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Abstract: (1) Background: Advancements in the field of liver surgery have led to a critical need for
precise estimations of preoperative liver function to prevent post-hepatectomy liver failure (PHLF), a
significant cause of morbidity and mortality. This study introduces a novel application of artificial
intelligence (AI) in determining safe resection volumes according to a patient’s liver function in major
hepatectomies. (2) Methods: We incorporated a deep learning approach, incorporating a unique liver-
specific loss function, to analyze patient characteristics, laboratory data, and liver volumetry from
computed tomography scans of 52 patients. Our approach was evaluated against existing machine
and deep learning techniques. (3) Results: Our approach achieved 68.8% accuracy in predicting safe
resection volumes, demonstrating superior performance over traditional models. Furthermore, it
significantly reduced the mean absolute error in under-predicted volumes to 23.72, indicating a more
precise estimation of safe resection limits. These findings highlight the potential of integrating AI
into surgical planning for liver resections. (4) Conclusion: By providing more accurate predictions of
safe resection volumes, our method aims to minimize the risk of PHLF, thereby improving clinical
outcomes for patients undergoing hepatectomy.

Keywords: artificial intelligence; CT volumetry; major hepatectomy; postoperative liver failure; right
hemi-hepatectomy

1. Introduction

In recent years, artificial intelligence (AI) has been increasingly applied in liver disease
for diagnostic and predictive purposes. Byrne et al. [1] discussed the role of AI in diagnosing
liver diseases, including fatty liver disease and hepatocellular carcinoma. The use of deep
learning methods for surgical planning in liver resection has also been investigated [2].
Machine learning algorithms, including decision trees, have been employed to predict
postoperative liver failure [3], and Gruttadauria et al. [4] used decision trees in the allocation
of liver transplants.

In liver surgery including hepatocellular carcinoma, Klatskin tumor, or hepatic metas-
tasis, large-volume hepatectomy may be a preferred intervention for curative treatment.
However, it is still a difficult problem to evaluate and predict post-hepatectomy liver
failure (PHLF) because of the different liver functions in each patient. The success of this
procedure is heavily dependent on the surgeon’s ability to determine the appropriate liver
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resection volume. Failure in the accurate estimation of this safe resection volume would
lead to PHLF, which accounts for a substantial proportion of mortality after the hepate-
ctomy procedure [5,6]. Achieving accurate predictions can significantly impact clinical
decision-making, leading to improved patient outcomes and mortality rates.

The integration of AI in medicine is revolutionizing patient care across various do-
mains. In diagnostics, K. Lång et al.’s study on AI-supported screen reading in mammogra-
phy highlights the technology’s efficacy in enhancing cancer detection [7]. F. Sanfilippo et al.
explored AI’s application in patient monitoring, specifically in assessing inferior vena cava
distensibility in mechanically ventilated patients, showcasing AI’s potential use in critical
care [8]. Furthermore, Fadl H Veerankutty et al. discussed the emerging role of AI in hep-
atology, liver surgery, and transplantation, indicating its expanding influence in surgical
procedures and research [9]. These studies collectively underscore AI’s growing significance
in enhancing various aspects of patient care, from early detection to surgical interventions.

Various methods have been explored to predict PHLF, yet the results have led to a
lack of consensus in the field [2,3,10,11]. Recent advancements in predicting PHLF have
revealed a variety of models emphasizing different aspects of liver function and resection.
For instance, the model by Naruhiko Honmyo et al. [12] demonstrates the significance
of liver function and the extent of liver resection in PHLF prediction. They suggested
calculating formulae, such as VIPP (volume-associated ICG-PLT-PT) scores, for severe PHLF.
Morandi et al. [13] and Tomassini et al. [14] discussed dynamic models of liver regeneration
post-resection, highlighting the variability in outcomes based on individual differences in
regenerative capacity and stressing the importance of factors such as metabolic load and cell
death post partial hepatectomy. These studies collectively suggest the complexity of PHLF
prediction, and underscore the need for interdisciplinary approaches that integrate various
biological and computational insights. Therefore, the development of robust and reliable
models is crucial for optimizing major hepatectomy procedures and for minimizing the
risk of postoperative complications, particularly PHLF. Accurate liver volume estimations
are indispensable in surgical planning and determining the applicability of the lesion
applied in safeguarding the functional capacity of the remaining liver, and enhancing
patient safety [15]. Addressing this multifaceted challenge necessitates interdisciplinary
collaboration between medical professionals and AI researchers [16]. By harnessing AI and
incorporating comprehensive clinical data, including laboratory biomarkers and volumetric
measurements, it is possible to guide surgeons in making informed decisions that improve
patient outcomes [2,10,11]. However, the AI studies on liver surgery so far have mainly
focused on the prediction of the possibility of PHLF. Therefore, the estimation of a safe
liver resection volume is still a significant challenge in liver surgery. In this context, the
present study aims to address the pressing concern of PHLF by proposing a novel approach
utilizing AI techniques to predict a safe liver resection volume in patients undergoing
right hemi-hepatectomy.

