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Abstract: Sesame seeds are important resources for relieving oxidation stress-related diseases. Al-
though a significant variation in seeds’ antioxidant capability is observed, the underlying biochemical
and molecular basis remains elusive. Thus, this study aimed to reveal major seed components and key
molecular mechanisms that drive the variability of seeds’ antioxidant activity (AOA) using a panel of
400 sesame accessions. The seeds’ AOA, total flavonoid, and phenolic contents varied from 2.03 to
78.5%, 0.072 to 3.104 mg CAE/g, and 2.717 to 21.98 mg GAE/g, respectively. Analyses revealed that
flavonoids and phenolic acids are the main contributors to seeds’ AOA variation, irrespective of seed
coat color. LC-MS-based polyphenol profiling of high (HA) and low (LA) antioxidant seeds uncov-
ered 320 differentially accumulated phenolic compounds (DAPs), including 311 up-regulated in HA
seeds. Tricin, persicoside, 5,7,4′,5′-tetrahydro-3′,6-dimethoxyflavone, 8-methoxyapigenin, and 6,7,8-
tetrahydroxy-5-methoxyflavone were the top five up-regulated in HA. Comparative transcriptome
analysis at three seed developmental stages identified 627~2357 DEGs and unveiled that differential
regulation of flavonoid biosynthesis, phenylpropanoid biosynthesis, and stilbene biosynthesis were
the key underlying mechanisms of seed antioxidant capacity variation. Major differentially regulated
phenylpropanoid structural genes and transcription factors were identified. SINPZ0000571 (MYB),
SINPZ0401118 (NAC), and SINPZ0500871 (C3H) were the most highly induced TFs in HA. Our
findings may enhance quality breeding.

Keywords: sesame; antioxidant; polyphenol profiling; transcriptomics; seed coat color; LC-MS

1. Introduction

Sesame (Sesamum indicum L.) is a vital industrial and oilseed crop in the Pedaliaceae
family [1]. Its high medicinal and nutritional values have raised interest in sesame products’
consumption worldwide and use in various industries, including pharmaceutics, foods,
biodiesel, cosmetics, etc. [2,3]. Sesame seeds are abounding in nutraceuticals, including
essential fatty acids, inherent lignans (sesamin, sesamolin, sesaminol, sesamol, sesamolinol,
etc.), tocopherols, melatonin, phytosterols, and other essential antioxidants [3–6]. Accord-
ingly, sesame seed consumption is associated with enormous health benefits. For instance,
clinical trials and in vivo and in vitro investigations showed that they have antioxidant,
anti-diabetes, anti-hyperlipidemia, kidney and liver protection, anti-inflammatory, cardio-
vascular protection, anti-hypertension, antitumor, and anti-cancer properties [3–5,7]. The
high-antioxidant capacity of sesame seeds has led them to be used to improve the stability
and quality and prevent autoxidation of countless foodstuffs [8,9]. Unfortunately, although
there is evidence of great variation in sesame seeds’ antioxidant capacity, the underlying
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biochemical and molecular bases remain poorly elucidated, limiting efforts to develop
novel sesame varieties with improved medicinal potentials.

Diverse factors, such as origin, seed coat color, and growing and processing con-
ditions, impact the antioxidant capacity of sesame seeds [10–12]. Early studies have
demonstrated that black sesame seeds possess higher antioxidative ability than other
colored seeds [10,13,14]. However, these studies analyzed a small number of varieties, so
it would be more appropriate to explore a vast population comprised high numbers of
different colored sesame seeds before making a statement. Moreover, the huge beneficial
health effects of sesame-specific lignans, including sesamin, sesamol, sesamolin, sesaminol,
etc., result in the association of seeds’ antioxidant activity variation to the difference in
lignan content only [5,15,16]. Nevertheless, some sesame seeds with low lignan content
have shown higher antioxidant activities than those with high lignan content [10,17,18].
Therefore, we hypothesized that changes in the composition of other antioxidants in the
seeds may be the cause of the observed variability in antioxidant capacity.

A comparative analysis of the global metabolome of brown, white, black, and yellow
sesame seeds disclosed that difference in the relative content of some phenolic compounds
was the main causative factor of their antioxidant activity differences [14]. We inferred
that considerable differences might exist between the polyphenol profiles of low and
high-antioxidant sesame seeds. Polyphenols, including flavonoids (flavanols, anthocyani-
dins, flavonols, flavanones, flavones, and chalcones), stilbene, tannins, phenolic acids,
and saponin are members of plant secondary metabolites [19,20]. They are excellent an-
tioxidants and their daily consumption may lead to the relief of oxidative stress and the
prevention of aging and several chronic and lifestyle diseases [19–23]. Among the oilseed
crops, sunflower, soybean, brassica, and olive have received more attention than sesame
in terms of polyphenol composition [24,25]. Therefore, a comprehensive characterization
of polyphenol profile differences between HA and LA sesame seeds is of immense inter-
est. It will enable the biochemical understanding of sesame seeds’ antioxidant capability
variation and essential resources for gene-metabolite network analyses that may serve in
quality breeding.

