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Abstract: Background: Skeletal muscle mass (SMM) and fat mass (FM) are essentially required for
health and quality of life in older adults. Objective: To generate the best SMM and FM prediction
models using machine learning models incorporating socioeconomic, lifestyle, and biochemical
parameters and the urban hospital-based Ansan/Ansung cohort, and to determine relations between
SMM and FM and metabolic syndrome and its components in this cohort. Methods: SMM and FM
data measured using an Inbody 4.0 unit in 90% of Ansan/Ansung cohort participants were used
to train seven machine learning algorithms. The ten most essential predictors from 1411 variables
were selected by: (1) Manually filtering out 48 variables, (2) generating best models by random grid
mode in a training set, and (3) comparing the accuracy of the models in a test set. The seven trained
models’ accuracy was evaluated using mean-square errors (MSE), mean absolute errors (MAE),
and R2 values in 10% of the test set. SMM and FM of the 31,025 participants in the Ansan/Ansung
cohort were predicted using the best prediction models (XGBoost for SMM and artificial neural
network for FM). Metabolic syndrome and its components were compared between four groups
categorized by 50 percentiles of predicted SMM and FM values in the cohort. Results: The best
prediction models for SMM and FM were constructed using XGBoost (R2 = 0.82) and artificial neural
network (ANN; R2 = 0.89) algorithms, respectively; both models had a low MSE. Serum platelet
concentrations and GFR were identified as new biomarkers of SMM, and serum platelet and bilirubin
concentrations were found to predict FM. Predicted SMM and FM values were significantly and
positively correlated with grip strength (r = 0.726) and BMI (r = 0.915, p < 0.05), respectively. Grip
strengths in the high-SMM groups of both genders were significantly higher than in low-SMM
groups (p < 0.05), and blood glucose and hemoglobin A1c in high-FM groups were higher than in
low-FM groups for both genders (p < 0.05). Conclusion: The models generated by XGBoost and ANN
algorithms exhibited good accuracy for estimating SMM and FM, respectively. The prediction models
take into account the actual clinical use since they included a small number of required features,
and the features can be obtained in outpatients. SMM and FM predicted using the two models well
represented the risk of low SMM and high fat in a clinical setting.

Keywords: skeletal muscle mass; fat mass; machine learning; grip strength; prediction model;
platelet; C-reactive protein

1. Introduction

Societal aging is a global phenomenon, and in Korea, people aged over 65 years
constituted 10.7% of the population in 2010, 12.7% in 2014, and 14.3% in 2020. Sarcopenia is
characterized by a decline in skeletal muscle mass (SMM) and reduced age-related muscle
strength [1]. According to reports, SMM and muscle strength begin to reduce after middle
age at an annual rate of 1–2% per year after age 50 [2].

SMM loss increases the risk of falls, comorbidities, and premature death [3]. Main-
taining SMM plays a crucial role in promoting quality of life and reducing mortality and
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morbidity in older adults [4]. SMM plays an essential role not only in daily activities but
also in many metabolic pathways. SMM is an essential part of insulin stimulation and
acts to maintain glucose homeostasis [3] and is also involved in fatty acid metabolism.
Disorders of SMM metabolism lead to insulin resistance, metabolic syndrome, and obe-
sity [3]. In older adults, SMM reduction is linked to increases in fat mass [5]. Furthermore,
the prevalence of obesity is increasing rapidly [6], and obesity increases the risk of various
metabolic diseases, such as diabetes and cardiovascular disease [6]. In addition, obesity
and SMM loss can act synergistically to cause more severe health problems [7,8].

The potential mechanisms responsible for SMM reduction involve changes in anabolic
hormonal signaling, protein oxidation, oxidative stress, inflammation, metabolic stress,
and neuromuscular junction degeneration, and these processes replace muscle fiber with
fats [9,10]. SMM reduction and obesity have many overlapping causes, and it is specu-
lated that the two are closely related and exacerbate each other [7,8]. Researchers have
explored the unmodifiable and modifiable risk factors of SMM and FM over the past few
decades. However, no research study has investigated the relative importance of a series
of unmodifiable and modifiable risk factors. The random forest model of the machine
learning approach can find potential biomarkers among many candidates and rank these
by relative importance, thus this model has been applied in many studies [11–13].

SMM and FM can be estimated by bioelectric impedance (BIA), dual-energy X-Ray ab-
sorptiometry (DXA), magnetic resonance imaging (MRI), and computed tomography (CT).
However, all of these techniques have limitations in measured SMM and FM accuracy [14].
SMM and FM have been measured in a small number of cohort studies. In KoGES, SMM
and FM were measured by BIA only in the Ansan/Ansung cohort (n = 8842) but not the
city hospital cohort (n = 56,486). However, since the Ansan/Ansung cohort was relatively
small, it was unsuitable for investigations aimed at identifying novel risk regulators of
SMM or FM using association methods. Nonetheless, best prediction algorithms based on
integrating the relative importance of risk factors from the Ansan/Ansung cohort using a
machine learning approach can be used to predict SMM and FM [12,15]. We hypothesized that
the best SMM and FM prediction models could be generated from the Ansan/Ansung cohort
using the machine learning approach, and the metabolic characteristics and grip strength
were different according to the predicted SMM and FM in the urban hospital-based cohort.
We aimed to examine this hypothesis in adults aged > 40 years in two KoGES cohorts.

