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Abstract: Background: Studies on the biomechanical mechanisms of an anterior cruciate ligament
(ACL) injury have been extensively studied, but studies on the neuromuscular control-related risk
factors for an ACL injury in specific maneuvers have not been reported for badminton players.
Study design: Controlled laboratory study. Methods: Sixteen badminton players (8 male, 8 female)
performed a single-leg badminton ball landing task, and lower limb muscle activity, kinematic data,
and ground reaction force were measured during this procedure using marker-based movement
analysis, force plates, and electromyography (EMG). Gender differences in the lower limb kinematic
data, mean values of normalized lower limb muscle activation (MVC%), and co-contraction values
during the landing preparation phase (100 ms before initial contact) were analyzed using MANOVA.
Results: In the badminton landing task, the knee valgus angle was greater in females than in males
(6.27 ± 2.75 vs. 1.72 ± 3.20) in the pre-landing preparation position. Compared to male badminton
players, females exhibited greater gluteus maximus (44.92 ± 18.00 vs. 20.34 ± 11.64), rectus femoris
(41.56 ± 9.84 vs. 26.14 ± 10.46), and medial gastrocnemius (37.39 ± 17.31 vs. 19.11 ± 11.17) lateral
gastrocnemius (36.86 ± 17.82 vs. 13.59 ± 2.71) muscle activity (MVC%). Conclusion: Female bad-
minton players exhibit neuromuscular control strategies that may be inadequate for ACL protection
and may be a potential risk factor for a high incidence of ACL injury In the future, when devising
injury prevention plans for female badminton players, optimizing neuromuscular control during the
pre-landing phase can be targeted.

Keywords: knee; EMG; muscle; ACL; badminton player; injury prevention

1. Introduction

Badminton is one of the most popular sports in the world with approximately 200 mil-
lion participants [1]. Despite its popularity, there is relatively little research on badminton
injuries. Epidemiological reports on injuries among badminton players indicate that the
lower extremities are the most commonly injured body part, accounting for about 70%
of all injuries. More than two-thirds of serious injuries (requiring surgery) occur in the
knee joint, including ligament tears (71.5%), cartilage tears (20.3%), and fractures (2.6%) [2].
Anterior cruciate ligament (ACL) injuries usually occur in non-contact activities that require
repeated jumping, landing, and changes in direction. Due to the nature of badminton, ACL
injuries also affect badminton players, especially female players with a 2.5 to 4.8 times
higher risk than that of male players [3,4]. Once an ACL injury occurs, it not only requires
costly surgery and extensive rehabilitation, but also increases the risk of early osteoarthritis
of the knee joint [5]. Given the serious consequences of such injuries, it is crucial to identify
the exact mechanisms behind them to effectively prevent them.

The gender differences in non-contact cruciate ligament injuries have been attributed
to several factors [6–8], including anatomical factors, hormone levels, and neuromuscular
control. The high incidence of anterior cruciate ligament injuries is thought to be related
to the large loads generated in the knee joint. However, reasons for this knee-loading
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pattern in females are not fully understood. The investigation of neuromuscular control
factors has become an interesting avenue of research, as joint kinematics and moments
are controlled by the muscle tissue surrounding the joint. In previous studies, large
anterior tibial shear forces, extension moments, valgus moments, valgus angles, and small
extension angles of the knee have been considered risk factors for ACL injury. Poor
neuromuscular control may cause the development of risk factors that lead to subsequent
ACL injuries [9–11]. In studies addressing lower extremity muscle activity patterns, there
were gender differences in neuromuscular control between males and females during the
performance of the landing task. Females exhibit stronger quadriceps activity relative to its
antagonist muscle (hamstring), and this quadriceps activation strategy may increase knee
anterior shear forces at smaller knee angles [12–14]. Similarly, increased or unbalanced
gastrocnemius activity in females compared to males during the lateral cutting task puts
the knee in an unfavorable position, and this activation strategy may result in greater stress
and strain in the ACL [10,12,15]. In addition, gender differences in the control of gluteal
muscle (gluteus maximus and gluteus medius) activity in females, compared to males,
may increase the likelihood of frontal plane instability in the knee joint, placing increased
knee loading, and thus increasing the risk of ACL injury [16]. Furthermore, in studies
targeting co-contraction, the co-activation strategies (anterior-posterior and medial-lateral
lower extremity muscles) exhibited by females may not be sufficient to generate sufficient
stiffness to maintain knee sagittal and frontal plane stability, which reduces the generation
of load at the knee joint and would also adversely affect ACL injury. It is worth noting,
however, that although some studies have explored neuromuscular control as a risk factor
for non-contact ACL injury during landing tasks, there is specificity in the movements of
ACL injury in different sport populations and the sport itself, for example, volleyball is a
jump landing movement [17], soccer is a cutting landing movement [15], and badminton is
a posterior lateral single-leg landing maneuver [18]. This study aims to focus on badminton
and compare the electromyography (EMG) signals and 3D kinematics of female and male
badminton players during the high-risk single-leg landing maneuver in an environment
as close to the playing field as possible. By combining EMG and kinematics, the study
explores the neuromuscular control factors that may contribute to the high incidence of
ACL injury in females and provides information for the prevention of an ACL injury.

