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Abstract: Purpose of Review: Left ventricular arrhythmogenic cardiomyopathy (ALVC) is a rare and
poorly characterized cardiomyopathy that has recently been reclassified in the group of non-dilated
left ventricular cardiomyopathies. This review aims to summarize the background, diagnosis, and
sudden cardiac death risk in patients presenting this cardiomyopathy. Recent Findings: Although
there is currently a lack of data on this condition, arrhythmogenic left ventricular dysplasia can be
considered a specific disease of the left ventricle (LV). We have collected the latest evidence about
the management and the risks associated with this cardiomyopathy. Summary: Left ventricular
arrhythmogenic cardiomyopathy is still poorly characterized. ALVC is characterized by fibrofatty
replacement in the left ventricular myocardium, with variable phenotypic expression. Diagnosis
is based on a multiparametric approach, including cardiac magnetic resonance (CMR) and genetic
testing, and is important for sudden cardiac death (SCD) risk stratification and management. Recent
guidelines have improved the management of left ventricular arrhythmogenic cardiomyopathy.
Further studies are necessary to improve knowledge of this cardiomyopathy.
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1. Introduction

Arrhythmogenic cardiomyopathy (ACM) is an inherited myocardial disease with a
prevalence of 1–5000 in the general population. ACM is often associated with a mutation
in genes encoding desmosome proteins, which are involved in the mechanical coupling
of cardiomyocytes. ACM is characterized by the presence of both structural (fibrofatty or
fibrous infiltration) and functional alterations, which are responsible for electric instability
leading to ventricular arrhythmias and sudden cardiac death (SCD) [1,2].

ACM has been initially considered as a right heart cardiomyopathy because only
forms with exclusive involvement of the right ventricle (RV) had been described [3,4].
Further studies, including the role of genotype–phenotype interaction and improved tissue
characterization with cardiac magnetic resonance (CMR), showed the involvement of the
left ventricle (LV), alone or together with the RV. The forms with LV involvement have only
been classified as arrhythmogenic left ventricle cardiomyopathy (ALVC) [5–7].

The latest European Society of Cardiology (ESC) guidelines on cardiomyopathies
recommend an approach based on the predominant phenotype at diagnosis, thus including
ALVC in the group of non-dilated left ventricular cardiomyopathies (NDLVC) [8].

ALVC is primarily due to pathogenic variants in non-desmosomal genes, different
from ACM, as those are involved in dilated cardiomyopathy (DCM) [9–11]; therefore, ALVC
and DCM may represent the opposite ends of a broad spectrum of diseases [12–14]. ALVC is
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primarily characterized by fibrotic replacement, resulting in a normal or mildly dilated left
ventricle (LV). This anatomical–pathological substrate increases the incidence of ventricular
arrhythmias [7] and the risk of SCD, which may be the first clinical manifestation of the
disease [15].

Several genetic and non-genetic diseases share significant clinical and imaging features
with ALVC, such as DCM, myocarditis, or cardiac sarcoidosis [16,17].

Our review aims to describe the latest developments in diagnosing ALVC and the
current management of ALVC patients at increased risk of developing life-threatening
ventricular arrhythmias and SCD.

2. Diagnosis

The diagnosis of ACM is based on a multi-parametric approach according to the
Padua criteria, which include: functional and morphological abnormalities investigated by
echocardiography, cardiac magnetic resonance late gadolinium enhancement (CMR LGE)
technique or angiography, tissue characterization findings by the CMR LGE technique, elec-
trocardiographic depolarization and repolarization abnormalities, ventricular arrhythmias,
and family or genetic background [15,18].

A “definite” diagnosis requires the fulfilment of two major or one major and two mi-
nor or four minor LV diagnostic criteria from different categories [15]. A non-definite
diagnosis (“borderline” or “possible”) is given with a lower total number of diagnostic
criteria fulfilled [15]. Patients with a non-definite diagnosis should be followed for disease
progression over time to potentially meet the criteria for a definite diagnosis [15].

The diagnosis of ALVC is established in the presence of LV structural or functional
abnormalities, by echocardiography or CMR, and a pathogenic or likely pathogenic muta-
tion of the ACM-causing gene, without right ventricular involvement [15]. The diagnosis
of the “biventricular” variant requires the presence of ≥1 morpho-functional and/or struc-
tural abnormalities in both the RV and the LV because of the lack of a disease-specific
phenotype [15].

2.1. Echocardiography

Echocardiography is the primary imaging modality and the most frequently employed
imaging tool in the diagnosis and follow-up of patients with ACM [16]. ALVC is charac-
terized by a progressive worsening of the ventricular function due to the involvement of
multiple LV segments. The distribution and speed of these structural abnormalities are
influenced by both genetic mutations and disease stage.