2. Methods

This study was performed in accordance with the ethical guidelines of the Declaration
of Helsinki and approved by the Institutional Review Board of Kosin University Gospel
Hospital (No. KUGH 2023-09-010). Between January 2017 and August 2022, patients
aged >19 years old and who had received right hemi-hepatectomy or right extended
hemi-hepatectomy were retrospectively reviewed in a single tertiary medical center. We
collected demographics and preoperative laboratory data, and computed tomographic
(CT) volumetry calculating the right and left liver volumes. We excluded those who had
received repeat liver resection or who did not have pre-operative CT or MRI images. In
total, 135 liver surgeries were performed in our hospital from January 2017 to August 2022.
Among them, a right hemi-hepatectomy was performed in 55 patients, but 3 patients were
excluded due to the completion of the right hemi-hepatectomy after the first liver resection.
Finally, 52 patients were analyzed in this study.
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2.1. Data Collection

Patient demographic data, including age, weight, body mass index (BMI), sex, presence
of comorbidity, etiology of liver disease, and alcohol consumption, were retrieved from
the medical records. Liver-related laboratory indicators [17] included white blood cell
(WBC) count, neutrophil count, platelet (PLT) count, prothrombin time (PT), International
Normalized Ratio (INR), total bilirubin (TB), albumin, alanine aminotransferase (ALT),
aspartate aminotransferase (AST) and creatinine (Cr) [18].

According to previous literature, the model for end-stage liver disease (MELD) [19]
score was calculated as

MELD = 3.78 × ln
[
serum bilirubin

(mg
dL

)]
+11.2 × ln [INR] + 9.57 × ln

[
serumCr

(mg
dL

)]
+ 6.43

(1)

The albumin–bilirubin (ALBI) score [20] was calculated as

ALBI score = (log10 bilirubin × 0.66) + (albumin × −0.085) (2)

The aminotransferase-to-Platelet Ratio Index (APRI) score is a non-invasive clinical
tool used to assess the degree of liver fibrosis, particularly in the context of chronic liver
diseases such as hepatitis C. The APRI score is calculated using the formula:

APRI Score =
AST o f the sample

re f erence AST × 100

platelets
(3)

In this formula, AST refers to the level of aspartate aminotransferase in the patient’s
blood sample, and reference AST is the upper limit of the normal range for aspartate
aminotransferase. The platelet count is measured in billions per liter (109/L). The APRI
score has been widely validated as a predictor of liver fibrosis, offering a cost-effective and
readily accessible alternative to liver biopsy [21]. Its simplicity and non-invasiveness make
it a valuable tool in routine clinical practice for assessing liver health, especially in patients
with chronic hepatitis C infection [22]. Additionally, APRI scores have been used in various
clinical settings to evaluate liver damage and predict outcomes in liver disease [23].

The reference value for AST was 40 IU, which is the upper normal limit in our
laboratory [24].

2.2. Definition of PHLF

The 50-50 criteria for PHLF were used in this study [25]. In PHLF, the “50-50 criteria”
are defined as the concomitant presence of PT < 50% and SB > 50 µmol/L on post-operative
day 5. We excluded the illness of increased total bilirubin due to biliary obstruction.
We included mortalities caused by PHLF during the immediate postoperative period.
In the predictive modeling of PHLF, it is critical to consider a range of factors beyond
liver resection volume. This holistic approach is supported by recent literature, which
emphasizes the multifactorial nature of PHLF risk. The etiology of liver disease, for
example, is a significant factor. Diseases such as cirrhosis, hepatitis, and hepatocellular
carcinoma each uniquely influence liver function and regeneration, impacting PHLF risk.
A study by Sheta et al. [26] demonstrated that the presence of cirrhosis, irrespective of its
cause, is associated with increased PHLF risk, highlighting the importance of considering
liver disease etiology in PHLF prediction models. Moreover, the MELD score, a well-
established prognostic tool for chronic liver disease, has also been identified as a crucial
predictor of PHLF. As Chen et al. [27] found, incorporating MELD scores into preoperative
evaluations can significantly enhance the prediction of surgical outcomes, including PHLF.
Additionally, the potential role of biomarkers in predicting PHLF is gaining attention.
Biomarkers such as serum bilirubin, albumin, INR, and platelet count, integral to the MELD
score, have long been used in liver function assessment. Recent studies, including those by
Prodeau et al. [28], have explored the use of emerging biomarkers such as indocyanine green
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clearance, hyaluronic acid, and PT activity in predicting PHLF. Our study acknowledges
these multifactorial influences and proposes an extension of our predictive model to include
these factors. By integrating etiological data, MELD scores, and relevant biomarkers into our
model, we aim to provide a more comprehensive and clinically relevant tool for assessing
PHLF risk. This approach aligns with current research trends and emphasizes the need
for multifaceted risk stratification in liver resection procedures, thereby enhancing the
precision and personalization of surgical planning.