In summary, this study aimed to compare the EMG signals and three-dimensional
kinematics of female and male badminton players during the single-leg landing maneuver.

2. Materials and Methods
2.1. Subjects

A total of 16 badminton players, including 8 males and 8 females, were recruited to
participate in this study. Females were 21.50 (±2.45) years old, 1.67 (±0.05) m tall, and
59.50 (±5.71) kg in mass, whereas males were 20.63 (±0.92) years old, 1.78 (±0.03) m
tall, and 71.63 (±9.97) kg in mass. All participants were recruited by Jeonbuk University
and the inclusion criteria were: (1) an experienced physiotherapist, to determine via
observation and brief assessment, that there is no significant restriction of movement or
muscle weakness; (2) no lower extremity pain before the test; and (3) subjects are required
to participate in organized training at least four times a week. For the standardized test, the
subjects were selected as badminton players with the right hand as the dominant hand. This
study was approved by the Ethics Committee of Jeonbuk University (JBNU2022-01-004-
002). Before participation in this study, all subjects were informed of the trial procedures
and read and signed the informed consent form.

2.2. Prepare for Testing

We collected trial data using 13 infrared cameras (OptiTrack, LEYARD, Buffalo Grove,
IL, USA) to capture the kinematic data of each participant. The cameras had a sampling rate
of 120 Hz. The Rizzoli Lower Body protocol integrates a novel marker placement for lower
body tracking. This marker set is designed to provide a complete description of the 3D
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segment and joint motion for analyzing the pelvis and lower extremity kinematics [19,20].
Retro reflective markers (N = 32) are located in the anatomical landmarks as shown in
Figure 1.
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Figure 1. Anatomical position of the participant’s pelvis and lower extremities for placement of reflex
markers (N = 32). The “R” and “L” represent the right and left sides, respectively.

Ground reaction force data were collected at 1200 Hz using an OR6-6-2000 force
platform (AMTI Inc.) from Newton, Maryland, USA with a maximum delay time of 6 ms.

For the EMG signal acquisition, we used a Trigno Avanti sensor (Delsys, Natick, MA,
USA; 3.7 cm × 2.7 cm). All EMG sensors (Trigno Avanti Sensor) had a common-mode
rejection ratio of 80 dB and were synchronized with kinematic and kinetic data by recording
software (OptiTrack, LEYARD, USA) and EMG was sampled at 1200 Hz. Surface electrodes
were selected from gluteus maximus (GMAX), gluteus medius (GMED), rectus femoris
(RF), medial hamstrings (semitendinosus, MH), lateral hamstrings (biceps femoris, LH),
medial gastrocnemius (MG), and lateral gastrocnemius (LG). The choice of the position of
each muscle EMG, and how the maximum voluntary isometric contraction was tested, is
shown in Table 1 [21].

The hair on the skin surface was shaved and cleaned with alcohol before the electrodes
were attached. After the skin was dry, the EMG electrodes were attached. At the same time,
motion tape was used to fix the electrodes and reduce motion artifacts [22]. The maximum
voluntary isometric contraction (MVC) test was performed on each muscle for 5 s in the
following manner (Table 1).

