8, it can be concluded that the error rate of the proposed model was less than 8%;
as such, it can be concluded that the rapid straw return detection method based on the
Sh-DeepLabv3+ model has a high accuracy and good adaptability in a wide range of straw
return detection operations.

4. Discussion
4.1. Image Acquisition in Straw Return Detection

The use of agricultural equipment carrying a camera synchronized operations for
visible-light image acquisition of straw return; the collected images’ content consists entirely
of straw and soil, and the detection accuracy is high, reflecting the strong anti-interference
aspect of this detection method [48,49]. However, this method is limited, the detection
efficiency is relatively low, and the detection area is limited. UVA aerial image acquisition
is flexible and fast [50]. In contrast, UVAs are more suitable for large area straw return
detection image acquisition.

4.2. Straw Return Detection Methods

For the image segmentation method based on straw coverage calculation in UVA
visible image processing, the detection is mainly crushed and the form is single, so it
is more suitable for image acquisition in targeted areas. Liu et al. [51] calculated the
straw coverage rate by labeling the interfering objects in the UVA images so as to avoid
the influence of interfering objects on the calculation results, and further avoid the error
of large-scale straw returning detection. However, this method only marks four kinds of
interferences that are not soil and straw when there will be more in the field images; thus,
only recognizing four kinds of interferences in the images represents a limitation in the straw
return detection. The rapid straw return detection method in this paper categorizes field plots
according to the form of straw cover, and judges the straw return grade, so exempts some plots
from the subsequent accurate detection to improve the detection efficiency.

4.3. Advantages of the Algorithm in This Paper

Ma et al. [17] optimized the UNet model to improve the recognition ability of fine
straw by using a multi-branch asymmetrically dilated convective block to extract multi-
scale image features, and using a fast up-convective block in the decoding stage to avoid
the invalid calculation of straw feature maps during upsampling. However, the model
structure is complex, so it cannot predict efficiently. Yang et al. [52] proposed an image
processing algorithm by combining straw image distortion correction and Otsu algorithm
threshold segmentation, and verified the detection effect of the straw coverage rate through
experiments, and the field detection error was less than 5%. However, the detection type is
relatively single, and cannot adapt to the complex situations in the field.

In this paper, the optimized Sh-Deeplapv3+ model was used to classify plots according
to the form of straw cover. Compared with the traditional Deeplapv3+ model, we optimized
the pyramid structure and shallow feature extraction module. The experimental results
verified the effectiveness of these optimization models.
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4.4. Deficiency and Prospect

The method proposed in this study achieved high accuracy in straw return detection, but
it still has certain limitations. The optimized Sh-DeepLabv3+ model can segment the farmland
plots well by learning the semantic information features of the straw cover, but segmenta-
tion holes will still inevitably appear during the segmentation process, which will affect the
segmentation results. Furthermore, the morphological post-processing methods we utilize in
the model fill, corrode, and inflate the holes such that the segmentation results will become a
connected domain, which is convenient for the later straw crushed form plot extraction.

From the classification accuracy of the methods compared in this paper, the semantic
segmentation method can learn the differences in textural features between different straw
cover forms and can achieve satisfactory classification results. The semantic segmentation
method does not require a large number of experiments to determine the appropriate
parameters, nor does it require manual design of classification features. Compared with
original semantic segmentation methods such as UNet, DeepLabV3+, and FCN, the model
synthesizes the characteristics of UVA straw return remote sensing images, enhances the
extraction of shallow and multi-scale features, and performs better in processing image
details and segmenting edges [52]. Therefore, we believe that the proposed method can be
applied to the field of straw return detection for other crops (e.g., rice, wheat), and it also
can be applied to classification research in other fields.

5. Conclusions

In this paper, a rapid straw return detection method is proposed and the optimized
Sh-DeepLabv3+ model is used to classify and segment plots with different forms of straw
cover. By analyzing the experimental results, the following conclusions can be drawn:

(1) After three kinds of pixel scale datasets were experimented with, the 2048 × 2048-pixel
scale dataset was found to be more adaptable to the straw return detection task.

(2) The optimized Sh-Deeplabv3+ model’s MIoU, mAP, and precision scores were 96.22%,
98.52%, and 97.91%, respectively, and the experimental results were found to be better
than those of the comparison models. The total parameter use was 3.79 M, which was
about 14.44 times that of the original model and met the requirement of a lightweight
model. The Sh-DeepLabv3+ model could extract the semantic information of different
straw mulching forms well, and it could also essentially correctly segment the different
types of covering forms with smooth segmentation boundaries and only a few islands.

(3) In the application experiments, the average accuracy of the model was higher than that of
the comparison models, and the time taken was also shorter; the error rate of calculating
the area of straw return grades was no more than 8%. Therefore, the rapid detection
method based on the Sh-DeepLabv3+ straw return detection model proposed in this
paper can improve detection efficiency and meet actual detection needs.
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