2.3. CT Volumetry Measurement

The most recent CT or MRI images derived prior to the operation were used for
the CT volumetry. The margin of the left and right hepatic lobes was traced manually
along Cantlie’s line, which divides the functional left and right hemi-livers [17], with
consideration of the resection margins lateral to the middle hepatic vein and anatomical
variations as depicted in Figure 1. The total volume of each hemi-liver was calculated
by the addition of the area of hepatic parenchyma from each slice multiplied by the slice
thickness. When we obtained the volumetric data of the left and right hemi-livers, we
included the middle hepatic vein to the remnant left liver for right hemi-hepatectomy, and
excluded the middle hepatic vein for extended right hemi-hepatectomy (Figure 2).

Figure 1. Virtual resection line is located on the right side of Middle hepatic vein (A). Virtual resection
line on gall bladder level (B).

Figure 2. Virtual resection line is located on the left side of Middle hepatic vein (A). Virtual resection
line on portal bifurcation level (B).
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2.4. Statistical Analysis

Continuous variables are here presented as median and range. These variables were
compared using the Mann–Whitney U test. Categorical variables are presented as numbers.
The chi-squared test or Fisher’s exact test were used to analyze categorical variables.
Statistical significance was set at p < 0.05. All statistical analyses were performed using
SPSS 25.0 for Windows (IBM, Armonk, NY, USA).

2.5. Deep Learning Model Development Based on Residual Network
2.5.1. Model Design

In our study, we employed an AI method tailored for predictive analysis in the
medical domain. The method, along with the tailored loss function, is architecturally
grounded on the concept of residual networks [29], which are renowned for their ability
to facilitate deeper learning without the hindrance of vanishing or exploding gradients.
The input layer of our model is designed to accommodate 23 distinct laboratory data
parameters derived from patients. The parameters are elaborated in Table 1. Parameters are
considered with the exception of diagnosis. This input information is propagated through
a cascade of processing blocks and operations to yield a singular floating-point value,
representing the liver resection area. Specifically, the data flow comprises a sequence of
transformations: starting with a ReLU [30] activation function, it advances through the first
residual block (Res1) 3, then undergoes expansion (Expand1), followed by another ReLU
activation. Subsequent blocks and operations include Res2, a shrink operation (Shrink3),
ReLU, Res1, Shrink4, a base residual block (Res0) and Shrink5, culminating in the final
output layer as shown in Figure 3. This sophisticated architecture harnesses the power of
deep learning to offer predictions on liver resection areas based on the provided laboratory
data. Our method begins with an initial layer that processes the input data through a
linear transformation followed by ReLU activation, resizing the feature dimensions to a
predefined hidden size. Subsequently, the data are passed through multiple instances of the
Residual Block with various feature dimensions. To bolster the network’s representational
capacity, expansion layers have been integrated, which upscale the feature dimensions
through linear transformations accompanied by ReLU activations. Once the data have
been enriched in this expanded state, a sequence of shrinkage layers systematically reduces
the feature dimensions. The information, having traversed these expansive and reductive
stages, is then transformed by the final layers, consisting of a series of linear transformations
and ReLU activations, to produce the end output. One of the reasons for the application of
this architecture is its depth and intricacy, enabling the model to adeptly capture complex
patterns and interactions among the 23 medical features (Figure 4). Furthermore, the
residual connections ensure robustness against the vanishing gradient problem, making the
network effective even with increased depth. The expansion layers in the architecture play
a pivotal role in amplifying the feature space, granting the network a richer medium to
discern and process intricate patterns. This depth, combined with the flexibility offered by
various scales of residual blocks and multiple expansion and shrinkage layers, equips the
network to adjust seamlessly to diverse complexities in the data. In essence, our approach
embodies a blend of depth and architectural ingenuity, positioning it as an optimal choice
for predicting resection volumes from a multifaceted set of medical features.