Fengcai’s badminton server SPT6000 (SPTLOOKER, Guangzhou, China) was used to
send the shuttlecock to the designated area in the same state. Subjects wear uniform shorts,
individual socks, and shoes, and use uniform rackets.
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Table 1. Muscle names, electrode site, and specific positions and maneuver for each muscle during
the maximum voluntary isometric contraction (MVC) test.

Muscle Electrode Site Position MVC Test Maneuver

Gluteus maxim
(GMAX)

Lateral 80% of the line
between the midpoint of the

sacrum and the greater
trochanter of the femur.

Prone

The stretch strap is fixed to the
posterior side of the distal thigh and
hip extension is performed with the

knee in 90 degrees of flexion.

Gluteus medius
(GMED)

Upper 20% of the line
between the greater trochanter
of the femur and the highest

point of the iliac spine.

Lateral prone

The stretch strap is fixed to the
lateral side of the distal thigh and
hip abduction is performed with

the knee flexed at 90 degrees.

Rectus femoris
(RF)

Upper 40% of the line between
the superior patella and the
anterior superior iliac spine.

Sitting

Knee flexion at 90 degrees, the
stretch strap is fixed on the anterior
side of the distal lower leg, perform

knee extension.

Medial hamstrings
(MH)

Lower 80% of the line of the
ischial tuberosity with the

medial popliteal crease.
Prone

Knee flexion 45 degrees, the stretch
strap is fixed on the back of the

distal lower leg, internal rotation of
the lower leg and perform

knee flexion.

Lateral hamstrings
(LH)

Lower 80% of the line of the
ischial tuberosity to the lateral

popliteal crease.
Prone

Knee flexion 45 degrees, the stretch
strap is fixed on the back of the

distal lower leg, external rotation of
the lower leg and perform

knee flexion.

Medial gastrocnemius
(MG)

Upper 85% of the medial
Achilles tendon in line with
the medial popliteal crease

Prone

Knee extension, stretch strap fixed
on the forefoot, internal rotation of

the lower leg and
perform plantarflexion.

Lateral gastrocnemius
(LG)

Upper 85% of the line
connecting the lateral Achilles
tendon to the lateral popliteal

crease

Prone

Knee extension, stretch strap fixed
on the forefoot, external rotation of

the lower leg and
perform plantarflexion.

2.3. Test Procedure

The laboratory design is shown in Figure 2.
The badminton serve position 1© is located at the intersection of the center line and the

serve line, and the badminton is sent to the designated area 2© (50 cm × 50 cm) in the same
state through the badminton serve machine, as referred to by our previous research [23].

Subjects performed a 10 min warm-up (jogging or swinging), and then performed the
single-leg landing maneuver test after a backhand side overhead stroke, which is considered
to be the maneuver with the highest incidence of ACL injuries [18]. A badminton coach
with around 10 years of experience as a competitive player demonstrated the footwork and
overhead stroke task to each of the subjects. Starting from the starting position, subjects
simulate a backhand side step to the left rear of the court, and after performing an overhead
stroke, the left leg lands on the force plate and they quickly return to the starting position.
Subjects simply hit the shuttlecock in their customary manner to the opposite back side
of the court area 3© (220 cm × 80 cm). Subjects were allowed to perform several exercises,
followed by three to five consecutive trials. The main maneuvers are shown in Figure 3.
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Figure 2. Experimental setup. Force plate (FP) and badminton serve machine position. The bad-
minton serve machine sends shuttlecocks from area 1© to area 2© which is 50 cm × 50 cm. The red
arrow represents the trajectory of badminton. The subject steps back from the starting point in a
left–back direction, then jumps and performs an overhead strike. The subject performs a single-leg
landing on the force plate and then returns to the starting position. Area 3© is the shuttlecock drop
point after hitting the shuttlecock.
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Figure 3. Events of badminton single-leg landing task.