2. Methods
2.1. Participants

KoGES included the Ansan/Ansung cohort and the urban hospital-based cohort. Par-
ticipants were aged 51.97 ± 8.85 and residents of Ansan City (a large city area) or Ansung
City (a small city area) from 2001 to 2007. In Ansan/Ansung cohort, body compositions,
including SMM and FM, were measured using Inbody 4.0 (Inbody, Seoul, South Korea).
After excluding participants lacking SMM and FM data, 6657 participants (3216 men and
3441 women) were included in the present study, and 1411 variables were used to build
predictive models of SMM and FM. Ansan/Ansung cohort was used to generate the best
prediction model for SMM and FM using a machine learning approach.

The urban hospital-based cohort is another KoGES cohort conducted from 2004 to
2013 and had 53,843 participants, and the predictive model was applied to predict SMM
and FM of the participants in this cohort. However, body compositions, including SMM
and FM, were not collected. After excluding participants with missing data for predictive
model parameters, 31,025 participants (including 10,370 men and 20,655 women) aged
52.23 ± 8.1 were included in the present study. The age distribution of Ansan/Ansung and
urban hospital-based cohorts were similar (Supplementary Figure S1A,B).

The study protocol was approved by the Institutional Review Board of the Korea
Centers for Disease Control and Prevention (KBP-2015-055) and Hoseo University (1041231-
150811-HR-034-01). Written informed consent was obtained from all participants.
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2.2. Experiment Design

The present study was conducted in three parts (Figure 1). First, the sample sizes
of the training and testing sets were determined using the G-power test in the criteria
of effect size, power, and significance level at 0.1, 0.01, and 0.99, respectively. A sample
size of 656 was found to be suitable. Thus, the testing set was defined as 10% of the
Ansan/Ansung cohort (n = 666). We manually excluded participants with missing values
and duplicates from the 1411 in the Ansan/Ansung cohort. Forty-eight variables were
used to train a random forest algorithm to predict SMM and rated in order of importance.
In order to reduce the number of variables required to predict SMM using the machine
learning approach, we removed the variables one by one from low to high importance and
iteratively trained the random forest model until the mean square errors (MSEs) of the
model did not decrease significantly after eliminating one variable each. Finally, when the
top 10 variables had been identified (Figure 1A), we applied the same screening method to
the prediction of FM.

The second step was to train seven algorithms using the selected ten variables. The
seven machine learning algorithms used were linear regression, support vector machines
(SVM), XGBoost, decision tree, random forest, K-nearest neighbor (KNN), and artificial
neural network (ANN). The best combination of variables was selected using a random
grid search method for each algorithm, and each trained algorithm was used to calculate
SMM and FM in the test set. The best algorithm was selected by comparing MSEs, mean
absolute errors (MAEs), and R2 values of SMM and FM predicted by each algorithm in the
test set.

The third step involved predicting the SMMs and FMs of participants in the urban
hospital-based cohort using the selected best models for SMM and FM. Clinical characteris-
tics of the participants with a high or low SMM or FM in a city hospital-based cohort are
provided in Figure 1B.
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Figure 1. Experimental flowchart. (A) Flow to filter features for SMM and FM in Ansan/Ansung cohort. (B) Flow to generate the 
best model by a random grid model in the training set and checking the error in the test set. (C) Flow to analyze clinical character-
istics of the participants with high or low skeletal muscle mass (SMM) and fat mass (FM) of the urban hospital-based cohort. 
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was used when training each model [16]. A hyperparameter range was set for each model, 
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within the assigned hyperparameter range. Hyperparameter combinations with the best per-
formances were used as best models. The random forest and XGBoost algorithms returned 
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Figure 1. Experimental flowchart. (A) Flow to filter features for SMM and FM in Ansan/Ansung cohort. (B) Flow to
generate the best model by a random grid model in the training set and checking the error in the test set. (C) Flow to analyze
clinical characteristics of the participants with high or low skeletal muscle mass (SMM) and fat mass (FM) of the urban
hospital-based cohort.

2.3. Training for SMM and FM Prediction Model

Participants in the Ansan/Ansung cohort were randomly divided 90%:10% to a
training set or a test set. The mean age in the SMM training set cohort was 51.38 ± 8.9,
and the mean age in the test set cohort was 51.17 ± 8.9 (Supplementary Figure S1C).
For FM, the corresponding mean ages were 51.39 ± 8.91 and 51.42 ± 8.72, respectively
(Supplementary Figure S1D). The train-test-split package of sklearn was used to train the
seven algorithms. In order to find the optimal hyperparameter settings of the models,
a random grid search method was used when training each model [16]. A hyperparameter
range was set for each model, and the best combination of ten variables was generated from
300 variable combinations within the assigned hyperparameter range. Hyperparameter
combinations with the best performances were used as best models. The random forest
and XGBoost algorithms returned the best combinations during these processes, each
containing ten important variables for SMM and FM. The linear regression model was used
to generate correlations between included variables.