The LV systolic dysfunction, defined as decreasing in global LV ejection fraction
(<54%) or global LV longitudinal strain (GLS) (<−18%) with or without LV dilatation [15],
is considered a minor morpho-functional diagnostic criterion because of its low disease-
specificity (Figure 1).

Segura-Rodriguez et al. evaluated the layer-specific GLS to identify ACM patients
at high risk of SCD. Among 45 ACM patients, those with nsVT and LGE had lower GLS
values in the epicardial and mesocardial layers compared to others. Specific epicardial
GLS cut-off values of −15.4% and −16.1% may identify ACM patients with nsTV and LGE,
respectively [19]. Including epicardial GLS in routine echocardiographic assessments may
improve the sensitivity in identifying individuals at risk of ventricular arrhythmias and,
consequently, SCD.
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Figure 1. Bull’s eye plot with reduced GLS in an ALVC patient. Red ares are functionally better 
than lighter areas. 

2.2. Cardiac Magnetic Resonance 
CMR is indicated when ALVC is suspected at initial evaluation, in order to identify 

the fibrofatty myocardial replacement through LGE tissue characterization [16,20–22]. 
Cine sequences are utilized for the assessment of ventricular volumes and function. T1-
weighted images are used to detect fatty infiltration and LGE sequences for identifying 
myocardial fibrosis.  

In ALVC patients, the LV fibrotic replacement progresses from subepicardial to 
subendocardial layers, resulting in transmural fibrotic lesions and extensive wall thinning 
[23]. The CMR-detected fibro-fatty infiltration is typically observed in the basal 
inferolateral and anterolateral walls, followed by the mid-inferoseptal, inferolateral, and 
anterolateral walls [24].  

A ring-like pattern of LGE ≥ 3 segments confirmed in two orthogonal views is 
considered a major criterion for ALVC and it is usually linked to genetic defects in 
desmoplakin (DSP), filamin C (FLNC), and phospholamban (PLN) [17,25–27]; segmental 
LGE affecting up to two segments is a minor criterion. 

The LGE pattern at RV insertion points, known as the ‘septal junctional’ pattern, 
although observed, is not diagnostically significant for ALVC [9,16,26–30]. The presence 
of fatty tissue, detectable by CMR or multi-detector computed tomography (MDCT), in 
conjunction with LGE, can enhance diagnostic specificity [31]. 

CMR sequences like native T1 mapping and extracellular volume (ECV) 
quantification are capable of identifying augmented interstitial space in individuals 
diagnosed with ALVC [32].  

The T2 CRM sequences are not typically recommended for diagnosing ALVC; 
however, they can be helpful in identifying ACM patients who exhibit symptoms 
resembling myocarditis, such as chest pain and elevated troponin. These symptoms are 
frequently present in individuals with DSP gene mutation [33,34].  

CMR can be useful to assess the arrhythmic risk and to predict adverse outcomes in 
patients with ALVC [35]. A diffuse LGE at CRM is correlated with a high risk of life-
threatening ventricular arrhythmias [36] and it is considered a marker of SCD risk in 
patients with left ventricle ejection fraction (LVEF) between 35% and 50% [11,37–40]. 
Autoptic studies confirmed signs of inflammation in 60–80% of ACM cases [41]. 

In patients with advanced ALVC additional CMR parameters such as LV myocardial 
deformation and dyssynchrony using CMR-feature tracking (CMR-FT) have been 

Figure 1. Bull’s eye plot with reduced GLS in an ALVC patient. Red ares are functionally better than
lighter areas.

2.2. Cardiac Magnetic Resonance

CMR is indicated when ALVC is suspected at initial evaluation, in order to identify
the fibrofatty myocardial replacement through LGE tissue characterization [16,20–22].
Cine sequences are utilized for the assessment of ventricular volumes and function. T1-
weighted images are used to detect fatty infiltration and LGE sequences for identifying
myocardial fibrosis.

In ALVC patients, the LV fibrotic replacement progresses from subepicardial to suben-
docardial layers, resulting in transmural fibrotic lesions and extensive wall thinning [23].
The CMR-detected fibro-fatty infiltration is typically observed in the basal inferolateral
and anterolateral walls, followed by the mid-inferoseptal, inferolateral, and anterolateral
walls [24].

A ring-like pattern of LGE ≥ 3 segments confirmed in two orthogonal views is consid-
ered a major criterion for ALVC and it is usually linked to genetic defects in desmoplakin
(DSP), filamin C (FLNC), and phospholamban (PLN) [17,25–27]; segmental LGE affecting
up to two segments is a minor criterion.