2.4. Data Processing and Analysis

The kinematic data were processed by Visual 3d (C-Motion, Inc., Germantown, MD,
USA). The pelvis was defined relative to the global (laboratory) coordinate system and
assigned six (three translational and three rotational) degrees of freedom. Using the coda
model approach, the hip center is defined by the right and left anterior superior iliac spine
and the right and left posterior superior iliac spine, the knee center by the medial femoral
epicondyle and the lateral femoral epicondyle, and the ankle center by the medial and
lateral ankle [23]. The definition of the directions for the segments of the pelvis, thigh, and
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leg is as follows: the positive Y-axis points forward; the positive X-axis points inward; and
the positive Z-axis points upward. The angle of the hip joint is defined as the thigh’s angle
relative to the pelvis, the angle of the knee joint is defined as the leg’s angle relative to the
thigh, and the angle of the ankle joint is defined as the foot’s angle relative to the leg. The
motion of the hip and knee joints is defined as flexion/extension in the sagittal plane of the
medial-lateral X-axis, adduction/abduction in the coronal plane of the anterior-posterior
Y-axis, and internal/external rotation in the horizontal plane of the vertical Z-axis. The
motion of the ankle joint is defined as dorsiflexion and plantarflexion in the sagittal plane of
the medial-lateral X-axis, inversion/eversion in the coronal plane of the anterior-posterior
Y-axis, and abduction/adduction in the horizontal plane of the vertical Z-axis with the
direction determined by the right-hand screw rule. By setting the positive and negative
signs, the hip and knee directions are unified as positive for flexion, negative for extension,
positive for abduction, negative for adduction, positive for internal rotation, and negative
for external rotation. It should be noted that in ankle joint angles, the angle of 90 degrees
between the foot and the sagittal plane of the lower leg is defined as 0 degrees in anatomical
standing, dorsiflexion (positive) for upward and plantarflexion (negative) for downward,
eversion for positive, inversion for negative, adduction was positive and abduction was
negative.

We mainly processed and analyzed the muscle activity and co-contraction activity,
as well as kinematic data during the pre-landing preparation phase. The pre-landing
preparation phase was defined as the 100 milliseconds before initial contact (IC) with the
force plate, as this phase is considered to reflect the pre-activation status of the muscles
before landing [24,25]. The IC moment was defined as the first frame in which the force
plate data exceeded 10 N. We collated the kinematic data from 1 hz before the initial contact
moment as the kinematic data of the pre-landing preparation phase. To process and filter
the raw data, both isometric and dynamic tests underwent filtering using a fourth-order
Butterworth bandpass filter with a cut-off frequency range of 10–400 Hz. The signal was
then smoothed using a root mean square (RMS) algorithm with a window size of 0.04 s
and an overlap of 0.02 s between windows. To make the content easier to understand, we
first determined the average RMS amplitude for each muscle during the preparation phase
before landing on a single leg. Then, we normalized these values by comparing them to the
RMS values obtained during the MVC for each muscle. The hamstring co-contraction ratio
(M/LHAM) was calculated as the mean of MHAM RMS divided by the mean of LHAM
RMS [15]. The gastrocnemius co-contraction ratio (M/LGAS) was calculated as the mean
of MGAS RMS divided by the mean of LGAS RMS [15]. The hamstring/quadriceps co-
contraction ratio (H/Q) was calculated as the mean of the sum of MHAM RMS and LHAM
RMS activity divided by the mean of RF RMS activity [26]. The gastrocnemius/quadriceps
co-contraction ratio (GAS/Q) was calculated as the mean of the sum of MGAS RMS and
LGAS RMS activity divided by the mean of RF RMS activity [9].

Statistical analysis. Multivariate analysis of variance (MANOVA) was used to test the
statistical differences between the male and female badminton player groups. The outcome
variables were as follows: normalized EMG activity of lower limb muscles (MVC%); co-
contraction index of lower limb muscles; and hip-knee-ankle joint angle. Statistical analyses
were performed using SPSS 26.0 software (SPSS for Windows, Chicago, IL, USA) with a
significance level of p < 0.05.