2.4. Verifying the Predictive Models

The trained models’ accuracies were evaluated using the remaining 10% of the
Ansan/Ansung cohort as a test set by calculating mean-square errors (MSE), mean absolute
errors (MAE), and R2 values of the seven trained models. We also evaluated absolute
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errors in three SMM and FM ranges by quintiles (Q1, Q2–Q4, and Q5) to check accuracy
differences according to the ranges of SMMs and FMs. The optimal SMM prediction model
was XGBoost, and its optimal hyperparameters were as follows—84 of trees and 2 of max
depth. The optimal FM prediction model was ANN, and its optimal hyperparameter was
as follows—10 artificial neurons in the input layer, six artificial neurons in a hidden layer,
“relu” of the activation function, and one artificial neuron in the output layer.

2.5. Predictions of SMM and FM in the Urban Hospital-Based Cohort Using the Predictive
Algorithm Models

We used the two trained models by XGBoost and ANN algorithm to predict SMM
and FM, respectively, in the urban hospital-based cohort and investigated the relationships
between SMM and grip strength and between FM and BMI. We dichotomized subjects in
the urban hospital-based cohort into 4 SMM/FM groups using SMM first quartile cutoffs of
48 kg for men and 35 kg for women and FM cutoffs of 25% for men and 30% FM for women.
Accordingly, the four groups were: the HMLF group (high SSM and low FM); the HMHF
group (high SSM and high FM), the LMLF group (low SSM and low FM), and the LMHF
group (low SSM and high FM). Adjusted means and standard errors were determined
for metabolic syndrome component and lifestyle variables after adjusting for age, gender,
residence area, education, income, and BMI.

2.6. Statistical Analysis

The normality test of each continuous variable was determined, and the variables
showed normal distribution. The significances of differences between variables for men
and women were determined using the two-sample t-test in the Ansan/Ansung and urban
hospital-based cohorts. Linear relationships were analyzed using Pearson’s correlation
coefficients. Adjusted means and standard errors were calculated after adjusting for age,
genders, residence area, education, income status, and BMI in the four groups (described
above) of the urban hospital-based cohort. One-way ANOVA was used to determine the
significances of intergroup differences. The analysis was performed using SPSS version
20 (IBM, Chicago, IL, USA), and statistical significance was accepted for p-values < 0.05.
Results are presented as means ± standard deviations.

3. Results
3.1. Metabolic Characteristics of the Ansan/Ansung and Urban Hospital-Based Cohorts

The mean subject age was ~51 in the Ansan/Ansung cohort and 54 in the urban
hospital-based cohort (Table 1). BMI and waist and hip circumferences were similar in both
cohorts. SMM was 37.7 ± 4.5 kg for men and 28.4 ± 3.2 kg for women in the Ansan/Ansung
cohort, but it was not provided in the urban hospital-based cohort (Table 1). Grip strength
was not measured in the Ansan/Ansung cohort but was higher for men than women in
the urban hospital-based cohort (Table 1).

Metabolic parameters, including glucose and lipid levels, inflammation, and blood
pressure, were better in the urban hospital-based cohort than in the Ansan/Ansung cohort,
and with the exceptions of serum total cholesterol and platelet concentrations, which were
better in women than men in both cohorts (Table 1). Energy intakes and proportions of
carbohydrates, protein, and fats consumed were similar in the two cohorts. Women had
higher energy intakes based on estimated energy requirements and carbohydrate intakes
than men but had lower fat intakes than men (Table 1). Anthropometric and metabolic
parameters showed similar gender relationships in both cohorts.
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Table 1. The characteristics of participants according to the genders in the Ansan/Ansung and urban hospital-based cohorts.

Variables

Ansan/Ansung Cohort Urban Hospital-Based Cohort

Men
(3216)

Women
(3441)

Men
(n = 10,370)

Women
(n = 20,655)

Age (years) 50.6 ± 8.46 51.8 ± 8.88 *** 55.2 ± 8.30 53.1 ± 7.75 ***
Body mass index (kg/m2) 24.4 ± 2.86 24.8 ± 3.24 *** 24.5 ± 2.71 23.6 ± 2.98 ***
Waist circumferences (cm) 83.6 ± 7.51 80.6 ± 9.49 *** 85.5 ± 7.49 77.8 ± 8.05 ***
Hip circumferences (cm) 94.4 ± 5.54 94.1 ± 5.96 95.4 ± 5.71 92.8 ± 5.8 ***
Skeletal muscle mass (kg) 37.7 ± 4.51 28.3 ± 3.21 *** - -

Fat mass (kg) 15.2 ± 4.81 19.0 ± 5.29 *** - -
Grip strength (kg) - - 38.5 ± 0.09 23.3 ± 0.04 ***