The LGE pattern at RV insertion points, known as the ‘septal junctional’ pattern,
although observed, is not diagnostically significant for ALVC [9,16,26–30]. The presence
of fatty tissue, detectable by CMR or multi-detector computed tomography (MDCT), in
conjunction with LGE, can enhance diagnostic specificity [31].

CMR sequences like native T1 mapping and extracellular volume (ECV) quantification
are capable of identifying augmented interstitial space in individuals diagnosed with
ALVC [32].

The T2 CRM sequences are not typically recommended for diagnosing ALVC; how-
ever, they can be helpful in identifying ACM patients who exhibit symptoms resembling
myocarditis, such as chest pain and elevated troponin. These symptoms are frequently
present in individuals with DSP gene mutation [33,34].

CMR can be useful to assess the arrhythmic risk and to predict adverse outcomes
in patients with ALVC [35]. A diffuse LGE at CRM is correlated with a high risk of
life-threatening ventricular arrhythmias [36] and it is considered a marker of SCD risk
in patients with left ventricle ejection fraction (LVEF) between 35% and 50% [11,37–40].
Autoptic studies confirmed signs of inflammation in 60–80% of ACM cases [41].

In patients with advanced ALVC additional CMR parameters such as LV myocar-
dial deformation and dyssynchrony using CMR-feature tracking (CMR-FT) have been
demonstrated to be independent risk factors for cardiovascular and arrhythmic events [39].

Figure 2 shows the most common CRM findings in AVLC patients.
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and red are used for risk stratification.

2.3. Other Imaging

Positron emission tomography with 18F-fluorodeoxyglucose (FDG-PET) is an imaging
technique used to assess myocardial inflammation.

In an observational study by Tessier et al., which included 17 AVLC patients, 58% of
the study population showed abnormal myocardial FDG uptake with varying patterns
(diffuse, focal, or patchy). These findings suggest a possible link between myocardial
inflammation and genetic ALVC; in particular, the specific variants in LMNA-encoded
lamin A/C were more prevalent in those with abnormal FDG-PET results [42].

Additionally, a group of ALVC patients with FDG-PET uptake have also reported
sVT, providing further evidence for the involvement of myocardial inflammation in the
development of the disease [43].

2.4. Twelve-Lead Electrocardiography

The presence of isolated negative T waves in V4–V6, with or without the involvement
of inferior leads and in the absence of left bundle branch block (LBBB), is considered a
minor criterion for ALVC [17,42,44–46]. However, it should be noted that its specificity is
limited, particularly in individuals of Afro-Caribbean ethnicity and among athletes [44–46].
A major criterion for ALVC is the pattern of low QRS voltages in limb leads (<0.5 mV
in all limb leads), indicating replacement of the sub-epicardial LV myocardium by scar
tissue [17]. To ensure accuracy, it is important to exclude other potential causes such as
cardiac amyloidosis, emphysema, pericardial effusion, or obesity [17,23].

A European consensus emphasizes the use of settings for low band-pass filters
(<100 Hz) to avoid false QRS voltage attenuation [4,5,15,23,26,27,30,47–50].

The left posterior fascicular block (LPFB) has been proposed as a potential ECG
marker of ALVC [51]. It seems to be more frequent in young patients with sudden cardiac
death or aborted cardiac arrest compared to healthy individuals; moreover, patients with
LPFB who underwent CMR showed late gadolinium enhancement in the LV, indicating
fibrous/fibro-adipose myocardial replacement [47]. Other ECG signs such as the sum of
R-wave amplitudes in DI and DII ≤ 8 mm and the sum of S-wave in V1 plus R-waves in
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V6 ≤ 12 mm are considered highly indicative of ALVC [47]. Figure 3 summarizes the main
ECG findings in ALVC.
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2.5. Holter ECG and Signal-Avereraged ECG

The European guidelines emphasize the need for a comprehensive evaluation of
ventricular arrhythmias in diagnosing ALVC [17]. The absolute number and the complexity
of premature ventricular beats (PVBs), as well as the PVBs’ morphology should be assessed
at exercise testing or twelve-lead 24-h Holter monitoring [17].

PVBs or VT with a right bundle branch block (RBBB) morphology may indicate an
origin from the LV (Figure 4) [52]. More specifically, an RBBB pattern with a superior axis,
a broad QRS positive in V1, and a late precordial transition to negative QRS (beyond V3)
is often associated with an LV scar involving the lateral or inferolateral wall [26,53,54].
However, it is worth noting that the RBBB morphology induced by exercise is not highly
specific to the underlying disease or chamber of origin.