Table 1. Characteristics of post-hepatectomy liver failure (PHLF) and non-PHLF patients among
52 cases of right hemi-hepatectomy.

PHLF (n = 6) Non-PHLF (n = 46) p-Value

Age 59 (48–72) 57 (20–78) 0.966
Sex 0.582

Male 6 36
Female 0 10
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Table 1. Cont.

PHLF (n = 6) Non-PHLF (n = 46) p-Value

BMI (kg/m2) 23.4 (18.2–29.4) 24.4 (20.6–31.5) 0.731
ASA 0.38

1 0 8
2 4 26
3 2 12

Comorbidity
HTN 4 14 0.166
DM 4 10 0.038
HBV 4 18 0.007
HCV 0 3 0.519

Alcoholism 1 5 0.54
Diagnosis 0.645

HCC 3 15
Colon liver meta 1 8

iCCC 1 5
eCCC 1 3

Liver donor 0 5
Other 0 10

WBC (ul) 5175 (2430–7450) 6271 (3480–8540) 0.14
Neutrophil (µL) 2590 (750–4460) 3852 (1280–8540) 0.063
PLT (× 103/µL) 147 (92–190) 236 (62–390) 0.004

PT INR 1.06 (0.91–1.22) 0.99 (0.86–1.21) 0.105
PT% 92.1 (74–117) 103.1 (74–133) 0.088

TB (mg/dL) 1.75 (0.39–5.20) 0.78 (0.30–5.94) 0.08
AST (U/L) 52 (19–72) 31.9 (14–86) 0.027
ALT (U/L) 42 (17–62) 26.2 (8–61) 0.039
Cr (mg/dL) 0.81 (0.54–1.07) 0.76 (0.59–1.23) 0.431

HS-CRP (mg/dL) 0.81 (0.03–2.89) 1.1 (0.12–1.2) 0.473
APRI 0.97 (0.28–1.73) 0.39 (0.11–2.37) 0.004
ALBI −0.42 (−0.95–0.28) −0.73 (−1.02–0.27) 0.059

MELD 3.86 (−2.70–7.45) −0.6 (−10.8–11.2) 0.048
Rt. volume (pred) 918 (753-1087) 736 (275-1156) 0.12
Lt. volume (Pred) 498 (361–684) 544 (275–1156) 0.439

FLR % 35.2 (27.0–47.6) 42.7 (25.7–73.8) 0.057
RLWR % 0.74 (0.52–1.03) 0.85 (0.39–1.83) 0.367

PHLF, post-hepatectomy liver failure; BMI, body mass index; ASA, American Society of Anesthesiologists Clas-
sification; HTN, hypertension; DM, diabetes mellitus; HBV, hepatitis B virus; HCV, hepatitis C virus; HCC,
hepatocellular carcinoma; colon liver meta, colorectal liver metastasis; iCCC, intrahepatic cholangiocarcinoma;
eCCC, extrahepatic cholangiocarcinoma; WBC, white blood cell; PLT, platelet; PT, prothrombin time; TB, to-
tal bilirubin; AST, aspartate transaminase, ALT, alanine transaminase; Cr, creatinine; HS-CRP, high-sensitive
C-reactive protein; APRI, AST to platelet ratio index; ALBI, albumin–bilirubin score; MELD, Model For End-Stage
Liver Disease score; FLR, future liver remnant; RLWR, remnant liver volume to patient weight ratio.

Figure 3. Explanation of residual block.
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Figure 4. The proposed network architecture receives 23 laboratory data parameters from patients as
input and produces a single output representing the liver resection area.

2.5.2. Loss Design

In our study, we have introduced a specialized loss function, “weighted liver loss”, to
address the unique challenges inherent in predicting liver resection volumes. This function
is not merely a theoretical construct; it is deeply rooted in the practical realities and clinical
exigencies of liver surgery. Here, we elaborate on the rationale behind this choice and
its specific applicability to our problem. In the context of liver resections, the stakes of
prediction accuracy are high. A slight underestimation of the resection volume can lead to
the insufficient removal of pathological tissue, potentially leaving behind diseased areas.
On the other hand, an overestimation, while not ideal, provides a safer margin as it errs
on the side of removing more tissue, thus ensuring the complete excision of the diseased
part. This clinical backdrop demands a predictive model that is attuned to the asymmetric
consequences of prediction errors. Our “weighted liver loss” function is designed with
this asymmetry in mind. It incorporates distinct penalties for under-predictions and over-
predictions, reflecting the differential impact these errors have in a surgical setting. The
higher penalty for under-predictions is a deliberate choice intended to align the model’s
predictions with clinical priorities—ensuring the complete removal of pathological tissue
while safeguarding against the removal of excessive healthy liver tissue.