3. Results

The mean and standard deviation of lower limb muscle activity during the landing
preparation phase of a single-leg landing task after a backhand side overhead stroke in
badminton, as shown in Figure 4.
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Figure 4. Mean and standard deviation of lower limb muscle activity during the preparation phase
before landing for the single-leg landing task in badminton. * Represents statistically significant
differences. GMAX: gluteus maximus, GMED: gluteus medius, RF: rectus femoris, MH: medial
hamstrings (semitendinosus), LH: lateral hamstrings (biceps femoris), MG: medial gastrocnemius,
and LG: lateral gastrocnemius.

In the badminton single-leg landing task, during the landing preparation phase,
the normalized muscle activity values of gluteus maximus were 44.92 ± 18.00 in female
badminton players and 20.34 ± 11.64 in males. The activity of the gluteus maximus
muscle in female badminton players was 24.58% higher than that of males and there was
a significant gender difference (p < 0.05). The normalized rectus femoris muscle activity
values were 41.56 ± 9.84 in female badminton players and 26.14 ± 10.46 in males. The
activity of the rectus femoris muscle was 15.42% higher in female badminton players than in
males, and thus, there was a significant gender difference (p < 0.05). The normalized medial
gastrocnemius muscle activity values were 37.39 ± 17.31 in female badminton players
and 19.11 ± 11.17 in males. The activity of the medial gastrocnemius muscle was 18.28%
higher in female badminton players than in males, and thus, there was a significant gender
difference (p < 0.05). The normalized muscle activity value of the lateral gastrocnemius was
36.86 ± 17.82 in female badminton players, compared to 13.59 ± 2.71 in males. The activity
of the lateral gastrocnemius muscle was 23.27% higher in female badminton players than
in males, and thus, there was a significant gender difference (p < 0.05).

In the single-leg landing task of badminton, the gender differences in lower limb
muscle co-contractions during the pre-landing preparation phase are shown in Figure 5.

The ratio of medial and lateral gastrocnemius co-contractions was 1.06 ± 0.22 in female
badminton players and 2.39 ± 1.27 in males, which is 1.33 higher in males than females,
and thus, there was a significant gender difference (p < 0.05).

The gender differences in the lower limb kinematic data of male and female badminton
players in the landing preparation position are shown in Table 2.

The knee valgus angle for female badminton players was (6.27 ± 2.75) degrees com-
pared to (1.72 ± 3.20) degrees for males. The valgus angle was 5.5 degrees higher than
among male players, and thus, there was a significant difference (p < 0.05).
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Figure 5. Badminton single-leg landing task, mean and standard deviation of lower limb muscle
co-contraction activity ratio during the preparation phase before landing. * Represents statistically
significant differences. H/Q: hamstring/quadriceps co-contraction ratio, M/LHAM: medial/lateral
hamstring co-contraction ratio, M/LGAS: medial/lateral gastrocnemius co-contraction ratio, GAS/Q:
gastrocnemius/quadriceps co-contraction ratio.

Table 2. Means and standard deviations (degrees) of hip-knee-ankle joint angles during the landing
preparation phase of the single-leg landing task in badminton. * Represents statistically significant
differences.

Variables Male Female F p-Value

Hip
Flexion (+)/extension (−) 11.26 ± 8.31 11.83 ± 8.60 0.018 0.8951

Abduction (+)/adduction (−) 36.33 ± 4.37 39.86 ± 5.59 1.981 0.1811
External (+)/internal rotation (−) 15.84 ± 5.32 17.94 ± 13.87 0.160 0.6950

Knee
Flexion (+)//extension (−) 19.47 ± 6.42 18.08 ± 7.33 0.163 0.6924

Valgus (+)//varus (−) 1.72 ± 3.20 6.27 ± 2.75 9.284 0.0087 *
External (+)/internal rotation (−) −4.39 ± 4.67 0.15 ± 4.29 4.105 0.0622

Ankle
Dorsiflexion (+)/plantar flexion (−) −39.92 ± 9.25 −33.39 ± 6.45 2.675 0.1242

Eversion (+)/inversion (−) 0.47 ± 3.45 −0.28 ± 4.32 0.058 0.8141
Abduction (+)/adduction (−) 16.98 ± 4.63 23.16 ± 6.75 4.395 0.0562

4. Discussion

The results of this study showed that female badminton players exhibited kinematic
characteristics combining muscle activity strategies of the large gluteus maximus, rectus
femoris, and gastrocnemius muscles and co-activation strategies of the large external medial
gastrocnemius muscles during the landing preparation phase compared to males. These
gender biases in neuromuscular control appear to place females at greater risk of cruciate
ligament injury.