The presence of more than 500 PVCs or ventricular arrhythmias with RBBB morphol-
ogy at rest or during exercise is classified as a minor diagnostic criterion due to the low
specificity [17]. Exercise-related ventricular arrhythmias can also be induced by other
conditions, such as catecholaminergic polymorphic ventricular tachycardia or ischemic
heart disease [17,55]. It should be noted that idiopathic ‘fascicular’ arrhythmias, which
are characterized by a typical morphology of RBBB and narrow QRS, are not considered a
criterion for the diagnosis of ALVC. Late potentials on signal-averaged electrocardiogram
(SAECG) are no longer considered a standard diagnostic tool due to their diminished
diagnostic accuracy when compared to contemporary tests [16,55]. However, SAECG
may have a potential role in risk stratification for ACM and could be used to identify
potentially arrhythmogenic ventricular scars [17]. Further studies are necessary to corre-
late the SAECG measurements and the electroanatomic mapping in order to define the
arrhythmogenic substrates, in particular in patients with clinically documented sustained
ventricular tachycardia [56–58].
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2.6. Genetic Findings and Family History

The role of genetic testing in the diagnosis of ACM is increasing. Expert recommen-
dations suggest that genotyping should be used to detect pathogenic or likely pathogenic
mutations in probands with consistent phenotypic features of ALVC, followed by cascade
screening in family members.

The 2015 American College of Medical Genetics and Genomics (ACMG) classification
is used to categorize pathogenic (major criterion) and likely-pathogenic variants (minor
criterion) [59]. The criteria for family history are met through pathology confirmation or
diagnostic criteria in the first-degree (relative major criterion) or second-degree relative
(minor criterion). Premature SCD (<35 years old) in a first-degree relative due to suspected
ACM is considered a minor criterion [16,17,60].

Most of the pathogenic mutations in ALVC involve genes encoding structural proteins
related to the organization of intercellular junctions [5,27,29,61]. These genes primarily
affect cardiac desmosomal proteins, specifically plakophilin-2 (PKP2) [5,62], desmoplakin
(DSP) (Figure 5) [27,62], desmoglein-2 (DSG2) [5], and desmocollin-2 (DSC2) [5].

ACM-causing mutations have also been identified in genes outside the desmosome,
including phospholamban (PLN) [5,63], filamin C (FLNC) [9,27,28], desmin (DES) [64],
titin (TTN) [27], and lamin A/C (LMNA) [27], which are linked with other cardiomy-
opathies, including DCM and neuromuscular cardiomyopathies. Causal mutations in
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non-desmosomal genes, such as transmembrane protein 43 [5] and transforming growth
factor beta-3 (TGFß-3) [5], have been infrequently detected.
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Figure 5. Representative ECG and CMR findings in a patient with a pathogenic DSP gene variant.
(A) ECG showing low QRS voltages on surface 12-lead ECG together with QRS fragmentation, often
present in advanced stages of ALVC when the fibrotic replacement has greatly reduced the amount
of myocardial tissue of the LV. (B) Post-contrast CMR images in long-axis 4-chamber and 2-chamber
view showing diffuse LV subepicardial LGE (white arrows); in the short-axis view, a typical ring-like
distribution of LGE involving the free wall and septum of LV (white arrows). ECG findings in ALVC.
DI, DII, DIII, aVR, aVL, aVF, V1, V2, V3, V4, V5, V6 are derivations of ECG.

Desmin is the major intermediate filament protein of all three muscle cell types and
connects different cell organelles. The N-terminal part of the 1A coil domain is a hot
spot for pathogenic desmin mutations, which cause a filament assembly defect. A study
investigated a newly discovered mutation in the DES gene known as p.Glu401Asp [64]. This
mutation has been associated with arrhythmogenic cardiomyopathy/dysplasia (ARVC/D)
with primary LV involvement in a Spanish family [64]. The family members carrying this
mutation experience severe clinical events such as sudden cardiac death, heart failure, and
arrhythmia, without affecting the skeletal muscles or conduction system [64].

ACM associated with the laminin gene may result in both mild ventricular dysfunction
and severe LV function impairment [53,65–68].

A study found that in patients with ALVC and PLN mutation, both LVEF and LV
mechanical dispersion can be used to stratify the risk of SCD. Patients with LVEF < 45% had
a high percentage of ventricular arrhythmia and were classified as high-risk, while those
with LVEF > 45% and normal LV mechanical dispersion (LVMD < 45 ms) were classified as
low-risk. Patients with preserved LVEF but LV mechanical dysfunction (LVMD > 45 ms)
had an intermediate risk [69].

The most common pathogenic mutations in ALVC patients are reported in Table 1.
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Table 1. Pathogenic mutations in ALVC.