Given the predicted values ypred and the true values ytrue, the custom loss function
“weighted liver loss” is defined as:

L
(

ypred, ytrue

)
=

1
N

N

∑
i=1

wi × SEi + SEi (4)

Here:

• N is the total number of samples;
• SEi (squared error) is calculated as

SEi =
(

ypred,i − ytrue,i

)2
(5)

• wi is the weight, which is determined based on whether the prediction is an under-
prediction or over-prediction, as

wi =

{
under penalty i f ypredi

< ytruei

over penalty other wise

}
(6)

The “weighted liver loss” function is particularly designed to penalize under-predictions
more heavily than over-predictions, with an additional logarithmic component to penalize
large over-predictions. The parameters under_penalty and over_penalty allow for the cus-
tomization of the degree of penalty for under-predictions and over-predictions, respectively.

In liver resection procedures, the accurate estimation of resection volume is critical
for both the effectiveness of the surgery and the safety of the patient [31]. In this work,
we introduce a specialized loss function, namely, “weighted liver loss”, which has been
developed to suit this clinical scenario. This loss function sets itself apart from traditional
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loss functions such as Mean Squared Error (MSE), Mean Absolute Error (MAE), and Huber
Loss commonly used in machine learning applications [32,33].

The essence of the “weighted liver loss” lies in its nuanced approach to prediction er-
rors. Traditional loss functions typically treat every deviation—whether an overestimation
or an underestimation—from the true value uniformly. However, from a clinical perspec-
tive, these deviations are not equivalent. Overestimating liver volume provides surgeons
with a conservative margin, inherently leading to a safer resection procedure. In con-
trast, underestimations can compromise safety. Recognizing this disparity, the “weighted
liver loss” incorporates a weighting scheme, denoted as wi, that differentially penalizes
under-predictions and over-predictions.

Furthermore, this function amalgamates both weighted and unweighted squared
errors. While the weighted component ensures that the model is oriented towards making
clinically safer errors, the unweighted part ensures that the magnitude of errors remains a
pertinent metric in the model’s evaluation. Such a design is not only reflective of clinical
realities, but also ensures that the model remains grounded in its predictions.

Another salient feature of the “weighted liver loss” is its inherent flexibility. With pa-
rameters such as under-penalty and over-penalty, the function can be fine-tuned, ensuring
its adaptability to evolving clinical insights or varied surgical scenarios.

In summary, the “weighted liver loss” offers a tailored approach to modeling liver
volume predictions, aligning closely with the clinical objectives of liver resection procedures.
Prioritizing overestimations underscores the emphasis on patient safety, making it a more
suitable choice in this specific medical context than traditional loss functions.

2.5.3. K-Fold Evaluation

In the development of predictive models, particularly in the context of medical applica-
tions where datasets are often limited in size, it is imperative to validate model predictions
effectively while maximizing the use of available data. To achieve this, we have employed
the K-fold cross-validation technique, recognized for its efficacy in enhancing the reliability
of validation results and optimizing data usage. This method allows for each data point in
our dataset to contribute to both the training and validation processes, thereby minimizing
the risk of model bias and overfitting. Our choice of K-fold validation is driven by the
need for a rigorous evaluation of the model’s performance. We evaluated each model
with a K-fold validation technique to enhance the reliability of the validation result, and to
efficiently use limited data by allowing each data point to be used for both training and
validation. K-fold validation is a resampling procedure commonly used for evaluating
machine learning models, particularly useful when dealing with relatively small datasets.
In this technique, the dataset of size N is divided into k equal blocks, each containing N/K
data points. Figure 5 explains the K-fold validation used for this research. During each
iteration, one of these blocks serves as the validation set, while the remaining k − 1 blocks
form the training set. Performance metrics, such as P, U, and O, are then calculated for each
iteration as discussed in Section 3. Performance metrics are further explained in Figure 5.
After completing k iterations, the average values of P, U, and O are computed to provide a
comprehensive evaluation of the model. In this work, N is set as 52 and K is set as 5.
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Figure 5. Explanation of K-fold validation used in our evaluation. The dataset of size N is split into k
blocks with each block containing N/K data points. In each iteration, performance is measured in
3 different metrics. P, U, and O are explained in the figure. After all iterations, the average values
of all P, U, and O are obtained. The rationale for applying the K-fold is to validate models with a
relatively low number of data points.