Serum glucose (mg/dL) 116 ± 16.3 115 ± 19.2 100 ± 22.9 93.8 ± 18.1 ***
Blood HbA1c (%) 5.78 ± 0.02 5.73 ± 0.01 5.78 ± 0.01 5.68 ± 0.005 ***

SBP (mmHg) 75.8 ± 11.4 72.9 ± 11.9 *** 38.5 ± 0.09 23.3 ± 0.04 ***
DBP (mmHg) 91.1 ± 24.4 85.2 ± 20.3 *** 100 ± 22.9 93.8 ± 18.1 ***

Serum triglyceride (mg/dL) 177 ± 118 146 ± 86.5 *** 148 ± 102 114 ± 74.0 ***
Serum HDL (mg/dL) 43.4 ± 9.69 45.9 ± 10.2 *** 50.2 ± 12.3 57.6 ± 13.7 ***

Serum total cholesterol (mg/dL) 194 ± 36.3 192 ± 36.2 ** 193 ± 35.9 201 ± 36.3 ***
Serum CRP (mg/dL) 0.23 ± 0.44 0.21 ± 0.41 0.16 ± 0.44 0.13 ± 0.38 ***

Serum total bilirubin (mg/dL) 0.73 ± 0.37 0.54 ± 0.26 *** 0.83 ± 0.34 0.67 ± 0.26 ***
Blood platelet (103/µL) 259 ± 64.9 271 ± 63.6 *** 237 ± 54.1 262 ± 59.8 ***

GFR (mL/min) 77.7 ± 8.97 83.7 ± 15.7 *** 84.3 ± 14.8 120 ± 20.9 ***
Energy intake (EER%) 96.4 ± 32.3 104 ± 38.6 *** 90.8 ± 25.9 101 ± 32.9 ***
CHO intake (energy%) 69.1 ± 6.48 71.5 ± 6.77 *** 71.0 ± 7.03 71.8 ± 7.14 ***

Protein intake (energy%) 13.9 ± 2.29 13.6 ± 2.37 *** 13.4 ± 2.54 13.4 ± 2.57
Fat intake (energy%) 15.7 ± 4.98 13.8 ± 5.26 *** 14.5 ± 5.49 13.9 ± 5.56 ***

- No measurement in the cohort. SBP: Systemic blood pressure; DBP: Diastolic blood pressure; HDL: Serum high-density lipoprotein;
CRP: Serum C-reactive protein; GFR: Glomerular filtration rate; HbA1C: Glycosylated hemoglobin; CHO, Carbohydrate; energy %,
the percentage intake of energy. ** Significantly different from the men group in each cohort at p < 0.01, *** at p < 0.001.

3.2. Relative Importance of Parameters in the Random Forest and XGBoost Prediction Models

Random forest and XGBoost algorithms in the seven trained ones returned the impor-
tance of features (Figure 2A,B). Of these features, hip circumferences and BMI were the most
important predictors for SMM, whereas BMI and gender were for FM. According to the
linear regression analysis, hip circumference, BMI, waist circumference, and total activity
were positively associated with SMM, whereas age, glomerular filtration rate (GFR), female
gender, and serum concentrations of total cholesterol, triglyceride, and platelets exhibited
negative associations (Figure 2A). FM was predicted using the method used for SMM.
Parameters with high relative importance were BMI, gender, hip circumference, and waist
circumference in both algorithms, such as random forest and XGBoost. BMI, female, hip
circumference, waist circumference, and serum triglyceride, total cholesterol, total bilirubin,
and CRP concentration positively influenced FM prediction. However, serum platelet con-
centrations and total activity were negatively affected by physical activity serum platelet
concentration (Figure 2B).



J. Clin. Med. 2021, 10, 2133 7 of 15J. Clin. Med. 2021, 10, 2133 7 of 15 
 

 

 
(A) 

 
(B) 

Figure 2. The relative importance of variables for predicting SMM and FM, as determined by the random forest and 
XGBoost algorithm. (A) Skeletal muscle mass (SMM); (B) fat mass (FM). BMI, body mass index; C., circumferences; GFR, 
glomerular filtration rate; Total chol., serum total cholesterol concentrations; TG, serum triglyceride concentrations. 

3.3. Accuracies of the Predictive Models for SMM and FM Using XGBoost and ANN Algorithm 
in the Test Set  

The MSE and MAE values of the XGBoost SMM predictive models were the smallest, 
and R² was close to 1, indicating the model using the XGBoost algorithm exhibited strong 
relationships. The model’s MSE and MAE values for FM prediction using the ANN algo-
rithm were the smallest, and its R² was also close to 1 (Table 2). 

The random forest prediction model was applied to seven machine learning algo-
rithms (Table 2, Figure 3A,B). Predicted SMM had an absolute error of 7% in the test set. 
XGBoost was the best predictive model for SMM. Predicted SMM by XGBoost was di-
vided into three groups by 20th and 80th percentiles. Mean square errors were lowest in 
the 20th–80th group for SMM prediction, and the absolute error was < 2%. Mean square 
errors were higher in the < 20th and > 80th percentile groups than in the 20th–80th per-
centile. Linear regression, XGBoost, random forest, and ANN models showed the lowest 

Figure 2. The relative importance of variables for predicting SMM and FM, as determined by the random forest and
XGBoost algorithm. (A) Skeletal muscle mass (SMM); (B) fat mass (FM). BMI, body mass index; C., circumferences; GFR,
glomerular filtration rate; Total chol., serum total cholesterol concentrations; TG, serum triglyceride concentrations.