The gluteus maximus is a major contributor to hip extension, abduction, and external
rotation strength. Several researchers have reported that a decreased hip muscle strength
(abduction and external rotation) is associated with risk factors for ACL injury (e.g., greater
knee valgus angle, knee valgus moment, and loss of frontal postural stability) among oth-
ers [27–29]. Prospective studies have shown that small hip abductors and external rotator
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muscle strength predict the risk of ACL injury [30]. Our study found that female badminton
players exhibited greater gluteus maximus muscle activity and greater valgus angle com-
pared to males. In studies addressing the triad of hip muscle strength, gluteus maximus
muscle activity, and valgus angle, it was shown that small hip muscle strength and large
gluteus maximus muscle activity was associated with a large valgus angle [16,27,31,32].
They concluded that when there is insufficient gluteus muscle strength to maintain dy-
namic valgus, participants can compensate by sending more neural signals to try to activate
as much gluteus muscle tissue as possible [27]. This suggests that individuals with low
gluteus strength are mechanically disadvantaged in resisting frontal plane knee motion and
may be more prone to hip muscle tissue fatigue [33]. Anne Benjaminse et al. demonstrated
in a review study the important effect of fatigue on ACL injury risk during exercise [34].
This seems to imply that the large gluteus maximus activation strategy and knee valgus
angle exhibited by female badminton players at high risk of injury are associated with
possibly weaker muscle strength in their hips. Therefore, if the generation of force required
to maintain stability is achieved by strengthening the hip muscles and less neural drive is
required, the risk of fatigue and ACL injury could be reduced. In addition, strengthening
the hip muscles may improve neural efficiency and reduce the need for gluteus maximus
muscle activity, thereby delaying the onset of fatigue. Notably, we did not test hip strength
in badminton players; therefore, further studies could identify this risk factor through
prospective studies with badminton players and demonstrate its effectiveness by designing
intervention experiments to improve the precise validity of our injury prevention strategy
for people at high risk of an ACL injury.

It is well known that the distal quadriceps are connected to the anterior proximal
tibia via the patellar ligament, and when smaller knee angles, specifically the patellar
tendon-tibial axis angle [35] and the ACL elevation angle [36] (the angle between the ACL
and the tibial plateau) simultaneously increases, this implies an increase in the horizontal
component of the knee extension forces generated by the quadriceps contraction, i.e., an
increase in the anterior proximal tibial shear force. Our study found that the activity level of
the rectus femoris muscle was higher in female badminton players, which is consistent with
the results of previous studies on the landing preparation phase by Chappell, J.D. et al. [37]
and Zazulak, B.T. et al. [38]. In previous studies, the rectus femoris dominant strategy
was considered to be the direct cause of cruciate ligament injuries. It is worth noting that
the function of the rectus femoris is thought to be related to the control of hip flexion and
extension, and knee flexion and extension; however, although female badminton players
in our study showed higher levels of rectus femoris activity, no differences were found
between the hip and knee in sagittal plane angles, which may mean that this phenomenon
cannot be explained in terms of lower limb segments alone. Earlier studies have shown
that muscle activity in the lower limbs can be altered by changes in trunk and pelvis
position [39,40]. This dominant rectus femoris strategy can be explained by whole body
movement patterns and is an adaptive response to the posture observed in women during
landing. Therefore, future studies investigating gender differences in ACL injuries during
functional tasks should link local knee stability to whole body biomechanical factors.
Further research should investigate the influence of trunk kinematics and muscle activity
on risk factors for ACL injury in women.