3. Results
3.1. Characteristics of Patients

The demographic details of the patient sample are as follows. The sample consists
of 42 males (6 in the PHLF group and 36 in the non-PHLF group) and 10 females (all in
the non-PHLF group), with a median age of 57 years (range: 20–78 years). The BMI for
the patients had a median of 24.4 kg/m2 (range: 20.6–31.5 kg/m2). In total, 18 patients
had hypertension (4 in the PHLF group and 14 in the non-PHLF group); 14 patients had
diabetes (4 in the PHLF group and 10 in the non-PHLF group); 12 patients had HBV (4 in
the PHLF group and 8 in the non-PHLF group); 3 patients had HCV (all in the non-PHLF
group); 6 patients had a history of alcoholism (1 in the PHLF group and 5 in the non-PHLF
group). The American Society of Anesthesiologists (ASA) Physical Status Classification
was also considered, with 8 patients falling under Class 1, 30 under Class 2 (4 in the PHLF
group and 26 in the non-PHLF group), and 14 under Class 3 (2 in the PHLF group and 12 in
the non-PHLF group). This classification is pivotal in determining patients’ overall health
and assessing the anesthesia risk before surgery. Several essential pre-operative lab values
such as WBC, neutrophil counts, PLT counts, PT INR, PT percentage, TB levels, AST, ALT,
Cr, HS-CRP, APRI, ALBI, and MELD were included. Volumetric data about the liver, such
as the right liver volume (Rt. volume), left liver volume (Lt. volume), future liver remnant
percentage (FLR %), and remnant liver volume to patient weight ratio (RLWR %), were also
noted. We analyzed the risk factors of the PHLF, shown in Table 2. HBV and APRI showed
significance in multivariate analysis.
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Table 2. Factors associated with post-hepatectomy liver failure.

Variable
Univariate Multivariate

OR (95% CI) p-Value OR (95% CI) p Value

DM 0.13 (0.02–0.87) 0.035

HBV 0.10 (0.01–0.67) 0.018 0.09 (0.01–0.89) 0.039

AST 1.07 (1.01–1.11) 0.014

ALT 1.07 (1.01–1.13) 0.021

PLT 0.974 (0.95–0.99) 0.012

MELD 1.32 (1.02–1.70) 0.031

APRI 11.14 (1.46–84.57) 0.020 10.59 (1.55–71.24) 0.016

Rt. volume (pred) 1.00 (1.00–1.00) 0.085

DM, diabetes mellitus; HBV, hepatitis B virus; AST, aspartate transaminase, ALT, alanine transaminase; PLT,
platelet; MELD, Model for End-Stage Liver Disease score; APRI, AST to platelet ratio index.

3.2. Performance Comparisons

This study assessed predictive models for liver resection volume estimation, vital for
surgical success. We utilized linear regression [34], polynomial regression (second to fourth
degree) [35], Support Vector Regression [36], Decision Trees [37], Random Forest [38], and
advanced neural networks [39–41]. A bespoke model was also evaluated, using MSE loss
and a clinical-specific loss function.

Each model’s merit was adjudicated based on its success rate in resection volume
predictions and the mean absolute errors for both overestimations and underestimations.
These metrics furnish a holistic insight into the models’ clinical applicability and their
potential to ensure patient safety during liver resections.

In the conducted study, results were compartmentalized into three distinct categories,
each aiming to evaluate the reliability and accuracy of the AI model’s predictions concerning
resection volume. Firstly, the Percentage of Successful Resection Volume (P) was calculated
by taking the number of test data points for over-predicted resection volume (O) and
dividing it by the total dataset count. The purpose of this metric, P, is to ascertain the level
of trust a physician can place in the AI model when determining the resection volume.
An under-prediction by the model, wherein the estimated value falls below the actual
resection volume, poses significant risks, potentially leading to liver failure in patients due
to insufficient liver volume. On the other hand, the Mean Absolute Error of Over-predicted
Resection Volume (O) was employed to investigate instances where the model’s prediction
might excessively exceed the real value. Such overestimations can be detrimental; if the
model indicates a large resection area, it could render surgery infeasible because of an
inadequate liver volume. Lastly, even in cases where the model did not exhibit over-
prediction, P was evaluated to ensure its consistency and proximity to the actual resection
volume, solidifying its role as a trustworthy metric.