Desmosomal

PKP2—Plakophilin C (OMIM: 602861)
DSP—Desmoplakin (OMIM: 125647)
DSG2—Desmoglein 2 (OMIM: 125671)
DSC2—Desmocollin (OMIM: 125645)

Non-desmosomal

PLN—Phospholamban (OMIM: 172405)
FLNC—Filamin C (OMIM: 1029565)
DES—Desmin (OMIM: 125660)
TTN—Titin (OMIM: 188840)
LMNA—Lamin A/C (OMIM: 150330)
TMEM 43—Transmembrane protein 43 (OMIM: 612048)
TGFB3—Transforming growth factor-3 (OMIM: 190230)

3. Differential Diagnosis

ALVC shares clinical and imaging features with several genetic and non-genetic
conditions, such as DCM, myocarditis, cardiac sarcoidosis, or neuromuscular cardiomyopa-
thy [1,43]. It is important to consider alternative, specific etiologies in patients presenting
features suggestive of ALVC, although the distinction between these conditions could be
challenging. Clinical presentation, family history, and multimodality imaging techniques
are useful to perform an adequate differential diagnosis, keeping in mind that the diag-
nostic confirmation of ALVC always requires genetic testing reporting the presence of a
pathogenic variant in an ACM-related gene.

3.1. Dilated Cardiomyopathy (Early Stage)

Different grades of LV systolic impairment and myocardial fibrosis could be found both
in DCM and ALVC, although there are several differences between these two conditions [1,43].

ALVC is considered a spectrum of the NDLVC, usually presenting with normal or
mildly reduced systolic function or possible regional contractile abnormalities, in the
absence of or with minimum LV dilation; in contrast, the DCM is characterized by a
consistent global contractility dysfunction with a dilated LV [7,70].

The NDLVC form is defined as the presence of non-ischemic LV scarring or fatty
replacement regardless of the presence of global or regional wall motion abnormalities
(RWMASs) or isolated global LV hypokinesia without scarring. In the past, this latter
phenotype was known as hypokinetic non-dilated cardiomyopathy (HNDCM) [7,70].

HNDCM could represent an early phase of both DCM and ALVC, even if clinical
features, such as the presence of VA and myocardial fibrosis distribution at CMR, differ
between the two conditions.

In the AVLC, the fibrofatty replacement involving the myocardium is present at the
initial stage of the disease and it is considered the main determinant of the LV degenerating
process; in contrast, in the HNDCM, the myocardial fibrosis occurs in the advanced stage
of the disease, due to a primary myocyte contractility impairment which induces compen-
satory myocardial eccentric remodeling [7,71]. This also explains the different onset times
of VA, detectable from the very early stage in ALVC (of note, sudden cardiac death due to
malignant arrhythmias could be the first manifestation of the disease [1]) and only in the
terminal phase of DCM (mainly because of severe LV dysfunction).

The confirmation for the diagnosis of ALVC remains the identification of a disease-
causing gene mutation associated with an ALVC phenotype [16].

3.2. Cardiac Sarcoidosis

Sarcoidosis is a systemic inflammatory disorder of unknown etiology with cardiac
involvement, in particular LV, resulting in contractile dysfunction, heart failure, and life-
threatening arrhythmias [72,73]. Cardiac sarcoidosis (CS) shares some of its major and
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minor diagnostic criteria with ALVC (i.e., LV dysfunction or VA), making the differential
diagnosis difficult. The CMR is of pivotal importance since the regional distribution
of fibrosis differs from ALVC; patients with CS show at CRM the “hook sign” pattern,
characterized by late gadolinium enhancement in the septum continuing to ventricular
insertion points and right ventricular free wall [74] (Figure 6).
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At 18-FDG PET, CS patients show an uptake pattern overlapping the LGE distribution
at CMR which confirms the presence of active inflammation, suggestive of CS [74].

Regarding the electrocardiographic findings, CS is more commonly associated with
atrioventricular conduction disorders, even if VA may be present (Table 2).

Table 2. Differential diagnosis of ALVC.

ALVC DCM Myocarditis CS

LV function

- Normal or mildly
reduced systolic
function

- Regional
hypokinesia/akinesia of
free wall and septum

- Systolic disfunction
- Global contractility

impairment

- From normal LV
function to severe
systolic dysfunction

- LV function
impairment

- May involve right
ventricle

LV dilation
- Absent (HNDCM) or

mildly present - Present - Present or absent - Present

LGE at CMR

- Fat infiltration at basal
inferolateral and
anterolateral walls, or
mid inferoseptal,
inferolateral and
anterolateral walls

- Fibrosis starting from
the subepicardial and
ongoing to the
subendocardial layer

- Absence of fibrosis
at early phases

- Later development
of myocardial
fibrosis due to
compensatory
eccentric
remodeling

- Mid-wall
non-ischemic LGE
distribution

- Typical LGE of the
basal septum

Peculiar features

- Subepicardial “fibrosis
ring”, with LGE
affecting LV free wall
and septum (short axis
view at CMR)

- Mid-wall
non-ischemic LGE
distribution
involving the
septum at CMR

- Absence of specific
pattern

- The “hook sign”
(LGE distribution at
RV insertion points
spreading to
septum and RV) is a
specific sign of CS
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Table 2. Cont.