During the landing preparation phase, female badminton players showed greater
activity of both medial and lateral gastrocnemius muscles when performing the single-leg
landing task, compared to male badminton players. This gender difference in neuromuscu-
lar control strategy has been reported in previous landing tasks [12,41]. Based on models
and in vivo studies, some arguments have linked gastrocnemius contraction to injury risk
factors in ACL [9,42]. Navacchia, A. et al. [9] estimated knee anterior shear force during
the landing task by EMG-based musculoskeletal models, and their results showed that
the gastrocnemius was the largest muscle contributor to peak tibial anterior shear force.
Adouni, M. et al. [42] examined the activity of individual gastrocnemius muscles at dif-
ferent knee angles (0–90 degrees), all of which greatly increased ACL stress. A study that
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investigated the effect of gastrocnemius stimulation levels on tibial anterior displacement
by ultrasonography demonstrates that gastrocnemius increases tibial anterior displacement
when activated regardless of the stimulation level; thus, supporting gastrocnemius’ role as
an antagonist of the ACL [43]. They suggest that this association of the gastrocnemius with
the ACL may be because the gastrocnemius is located posteriorly to the knee joint, proxi-
mally at the femur originating at the medial and lateral femoral epicondyles and distally
ending at the heel tuberosity, spanning the posteriorly protruding tibial plateau. Further-
more, when the larger gastrocnemius is activated, the increased muscle volume generating
compressive forces will result in increased anterior shear forces and increased anterior
displacement of the tibia [43]. Another in vivo study showed that when the gastrocnemius
muscle contracts, this coupling will make the strain on the ACL greater when combined
with the knee valgus angle, and in our study, female badminton players exhibited this
combination. In opposition to this, some arguments suggest that gastrocnemius activity
plays a protective role in the ACL [44,45]. Morgan, K.D. et al. [45] and Ali, N. et al. [44]
studied the single-leg landing task in the same way as multi-musculoskeletal modeling,
and their results showed that an increase in gastrocnemius muscle strength was associated
with a decrease in stress in tibial anterior shear or ACL. Additionally, this difference may
be related to the way of modeling they used.

Furthermore, our study discovered that there was variability in the co-contraction of
the medial and lateral gastrocnemius muscles with female badminton players showing a
smaller ratio of co-activation of the medial and lateral gastrocnemius muscles, compared
to males. This is similar to the results of Beaulieu, M.L. et al. [12]. In terms of the frontal
plane of the knee, the medial and lateral muscles play opposite roles to each other with the
medial gastrocnemius more inclined to produce varus angulation and varus loading of the
knee, whereas the lateral gastrocnemius is more inclined to produce valgus angulation and
valgus loading [46,47]. The co-contraction of both helps to balance the varus and valgus
moments and maintain frontal plane stability, and a greater co-contraction ratio of the
medial and lateral gastrocnemius in males provides assistance in preventing greater valgus
loads and angles, which helps to maintain knee stability and may be more beneficial in
preventing the development of risk factors for ACL injury. Conversely, this co-contraction
pattern makes female badminton players potentially at greater risk of developing ACL
injuries, compared to males.

There are several limitations to this study. Firstly, there are limitations to the data
collection process for both EMG and 3D motion analysis [48,49]. Model measurement errors,
including misaligned knee markers, errors in skin movement artefacts, and 3D analysis of
EMG signals are highly complex, stochastic, and susceptible to inherent individual factors
that may affect the results of the data. However, although 3D motion analysis systems have
their limitations, their widespread use is why we believe they are still a valid means of
analysis. To reduce the effects of the high variability inherent in EMG signals, we analyzed
more trial data for each participant; thus, ensuring a higher level of confidence in our
findings. Secondly, the high-risk task of a cruciate ligament injury in badminton players
has been performed in a laboratory setting and although not a complete substitute for a
field setting, we modeled this potentially injurious action as realistically as possible, which
allowed us to isolate more credible information, compared to traditional studies.

5. Conclusions

During the landing preparation phase of the badminton single-leg landing task, there
were significant gender differences in neuromuscular control (muscle activity patterns,
movement patterns) between badminton players. Female badminton players exhibit neu-
romuscular control strategies that may be inadequate for ACL protection that may be a
potential risk factor for a high incidence of ACL injury. In the future, when developing
programs to prevent ACL injuries in female badminton players could consider targeting
the optimization of neuromuscular control during the pre-landing preparation phase.
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