In our analysis, we conducted a comprehensive performance evaluation of various
machine learning and deep learning models, comparing them against our proposed model
using our patient data set. Key performance metrics included the Percentage of Successful
Resection Volume (P), Mean Absolute Error of Under-predicted Resection Volume (U),
and Mean Absolute Error of Over-predicted Resection Volume (O). To assess the statistical
significance of the observed differences in performance metrics among the models, we
performed an ANOVA tests for each metric, followed by post-hoc analyses using Tukey’s
HSD test to identify specific model pairs with significant differences. The ANOVA results
reveal significant variations in performance across different models (P: F(13, 286) = 4.62,
p < 0.001; U: F(13, 286) = 5.17, p < 0.001; O: F(13, 286) = 6.03, p < 0.001), suggesting that the
choice of model substantially impacts the prediction accuracy of liver resection volume. Our
model, particularly with our specialized loss function, demonstrates a significantly higher
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Percentage of Successful Resection Volume (p = 68.88%) compared to traditional models
such as linear regression (p = 48.22%) and Support Vector Regression (SVR) (p = 45.77%).
The difference is statistically significant, as indicated by the post-hoc comparisons (p < 0.05).
In terms of Mean Absolute Error for under-predictions (U) and over-predictions (O), our
model also outperforms most traditional approaches. Notably, our model with our loss
function achieved the lowest U value (23.72) and a significantly lower O value (50.70)
compared to models such as Polynomial Regression (Degree 3) and Random Forest, further
underscoring its efficacy in balanced prediction (U: p < 0.01; O: p < 0.05 compared to
Random Forest). These findings suggest that our model, especially when equipped with
our loss function, offers a more accurate and reliable method for predicting liver resection
volumes, addressing a critical need in preoperative planning for liver surgery.

4. Discussions
4.1. Comparison of the Proposed Method on Liver Resection Volume Prediction

In the context of liver resection surgery, accurate volume prediction is pivotal to ensure
both surgical efficacy and patient safety. Our study encompassed a comprehensive range
of machine learning and deep learning models to achieve this objective (Figures 6 and 7).
Linear and Polynomial Regressions, although simpler methods, showed suboptimal perfor-
mance compared to more advanced techniques. This underscores the inherent complexities
in predicting liver resection volumes, which may not be adequately captured by linear
models or even higher-degree polynomials [34,35]. The Support Vector Regression and
Decision Tree algorithms demonstrated modest performance. The limitations of these
models may be attributed to their inability to capture the complex relationships among
predictors or to overfitting the training data, respectively [36,37]. Random Forest, an en-
semble model, improved the prediction accuracy to some extent, likely benefiting from its
robustness against overfitting [38]. Interestingly, the Fully Connected Feedforward Neural
Network delivered the most accurate predictions among the standard models. This result
supports the growing body of evidence that deep learning models are capable of capturing
intricate patterns in medical data [39]. Notably, our proposed approach, optimized with a
specialized loss function tailored for this clinical context, outperformed all other models in
the majority of the metrics. With a 68.88% rate of successful resection volume prediction
and significantly reduced mean absolute errors in both under- and over-predicted resection
volumes, our approach sets a new benchmark in this specific domain. This illustrates that
specialized algorithms can provide improved performance over generalized methods in
medical applications.

4.2. Harnessing AI for Liver Resection Planning

To date, several studies have shown that preoperative liver failure and potential
liver disease are potentially significant risk factors for PHLF [42]. Total bilirubin, PLT
count, PT level, and ICG-R15 are commonly used for the evaluation of liver function, and
formulas made from these factors have proven useful. However, they are also limited due
to simple calculation formulas and traditional analyses [43]. Several recent studies have
suggested predictive factors or predictive models of PHLF using AI. Although Wang et al.
reported a machine-learning model for PHLF, most patients (89.9%) have mild hepatic
resection and are prone to overfitting [10]. Xu et al. developed a deep-learning model for
predicting PHLF. However, the model’s AUC was relatively small, at 0.740 on the right
hepatic resection [2]. Mai et al. found that the artificial neural network model showed good
predictive abilities in both the development set (AUC: 0.880) and the validation set (AUC:
0.876), and achieved the corrective ability to fit well compared to the previous scoring
system [11]. However, they created models with five risk factors including PLT count, PT,
TBil, AST, and future liver remnants, without including the demographics, viral status, or
comorbidities of patients. After the AI models predict “yes” or “no” for PHLF, surgeons
have only two options: “surgery” or “not”. Therefore, there is a limit to receiving practical
assistance in actual surgical decisions. However, our AI model suggests a safe hepatic
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resection volume for each patient. Surgeons can change their surgical plan to fit a safe liver
volume. This is thought to be able to provide very intuitive assistance to the operator.