Phenylpropanoids are the most diverse class of natural products, regrouping phenolic
acids, anthocyanins, flavonoids, monolignols, lignans, coumarins, and tannins [26]. These
secondary metabolites perform tremendous functions in plants, such as nutrient uptake,
photosynthesis, growth regulation, maintenance of redox homeostasis, and responses
to biotic and abiotic stresses [26,27]. Their biosynthesis occurs from phenylalanine and
tyrosine and is regulated by many transcription factors, among which MYB, NAC, and
bHLH play critical roles [27–30]. The phenylpropanoid pathway involves key structural genes
such as phenylalanine ammonia-lyase, cinnamate 4-hydroxylase, 4-coumarate-CoA ligase,
chalcone synthase, flavonoid 3′-hydroxylase, chalcone isomerase, flavanone 3-hydroxylase,
UDP-glucose:flavonoid-3-Oglucosyl-transferase, etc. [27–29]. Identifying key differentially
regulated genes in this pathway between HA and LA may offer a great opportunity to
modulate the polyphenol profile of sesame seeds.

In this study, we analyzed the AOA (antioxidant activity), TFC (total flavonoid con-
tent), and TPC (total phenolic content) of 400 sesame accessions. Furthermore, we con-
ducted UPLC_MS/MS (ultra-performance liquid chromatography-mass spectroscopy)-
based widely targeted polyphenol profiling transcriptome analysis of HA and LA seeds.
Our objectives were to identify major seed components governing variation in sesame seed
antioxidant capacity and achieve insight into the associated molecular mechanisms. The
results of this study provide biochemical and genetic indicators for the improvement in
sesame seed antioxidants’ composition.

2. Materials and Methods
2.1. Plant Materials and Growing Conditions

Four hundred sesame accessions were analyzed in this study (Supplementary Table S1).
They were given by the Oil Crops Research Institute of the Chinese Academy of Agricultural
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Sciences (OCRI-CAAS), Wuhan, China. The sesame population included 45, 85, 32, and
234 black, brown, yellow, and white seeds, respectively. All seeds were cultivated under
the same environmental conditions in Wuhan, China. All required agronomic practices
for sesame were applied equally [3]. During harvesting in September 2022, seed samples
were collected in triplicate for all genotypes. Each replicate was a mixture of seeds from
twelve individual plants. The seed samples were stored in the OCRI seeds room until the
evaluation of the AOA, TPC, and TFC evaluations.

For the comparative polyphenol profiling and transcriptomics analysis, three high
(HA; NS089, NS287, and NS148) and three low (LA; NS100, NS009, and NS120) antioxidant
varieties were selected and cultivated similarly from June to September 2023 (Table S1).
Developing seeds of NS089 (HA) NS100 (LA) were sampled at 10, 20, and 30 DPA (days post-
anthesis) for transcriptome sequencing. Seed samples of the six varieties were prepared
(three replications) after harvest for the metabolomics analysis. All samples were directly
frozen in liquid nitrogen and kept at −80 ◦C until used.

2.2. Assessment of Total Phenolic (TPC) and Flavonoid (TFC) Contents and Antioxidant
Activity (AOA)

Seed extraction for AOA, TPC, and TFC evaluation was achieved following previously
described methods [31,32]. Briefly, for each replicate, 0.5 g of seeds were extracted for
4 h (constant shaking in darkness) with 5 mL 80% ethanol. Next, centrifugation (5000× g,
12 min) was followed by supernatant collection separately. All seed extracts were stored at
−20 ◦C during the analyses.

The TFC and TPC were analyzed according to the methods of Choi et al. [32]. Regard-
ing the TPC, 400 µL dH2O and 100 µL Folin-Ciocalten reagent were added to 100 µL of seed
extract, mixed well, and left for 6 min. Thereafter, 1 mL of Na2CO3 (7% m/v) and 800 µL
of dH2O were added subsequently. After 90 min of reaction at room temperature, the
absorbance of the mixture was recorded at 760 nm (UV5200, Shanghai Metash Instruments
Co., Ltd., Shanghai, China). In the blank, 80% ethanol was used in place of the extract.
The TPC values were expressed as mg GAE/g (gallic acid equivalent per gram) of seeds
(y = 1.971x − 0.0068, R2 = 0.99).

Regarding the TFC, 1 mL of seed extract was mixed with 150 µL of NaNO2 (5% m/v)
and the mixture was kept for 6 min. Thereafter, 300 µL of AlCl3·6H2O (10% m/v) was
added, followed by 1 mL of 1 M NaOH another 6 min later. Finally, 1.05 mL dH2O was
added, followed by absorbance at 510 nm fifteen minutes later. The TFC was estimated
using y = 3.253x + 0.1447 (R2 = 0.9702) and expressed as mg CAE/g (catechin equivalent
per gram) seeds. The AOA of the seeds was evaluated via DPPH assays, as recently
reported [14,33].