3.3. Accuracies of the Predictive Models for SMM and FM Using XGBoost and ANN Algorithm in
the Test Set

The MSE and MAE values of the XGBoost SMM predictive models were the smallest,
and R2 was close to 1, indicating the model using the XGBoost algorithm exhibited strong
relationships. The model’s MSE and MAE values for FM prediction using the ANN
algorithm were the smallest, and its R2 was also close to 1 (Table 2).
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Table 2. Accuracy of prediction models using the test set of the Ansan/Ansung cohorts.

Machine Learning Algorithm
Prediction of SMM Prediction of FM

MSE a MAE b R2 c MSE a MAE b R2 c

Linear regression 2.60 2.03 0.82 1.86 1.48 0.89
Support Vector Machines 2.71 2.12 0.80 1.98 1.52 0.87

XGBoost 2.56 2 0.82 1.82 1.43 0.89
Decision Tree 2.81 2.22 0.78 2.21 1.75 0.84

Random Forest 2.65 2.09 0.81 1.80 1.41 0.89
K-Nearest Neighbor (KNN) 3.08 2.4 0.74 2.16 1.68 0.85

Artificial neural network (ANN) 2.57 2 0.82 1.79 1.4 0.89

A prediction model was generated by training the results using 90% of Ansan/Asung cohort participants, and the accuracy of the
prediction model was evaluated in the test set using mean square error (MSE) a, mean-absolute-error (MAE) b, and correlation efficiency of
determination (R2) c to predict skeletal muscle mass (SMM) and fat mass (FM). Bold values were corresponding to the best algorithm.

The random forest prediction model was applied to seven machine learning algorithms
(Table 2, Figure 3A,B). Predicted SMM had an absolute error of 7% in the test set. XGBoost
was the best predictive model for SMM. Predicted SMM by XGBoost was divided into
three groups by 20th and 80th percentiles. Mean square errors were lowest in the 20th–80th
group for SMM prediction, and the absolute error was <2%. Mean square errors were
higher in the <20th and >80th percentile groups than in the 20th–80th percentile. Linear
regression, XGBoost, random forest, and ANN models showed the lowest absolute errors.
Since the absolute error of the best prediction model for SMM was highest in the <20th
percentile group, it was unsuitable for subjects with a low SMM (Figure 3A).
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Figure 3. Absolute errors of SMM prediction with ranges in the test set for the seven machine learning algorithms. (A)
Skeletal muscle mass (SMM); (B) fat mass (FM). Absolute errors were calculated by subtracting actual values from predicted
values. The SMM and FM were divided into quintiles and Q1, Q2–Q4, and Q5. The absolute errors of predicted SMM and
FM by XGBoost and ANN models were calculated in each of these three ranges.

In the FM predictive models provided by seven machine learning algorithms,
the absolute error percentage in overall FM was ~10%, and it was bigger for FM than
SMM. The prediction models generated by XGB, random forest, and ANN algorithm had
the lowest absolute errors for FM prediction in all FM ranges. The absolute error was ~5%
in the 20th–80th percentile range for the ANN model, and the prediction of FM in the
> 80th percentile range exhibited a much higher absolute error value (Figure 3B).

3.4. Anthropometric and Metabolic Parameters According to Predicted SMM and FM in Men and
Women in the Urban Hospital-Based Cohort

Since men and women had significantly different SMM and FM, SMM and FM cutoffs
were defined separately for men and women (Tables 3 and 4). The cutoffs (75th percentiles)
of SMM for men and women were 48 and 36 kg, respectively, whereas those of FM were
25% and 30%, respectively. Predicted SMM increased in the order LMLF, LMHF, HMLF,
and HMHF, whereas predicted FM reduced HMHF, LMHF, HMLF, and LMLF. As was
expected, BMI and waist and hip circumferences were higher in the HMHF, LMHF, HMLF,
and LMLH groups, and order was similar to SMM and FM. However, grip strength was
highest in the HMLF group and lowest in the LMHF group.
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Table 3. Adjusted means 1 and standard errors in anthropometric and biochemical parameters according to skeletal muscle
mass (SMM) and fat mass (FM) in men at the urban hospital-based cohort.