Figure 6. Percentage of Successful Resection Volume (P) performance comparison of diverse machine
learning and deep learning models against our patient data (ANOVA p < 0.001).

Figure 7. Mean Absolute Error of Under-predicted (U) and Over-predicted (O) performance compari-
son of diverse machine learning and deep learning models against our patient data. Note that the
lower the error, the better the performance (ANOVA p < 0.001).

The accurate prediction of liver resection volume enhances surgical planning and
mitigates the risk of postoperative complications [44]. The integration of AI in this sphere
exemplifies the transformative potential of machine learning technologies in augmenting
medical decision-making [45]. As medical AI continues its upward trajectory, this research
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adds to the growing body of evidence showcasing its capabilities and offers fresh perspec-
tives for data-driven patient care [46]. The advent of artificial intelligence may address these
challenges, by leveraging machine learning algorithms that can analyze complex data sets
and make highly accurate predictions. Integrating AI into the preoperative planning pro-
cess for major hepatectomy could therefore provide clinicians with more reliable estimates,
contributing to safer surgical outcomes and lower rates of postoperative complications.

4.3. Limitations

While our approach provides valuable insights and advances in predicting liver resec-
tion volume using AI, it is not devoid of limitations. First and foremost, the methodology
employed was a validation study grounded in retrospective single-center data. While
retrospective analyses are instrumental in clinical research, they are inherently associated
with biases due to non-randomization. The limitations of these models may be attributed
to their inability to capture complex relationships among predictors or to overfitting the
training data, respectively. Random Forest, an ensemble model, improved the prediction ac-
curacy to some extent, likely benefiting from its robustness against overfitting [29]. Second,
the population was relatively small. Third, a pertinent issue is the potential discrepancy
between the actual liver resection volume and the pre-operative CT volumetry. While CT
volumetry offers an invaluable estimation of liver volume, discrepancies between these
measurements and the actual resected volume could exist. Such differences, if significant,
might affect the prediction accuracy of the model, implying a need for meticulous cali-
bration and regular model updates based on newer, real-world data. Third, while our
study presents a novel approach for predicting liver resection volume and demonstrates
promising results, it is important to acknowledge certain limitations. Primarily, our compar-
isons, though extensive, did not include some of the latest state-of-the-art models that have
emerged in the recent literature, such as the advanced deep learning techniques reported by
Lakshmipriya et al. [47] and the specialized regression models discussed by Zeng et al. [48].
Future work will aim to benchmark our model against these cutting-edge methods, further
validating and enhancing the robustness of our approach in the context of liver surgery
planning. Fourth, while this dataset provided valuable insights, particularly in differentiat-
ing between PHLF and non-PHLF cases based on various clinical parameters, it is crucial to
acknowledge its limitations in terms of size and diversity. The dataset’s demographic and
clinical characteristics reflect the patient population of a specific medical center, which may
not fully represent the global population undergoing liver resection. This geographic and
demographic limitation may affect the model’s applicability to other patient populations
with different ethnicities, healthcare systems, or disease etiologies. Lastly, our dataset had
a limited number of PHLF cases, restricting us from creating a separate AI model for each
PHLF grade. The granularity that such a model could offer would have been invaluable
in tailoring surgical decisions to individual risk profiles. Future research with a more
diverse and sizable dataset containing a detailed grading of PHLF cases can build upon
our foundational work to address this gap.

5. Conclusions

As far as we know, there have been no studies that predict a safe liver volume for pre-
venting PHLF with AI. Our study highlights the potential of current machine learning and
deep learning techniques in predicting safe liver resection volumes for major hepatectomy.
More importantly, it advocates for the development of specialized models optimized for the
intricacies of specific clinical tasks to improve surgical planning and patient outcomes. In
the future, research on larger population from multiple institutions is likely to be needed to
create a more accurate and predictive AI model that presents a safe liver resection volume.
In addition, to confirm this, a prospective study is needed to ensure safe liver resection
volume prediction through an AI model before hepatectomy. It is expected that the role of
medical AI will expand in the direction of helping treatment decisions by predicting these
risks and presenting intuitive information.
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