ALVC DCM Myocarditis CS

Tachy/Brady-
arrhythmias

- Ventricular arrhythmias
with RBBB morphology

- Arrythmias present
from the early stage

- Non-sustained or
sustained
ventricular
arrhythmias,
generally in the
advanced stage

- Non sustained or
sustained
tachyarrhythmias

- Conduction
disturbance
(atrioventricular
blocks and bundle
branch blocks)

Further investigations

- Identification of
disease-causing gene
mutation associated
with an ALVC
phenotype at genetic
testing

- Exclusion of
ischemic etiology

- Genetic test if “red
flags” for genetic
forms of DCM are
present

- Genetic testing if a
genetic etiology is
suspected

- 18-FDG PET
showing active
inflammation in the
same areas of LGE
distribution in CMR

- Endomyocardial
biopsy for the
research of
non-caseating
epithelioid
granulomas

ALVC: arrhythmogenic left ventricular cardiomyopathy; CMR: cardiac magnetic resonance; CS: cardiac sarcoidosis;
DCM: dilated cardiomyopathy; HNDCM: hypokinetic non-dilated cardiomyopathy; LGE: late gadolinium
enhancement; LV: left ventricle; RBBB: right bundle branch block; RV: right ventricle.

The gold standard method for the diagnosis of CS is the endomyocardial biopsy which
shows non-caseating epithelioid granulomas. In about one-quarter of cases, CS is associated
with extra-cardiac manifestations, such as lung fibrosis or involvement of peripheral lymph
nodes (particular attention to mediastinal lymphadenopathy), skin, and liver, all features
that need to be investigated [74].

3.3. Chronic Myocarditis

Myocarditis is an inflammatory disease of the myocardium with various etiologies
(infective, exposure to toxic substance, autoimmune disease) that shows a wide spectrum
of clinical presentations, from asymptomatic silent inflammation to non-dilated cardiomy-
opathy, with or without HF symptoms, or life-threatening arrhythmias/SCD [75].

Clinical suspicion is provided by echocardiography which often shows a dilated or
non-dilated hypokinetic LV, and CMR can confirm the diagnosis with the finding of fibrosis
on LGE sequences. In this case, the differential diagnosis between chronic myocarditis and
other forms of left ventricular hypokinesia, such as ALVC, is difficult.

Although the execution of CMR is mandatory, it cannot distinguish with certainty
between ALVC and post-myocarditis fibrosis distribution. To achieve a correct differential
diagnosis, genetic testing should be performed in patients with presentation of acute
myocarditis who met at least one of the following diagnostic criteria: family history for
cardiomyopathies or SCD; severe clinical presentation irrespective of age; associated clinical
features (echo or CMR) related to arrhythmogenic cardiomyopathy [63].

3.4. Neuromuscular Disorders

Neuromuscular disorders (NMDs) are a heterogeneous group of inherited disorders
affecting skeletal and cardiac muscle. In several forms of NMDs, cardiac dysfunction
occurs, and cardiac disease may even be the predominant manifestation of the underlying
genetic myopathy. The cardiac involvement is due to progressive interstitial fibrosis and
fatty replacement in both the atria and ventricles, which may lead to cardiomyopathy,
conduction defects, and tachyarrhythmias. The severity and onset of cardiac complications
vary significantly across classes of NMDs. Differential diagnosis should be guided by the
systemic signs specific to each dystrophy and confirmed by genetic testing [76,77].
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3.4.1. Dystrophinopathies

Dystrophinopathies are X-linked recessive disorders caused by mutations in the dys-
trophin gene (Xp21), encoding for the sarcolemma protein dystrophin virtually present
in all tissues, but mostly in skeletal muscle cells and cardiomyocytes. The spectrum of
dystrophinopathies embraces different clinical pictures: from Duchenne muscular dystro-
phy (DMD, OMIM: 310200) to Becker muscular dystrophy (BMD, OMIM: 300376). DMD
and BMD both arise from a mutation in the dystrophin gene but differ in that DMD is
characterized by the near absence of dystrophin, whereas in BMD, dystrophin is reduced
in size and/or amount.

Dystrophin deficit cardiomyopathy is characterized by a thinner LV wall and progres-
sive LV dilatation, reflecting the ongoing myocyte loss [78]. In particular, the repetitive
mechanical stress leads to apoptosis, fibrotic substitution, and scarring that proceeds from
the epicardium to the endocardium, starting generally at the region behind the posterior
and mitral valve apparatus. This scarring spreads downward progressively toward the
apex and around the heart, ultimately leading to DCM [79].