Metabolic Parameters HMLF
(n = 4448)

HMHF
(n = 3201)

LMLF
(n = 2517)

LMHF
(n = 231)

Predicted SMM (kg) 38.7 ± 0.03 b 41.3 ± 0.05 a 34.3 ± 0.03 d 35.0 ± 0.06 c

Predicted FM (%) 22.4 ± 0.03 c 27.3 ± 0.04 a 20.1 ± 0.06 d 26.6 ± 0.15 b

Body mass index (kg/m2) 24.1 ± 0.02 c 27.0 ± 0.04 a 21.8 ± 0.04 d 24.6 ± 0.10 b

Waist circumferences (cm) 84.7 ± 0.08 c 92.5 ± 0.10 a 78.3 ± 0.11 d 85.4 ± 0.29 b

Hip circumferences (cm) 95.6 ± 0.05 b 100 ± 0.09 a 89.2 ± 0.07 d 91.8 ± 0.17 c

Grip strength (kg) 39.9 ± 0.13 a 38.6 ± 0.17 b 36.3 ± 0.16 c 33.8 ± 0.54 d

Serum glucose (mg/dL) 98.6 ± 0.33 b 102 ± 0.40 a 98.6 ± 0.46 b 102 ± 1.94 a

Blood HBA1C (%) 5.70 ± 0.01 b 5.93 ± 0.01 a 5.72 ± 0.02 b 5.91 ± 0.06 a

Serum triglyceride (mg/dL) 141 ± 1.56 b 177 ± 1.87 a 124 ± 1.73 b 173 ± 6.90 a

Serum HDL (mg/dL) 50.2 ± 0.18 b 46.9 ± 0.18 c 54.3 ± 0.27 a 49.2 ± 0.82 b

GFR (mL/min) 84.0 ± 0.22 bc 82.9 ± 0.27 c 86.3 ± 0.29 a 85.4 ± 0.93 ab

Alcohol intake (g/day) 39.0 ± 1.09 a 39.8 ± 1.06 a 29.1 ± 0.77b 32.7 ± 3.24 b

HBA1C: Glycosylated hemoglobin, GFR: estimated glomerular filtration rate. HDL: Serum high-density lipoprotein, HbA1C: Glycosylated
hemoglobin, GFR: Estimated glomerular filtration rate. HMLF: High SSM and low fat-per, HMHF: High SSM and high fat-per, LMLF: Low
SSM and low fat, LMHF: low SSM and high fat-per. The cutoff of SMM and fat mass was 48kg and 25%, respectively. 1 After adjusting
for age, gender, residence area, education, and income status, and BMI. a,b,c,d Different superscript letters on the means in the same row
indicated significant differences between the groups by the Duncan test.

Table 4. According to skeletal muscle mass (SMM) and fat mass (FM) in women at the urban hospital-based cohort, adjusted
means and standard errors in anthropometric and biochemical parameters.

Metabolic parameters HMLF
(n = 5220)

HMHF
(n = 10,522)

LMLF
(n = 3615)

LMHF
(n = 1368)

Predicted SMM (kg) 27.8 ± 0.02 b 29.3 ± 0.02 a 25.0 ± 0.02 d 25.4 ± 0.02 c

Predicted FM (%) 27.6 ± 0.03 c 34.0 ± 0.03 a 26.2 ± 0.04 d 32.2 ± 0.06 b

Body mass index (kg/m2) 21.8 ± 0.02 c 25.5 ± 0.02 a 20.6 ± 0.03 d 23.4 ± 0.04 b

Waist circumferences (cm) 74.3 ± 0.07 c 82.6 ± 0.07 a 69.4 ± 0.09 d 76.6 ± 0.14 b

Hip circumferences (cm) 91.3 ± 0.05 b 96.4 ± 0.05 a 85.9 ± 0.06 d 89.04 ± 0.08 c

Grip strength (kg) 24.6 ± 0.08 a 23.3 ± 0.06 b 22.6 ± 0.09 c 20.5 ± 0.13 d

Serum glucose (mg/dL) 90.8 ± 0.19 d 95.4 ± 0.19 b 92.5 ± 0.28 c 96.4 ± 0.70 a

Blood HBA1C (%) 5.52 ± 0.01 d 5.76 ± 0.01 b 5.61 ± 0.01 c 5.85 ± 0.02 a

Serum triglyceride (mg/dL) 92.3 ± 0.87 d 125 ± 0.77 b 104 ± 1.04 c 137 ± 2.07 a

Serum HDL (mg/dL) 60.3 ± 0.19 b 55.1 ± 0.12 c 61.2 ± 0.25 a 55.8 ± 0.36 c

GFR (mL/min) 122 ± 0.28 a 120 ± 0.21 b 118 ± 0.34 c 116 ± 0.59 d

Alcohol intake (g/day) 6.89 ± 0.21 a 6.39 ± 0.41 a 4.81 ± 0.23 b 3.14 ± 0.32 c

HBA1c: Glycosylated hemoglobin, GFR: Estimated glomerular filtration rate, HDL: Serum high-density lipoprotein. HMLF: High ASM and
low fat-per, HMHF: High SSM and high FM, LMLF: Low SSM and low FM, LMHF: Low SSM and high FM. The cutoffs of SMM and FM
were 36 kg and 30%, respectively. After adjusting for age, gender, residence area, education, and income status, and BMI. a,b,c,d Different
superscript letters on the means in the same row indicated significant differences between the groups by the Duncan test.

In men, serum glucose and HbA1c concentrations were higher in the high-fat groups,
regardless of SMM. Serum triglyceride concentrations reduced in the order LMLF, HMLF,
and HMHF = LMHF, whereas serum HDL concentrations increased in the order HMHF,
LMHF = HMLF, and LMLF. GFR was higher for a low SMM and a high FM. SMM and
waist and hip circumferences in women showed a similar trend to those observed in men.
Grip strength was highest in the HMLF group and lowest in the LMHF group. In women,
serum concentrations of glucose and HbAlc were higher in the HF than in the LF groups
regardless of SMM. GFR exhibited different trends in men and women. In men, GFR was
higher for low SMM and FM than for high SMM and FM, but in women, GFR was higher
in high SMM and low-FM than for low SMM and high FM.
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3.5. Linear Relationship between SMM and Grip Strength in the Urban Hospital-Based Cohort

Since grip strength is positively correlated with SMM and negatively associated with
sarcopenia [1,2], the XGBoost model’s reliability for predicting SMM was examined with
the relationship between grip force and SMM using linear regression analysis. Grip strength
and SMM showed a significant linear relationship (p < 0.001, Figure 4A) with a Pearson’s
correlation coefficient (r) value of 0.726, indicating the strongest correlation. BMI also
showed a significant linear relationship with FM in both genders (p < 0.001, Figure 4B). The
r-value (correlation coefficient) of the correlation between SMM and grip strength in the
urban hospital-based cohort was 0.915.
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4. Discussion

Machine learning has been attracted considerable attention during recent years,
and machine learning data processing, clustering, classification, dimensionality reduc-
tion, regression, and other functions provide potent data mining tools. Unlike traditional
computer algorithms that produce results when commands are executed, machine learn-
ing algorithms can construct and train algorithms to process data and obtain results in
required forms [3]. In the medical field, machine learning-based predictive algorithms
have been developed to analyze metabolic factors related to various diseases [4–6], and in
the present study, we used machine learning algorithms to create regression models that
predict SMM and FM. In men and women, muscle mass accounts for 47–60% of body
weight and maintains energy expenditure throughout the body [7]. Therefore, promoting
skeletal muscle mass is essential for maintaining the quality of life and extending health
expectancy. Women tend to experience more rapid muscle loss than men due to lower
testosterone concentrations and muscle renewal rates [8]. In women, estrogen deficiency
after menopause reduces bone density [9], muscle mass [10], and increases FM [11], thus
SMM and FM vary considerably between genders.

In the importance analysis, the random forest [12] and linear regression [13] showed
the importance of variables and their positive and negative correlations, respectively.
Random forest and XGBoost algorithm were used to analyze the importance of variables
and select the top 10 by importance. In the prediction model for SMM, the variables in
descending order of importance were sex, hip circumference, age, BMI, waist circumference,
GFR, total activity, and serum concentrations of total cholesterol, triglycerides, and platelets.
Previous studies have reported that BMI, sex, hip circumference, waist circumference,
and BMI are related to SMM and FM [14,15], and that age is negatively correlated with
SMM [16]. GFR levels are low in patients with chronic kidney disease, who usually exhibit
SMM loss [17], and a study on patients with chronic diabetic kidney complication reported
reductions in lean body mass. These results suggested that appendix skeletal muscle loss
is significantly related to GFR decline [17]. Platelet levels reflect the destruction of blood
vessels and tissues, as platelets play crucial roles in hemostasis and wound healing [18].
Furthermore, platelet activation plays a central role in accelerating atherothrombosis related
to insulin resistance, inflammation, oxidative stress, and endothelial dysfunction [19].
According to the National Health and Nutrition Examination Survey (1999 to 2004), mean
platelet volume is strongly associated with the presence of type 2 diabetes [20]. However,
the clinical effects of platelets on skeletal are still unclear. In our SMM model, platelet
levels and SMM showed a weak negative correlation, which suggests platelets may have
different effects on skeletal muscles in the presence of different combinations of insulin
resistance, inflammation, and protein synthesis.

In the present study, the FM prediction model using ANN included BMI, sex, hip
circumference, waist circumference, total activity, and serum triglyceride, total cholesterol,
total bilirubin, CRP, and platelet concentrations. Excessive fat accumulation is distributed in
subcutaneous tissues related to disruption of lipid metabolism and inflammation in obese
individuals to fatty liver and dyslipidemia [21]. In the present study, the FM prediction
model using ANN indicated that total body fat and predicted serum triglyceride and total
cholesterol concentrations were positively correlated with FM.

Plasma bilirubin concentration, an index of liver and gallbladder damage, is positively
related to hepatic fat accumulation [22], and our FM model showed total bilirubin was
weakly and positively correlated with predicted FM.