Dilated cardiomyopathy can be the initial presentation of DMD in the first and second
decades; this presentation is later, in the third and fourth decades, in BMD patients.

Supraventricular arrhythmias, including atrial fibrillation, and premature ventricular
complexes are part of the dystrophinopatic cardiomyopathy.

In DMD patients, life-threatening arrhythmias, such as ventricular tachycardias, are
more frequent in the end stage of cardiomyopathy [1]. Bradyarrhythmias are relatively rare
in DMD/BMD patients and can be found in the advanced stage of the disease [80–84].

In DMD/BMD patients, echocardiography usually shows non-ischemic regional wall
motion abnormalities, left ventricular dilation, and reduced global systolic function. At
CRM, the LGE pattern shows a typical distribution in the subepicardial layer of the LV
posterobasal region, which is consistent with the pathological findings of fibrosis in the
inferobasal wall [85–87].

3.4.2. Emery–Dreifuss Muscular Dystrophy (EDMD)

Emery–Dreifuss muscular dystrophy (EDMD) is a neuromuscular disorder caused by
mutations in genes encoding nuclear envelope proteins, such as lamin-A (LMNA) (OMIM:
310300) and emerin (EMD) genes (OMIM: 181350).

EDMD is characterized by the clinical triad of joint contractures that begin in early
childhood and slowly progressive muscle weakness and wasting initially in a humero-
peroneal distribution that later extends to the scapular and pelvic girdle muscles. The
cardiac involvement in patients with EMDM associated with laminopathy is typically
characterized by atrioventricular conduction abnormalities, atrial fibrillation/flutter, atrial
standstill, and life-threatening cardiac arrhythmias; heart remodeling towards dilated or
restrictive cardiomyopathy appears in the late stage of disease [88]. Little is still known
about cardiac involvement in EDMD patients associated with emerinopathy [89–93].

At CMR, patients with LMNA mutation show an LGE pattern with a typical distribu-
tion in the basal or mid-ventricular septal wall [90].

3.4.3. Myotonic Dystrophy Type 1 (DM1)

DM1 (OMIM: 160900) is an autosomal dominant disorder with incomplete penetrance
and variable expressivity. It is caused by the 3′untranslated region of the Dystrophia
Myotonica Protein Kinase (DMPK) gene. DM1 is a multi-system disorder characterized by
muscle wasting, myotonia, cardiac and pulmonary involvement, and neuropsychological
dysfunction [94].

Cardiac involvement is reported in about 80% of cases and often precedes muscular
impairment. The anatomy–pathologic substrate consists of progressive fibrosis and fatty
replacement of the myocardium, involving both the conduction system and the atrial and
ventricular myocardium. The DM1 cardiac phenotype is broad and includes conduction
disturbances, arrhythmias, and subclinical diastolic and systolic dysfunction in the early
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stage of disease; in contrast, severe ventricular systolic dysfunction occurs in the late
stage of disease. In fact, dilated cardiomyopathy and end-stage cardiomyopathy are
uncommon [95–98]. SCD occurs in 30% of DM1 patients [99–104].

3.5. Chagas Disease

Chagas disease (CD) is an inflammatory, infectious disease caused by the parasite
Trypanosoma Cruzi. After an initial asymptomatic or oligosymptomatic phase with fever,
anorexia, and tachycardia, about 30% of patients may progress to the chronic phase with
neurological, cardiac, and digestive disorders. Cardiac involvement is the most serious
manifestation of CD and is characterized by both arrhythmias, in particular AV block
and cardiomyopathy. Chronic chagasic cardiomyopathy (CCC) is characterized by diffuse
myocarditis, with tissue substitution by fibrosis and segmental wall motion abnormal-
ity [105,106], with dilated cardiomyopathy with HF being considered the late stage of
clinical progression [107]. The segments more often involved in this case are the postero-
lateral and apical walls and the grade of dysfunction can vary from an akinesia to an
aneurysmatic dilation with possible thrombotic formations [108,109].

Besides the execution of CMR, a common feature of Chagas disease detectable by
iodine-123 metaiodobenzylguanidine (MBG) scintigraphy is the presence of parasympa-
thetic denervation, which is not found in ALVC [110]. In the presence of these features, to
discriminate Chagas disease from other conditions causing LV dilation, epidemiological
contest should be investigated and laboratory research for the etiological pathogen will
give the diagnostic confirmation.

4. Genotype–Phenotype Correlation for SCD Prevention Strategy

SCD prevention among patients with ALVC and normal or mildly impaired LVEF is
still challenging. The genotype seems to play a significant role in predicting the risk of SCD;
in particular, patients carrying variations in specific genes such as PLN, TMEM43, DES,
DSP, LMNA, and truncating variants of FLNC and RBM20 (OMIM: 613172) showed higher
rates of major arrhythmic events irrespective of their LVEF [62,63,105–109]. When available,
specific risk estimation tools tailored to high-risk genotypes have to be utilized [7,53,110–118].

The LMNA-risk VTA calculator aims to estimate the 5-year risk of sudden cardiac
death, appropriate ICD therapy, or other manifestations of hemodynamically unstable VTA.
The model integrates five variables, namely, sex, non-missense LMNA mutation, AVB,
nsVT, and LVEF as risk factors [119]. AV conduction anomalies, nsVTs, and LVEF showed
the strongest association with arrhythmic events in the model [119]. The threshold to guide
the ICD implantation in SCD primary prevention is set at a risk of ≥7% at 5 years [7].

The variant-specific risk prediction model designed for patients with the PLN p.Arg14del
offers a 5-year risk estimation for a composite endpoint including sVT, appropriate ICD
therapy, and aborted SCD [63]. The model integrates LVEF, the amount of inferior or
precordial leads with negative T waves, Low-voltage ECG, and the amount of PVC/24 h as
risk factors. The amount of PVC/24-h and LVEF showed the strongest association with
arrhythmic events in the model [63]. The threshold to guide the ICD implantation in SCD
primary prevention is set at a risk of ≥7% at 5 years [7].

In TMEM43 mutated patients, beyond LVEF <45% and LGE at CMR, male sex, nsVT,
and a burden >200 PVCs at 24 h Holter ECG are considered to be high-risk features [117,120].
In patients with a mutation in DSP, RBM20 genes, and FLNC-truncating variants, LVEF < 45%
and significant LGE at CMR are correlated with arrhythmic events [115,118,121].

No data are available for [115,118,121] SCD risk stratification in ALVC patients without
a causative gene variant; however, the ICD implantation in primary prevention may be
considered in AVLC patients with nsVT, high burden of PVCs, syncope, family history of
SCD, or significant LGE on CMR [7]. Patients should be informed about gaps in evidence
and a shared decision-making process accounting for individual preferences for ICD
implantation in primary prevention, evaluating the benefit/risk ratio [38,122–132]. Table 3
summarizes genotype-specific reccommendatios for ICD implantation.
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Table 3. Genotype-specific recommendations for ICD implantation in the primary prevention of SCD
in patients with ALVC (adapted from 2023 ESC task-force expert consensus on the management of
cardiomyopathies [7].

Genotype Additional Risk Factors (If Present ICD
Implantation Is Recommended)

Class of Recommendation—Level of
Evidence

LMNA ≥7% five-year risk of SCD estimated with
LMNA-risk VTA calculator IIa-C

FLNC-truncating variants LGE on CMR
LVEF < 45% IIa-C

TMEM43

Male
Female and any of the

following: LVEF < 45%,
NSVT, LGE on CMR, >200

VE on 24 h Holter ECG

IIa-C

PLN p.Arg14del variant ≥7% five-year risk of SCD estimated with
PLN variant-specific risk calculator. IIa-C

DSP LGE on CMR
LVEF < 45% IIa-C

DES No adjunctive risk factors IIb-C

RBM20 LGE on CMR
LVEF < 45% IIa-C

ALVC with any known causative gene
variant and LVEF > 35% No adjunctive risk factors IIb-C

ALVC without known causative gene
variant and LVEF > 35%

Syncope
LGE presence on CMR IIb-C

ALVC: arrhythmogenic left ventricular cardiomyopathy; CMR: cardiac magnetic resonance; DSP: desmoplakin;
DES: desmin; FLNC: filamin C; LVEF: left ventricular ejection fraction; ICD: implantable cardiac defibrillator; LGE:
late gadolinium enhancement; LMNA: lamin A; NSVT: non-sustained ventricular arrhythmia; PLN: phospholam-
ban; RBM20: RNA-binding motif protein 20; SCD: sudden cardiac death; TMEM43: transmembrane protein 43;
VE: ventricular ectopia. Class of Recommendation II: Conditions for which there is conflicting evidence and/or a
divergence of opinion about the usefulness/efficacy of a procedure or treatment. IIa. Weight of evidence/opinion
is in favor of usefulness/efficacy. IIb. Usefulness/efficacy is less well established by evidence/opinion. Level of
Recommendation: Level C: Consensus opinion of experts.

5. Conclusions

ALVC is a rare condition characterized by a wide spectrum of clinical presentations,
from arrhythmic to cardiomyopathy phenotype. A multiparametric approach including
both imaging and genetic testing, according to the Padua criteria, is mandatory for the
diagnosis. The stratification of SCD risk remains a challenge in the management of patients
with ALVC.
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