In the present study, we compared the accuracies of regression models using machine
learning algorithms and selected the best prediction models for SMM and FM. Of the seven
machine algorithms examined, random forest, XGBoost, and ANN had the lowest MSEs
for predicting SMM and FM in the Ansan/Ansung cohort test set. XGBoost and ANN have
also been reported to achieve good accuracies, and XGBoost has been shown to enable the
identification of biomarkers [23,24]. Grip strength is applied to validate SMM’s prediction
because grip strength is generally considered to reflect muscle strength [25]. Because no
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direct measurements could be used to judge the accuracy of SMM predictions in the urban
hospital-based cohort, we examined the correlation between SMM and grip strength and
found grip strength and SMM were strongly correlated, which suggested predicted SMMs
were reliable. On the other hand, we found predicted FM was linearly and positively
correlated with BMI. Thus, it appears that predicted values of SMM and FM in the urban
hospital-based cohort are reliable.

We also divided anthropometric parameters into the HMLF, HMHF, LMLF, and LMHF
groups to predict SMM and FM in men and women. Both male and female HM groups
had higher grip strengths than their counterparts in the LM groups, which is consistent
with the results of a previous study regarding the correlation between SMM and grip
strength [25]. Serum triglyceride (a biochemical indicator of obesity) levels were higher in
men and women in HF groups than in LF groups [21]. Impaired glucose tolerance (IGT)
can contribute to an increase in fasting blood glucose concentration, a critical factor of
visceral fat accumulation [26], which can lead to obesity and is closely related to the risk
of type 2 diabetes [27]. Both men and women in the HF groups had higher blood glucose
levels than their counterparts in the LF groups, which might have been related to IGT
caused by fat accumulation. HbA1c is an essential indicator of the diagnosis of diabetes
and reflects an individual’s blood glucose level 2 to 3 months after testing [28]. As was
observed for blood glucose data, men and women in the HF groups had higher HbA1c
ratios than those in the LF groups, and women in the LMHF group had the highest mean
HbA1c ratio.

We trained multiple prediction models for SMM and FM using Ansan/Ansung data
and eventually obtained SMM and FM predictions for urban hospital-based cohorts using
the XGBoost and ANN models. The maximum R2 values of the SMM and FM models
were 0.82 and 0.89, respectively, which is in line with actual application indicators in the
medical system. The results of the present study can be applied to clinical setting since the
SMM and FM had specific characteristics as follows: (1) The prediction model of SMM and
FM included relatively small number of variables, (2) variables included in the prediction
algorithm was not fluctuated quickly in a short time, and (3) SMM and FM of the adults
fell in the accurate ranges of prediction algorithm [29]. Therefore, these models can quickly
and accurately predict SMM and FM values through existing routine test data in a clinical
environment. These models can be used for the accurate prediction of SMM and FM at
a low cost. Many cohorts lack SMM and FM data, and these models can also be used
to predict missing data and conduct research. Furthermore, the predicted SMM and FM
of the participants in the urban hospital-based cohort were found to well-represent the
clinical characteristics of SMM and FM like grip strength and hyperglycemia. Therefore,
the ten variables in the prediction models could be used to be modulated to prevent SMM
reduction or FM elevation in a clinical setting.

However, the trained prediction models have several limitations. (1) Since they were
trained using Korean data, our results may be unsuitable for applications in European
or Hispanic populations. (2) Our study was performed on Koreans ≥40 years old and
thus our findings may not be applicable in younger populations. (3) SMM and FM values
determined in the Ansan/Ansung study were obtained using the Inbody machine, which is
less accurate than DXA. However, we confirmed the applicability of the prediction models
in a large urban hospital-based cohort, and the accuracy of predicted values was verified
by linear relationships between grip strength and SMM and BMI and FM. (4) Regarding the
feature importance analysis, we used simple XGBoost, random forest, and linear regression
to explore important variables without knowing the impact of each variable. However,
according to Lundberg’s research on SHapley Additive exPlanations (SHAP), the SHAP
value can explain how each feature affects machine learning algorithms, providing a new
interpretation method for the machine learning black box algorithms [30]. In the future
study, SHAP algorithm needs to be used to determine the impact of each variable in the
prediction model. GFR and serum platelet concentrations among the ten variables screened
by random Forest and XGBoost have also shown to be potential biomarkers for SMM and
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FM, as shown to the possibility as biomarkers in previous studies [21,26–28]. Furthermore,
our study shows that Koreans with a high FM have higher fasting blood glucose levels and
suggests a higher risk of type 2 diabetes in this population.

5. Conclusions

The best prediction models, which included ten variables for SMM and FM, were
generated using XGBoost and ANN algorithms, respectively, using the Ansan/Ansung
cohort. The SMMs and FMs predicted by the models well represented the risk of low SMM
and high FM in this hospital-based cohort. Adults with a low SMM and high FM are at
risk of hyperglycemia, and the prediction models included potential biomarkers for SMM,
such as serum platelet levels, triglyceride concentrations, and GFR. In contrast, those for
FM included serum bilirubin and triglyceride concentrations. The prediction algorithm
for SMM and FM can be considered to use in the clinical site since the variables in the
algorithm are easy access. The prediction models are of practical significance in clinical
settings and the predicted SMM and FM values can convince the patients to modulate their
diet and physical exercise plans.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jcm10102133/s1, Figure S1: Age distribution of Ansan/Ansung and city hospital-based
cohorts.
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