2.3. Polyphenol Extraction and UPLC-MS/MS Analysis

Seeds were freeze-dried and reduced to powder using a mixer mill (MM 400, Retsch,
Haan, Germany). The crushing was operated at 30 Hz for 1.5 min. Next, 100 mg of each
sample was extracted at 4 ◦C (overnight) with 1.2 mL of 70% methanol. After centrifugation
(20 min at 12,000× g), the supernatants were collected and filtrated through a micropore
membrane (0.22 µm, SCAA-104, ANPEL, Shanghai, China). The extracts were stored
at −20 ◦C up to the UPLC-ESI-QqQLIT-MS/MS analysis at Metware Biotechnology Co.,
Ltd., (MWDB), Wuhan, China [14,34–36]. Equal volumes of all sample seed extracts were
mixed to constitute QC (quality control) samples. The metabolomics was performed as per
previously described methods [14,35,36]. The liquid phase and MS conditions are detailed
in Table S2.

2.4. Identification and Quantification of Phenolic Compounds

The spectrum information, mass spectra, and retention times were integrated to quali-
tatively identify the phenolic compounds. Specifically, the values of Q1 (precursor ions)
and Q3 (product ion), retention times, fragmentation patterns, collision energy, and de-
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clustering potential were allied with standards when available (Sigma-Aldrich, St. Louis,
MO, USA). When no standards were available, the compounds were structurally confirmed
via the MWDB self-build database and verification in open databases (KNApSAcK, Mass-
Bank, MoTo DB, HMDB, and METLIN) [34,35]. The relative contents of the identified
polyphenols were calculated via the triple quadrupole (QqQ) MS analysis (MRM modes)
using the integrated SCIEX-OS software (version 1.4).

2.5. Data Analysis

All multivariate analyses were achieved in R (version 3.5.0) after quality validation
and subsequent standardization of the data. The statistical packages pheatmap, MetaboAn-
alystR, cor, and prcomp were used for hierarchical clustering analysis, orthogonal partial
least squares discriminant analysis, correlation analysis, and principal component anal-
ysis. The variable importance of the projection (VIP) value of the phenolic compounds
was extracted from the OPLS-DA results. Differentially accumulated metabolites (DAMs)
were sorted out using the R-programming language ggplot2 program at thresholds of
Log2FC > 1, p-value < 0.05, and VIP ≥ 1. KEGG functional analysis of DAMs was carried
out by mapping http://www.kegg.jp/kegg/pathway.html (accessed on 17 November
2023) and subsequent metabolite sets for enrichment analysis. Excel 2021 software and
GraphPad Prism (v9.0.01, La Jolla, CA, USA) were used for data processing and graph
construction. SRplot was also used for PCA and correlation analyses [37]. An ANOVA
(analysis of variance) test was performed for multiple comparisons at p < 0.05.

2.6. RNA Extraction, Library Construction, Sequencing, and Alignment

Total RNA from seed samples was extracted with a Trizol reagent kit (Invitrogen,
Carlsbad, CA, USA) as per the manufacturer’s specifications. The genomic DNA was
discarded using DNase I (TaKara, Beijing, China). RNA quality was investigated on an
Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA) and quantified using
the ND-2000 (NanoDrop Technologies). Only high-quality RNA (OD260/280 = 1.8~2.2,
OD260/230 ≥ 2.0, RIN ≥ 6.5, 28S:18S ≥ 1.0) samples were used for sequencing library con-
struction using a TruSeqTM RNA sample preparation Kit (Illumina, San Diego, CA, USA).
After qualified mRNA fragmentation, cDNAs were constructed using NEB (Next Ultra
RNA Library Prep Kit, Ipswich, MA, USA) and adapters were ligated. The resulting cDNA
library was sequenced on the Illumina sequencing platform (HiSeq xten/NovaSeq6000
sequencer). SeqPrep (https://github.com/jstjohn/SeqPrep; access on 1 April 2024) and
Sickle (https://github.com/najoshi/sickle; access on 15 March 2024) software were used to
check the quality of raw paired ends. The clean reads were aligned to the sesame reference
genome [38] by the HISAT2 (http://ccb.jhu.edu/software/hisat2/index.shtml; access on
10 March 2024) software [39]. Finally, we assembled the mapped reads using StringTie
(http://www.string-db.org/; access on 18 March 2024) [40].

2.7. Differentially Expressed Genes (DEGs) and Functional Enrichment Analysis

The expression level of transcripts was computed according to the transcripts per
million reads (TPM) method and RSEM (http://deweylab.biostat.wisc.edu/rsem/; access
on 11 March 2024) was used to quantify each gene abundance [41]. DEG analysis was
carried out using the DESeq2 software [42] at FDR (false discovery rate) < 0.05 and |fold
change| ≥ 1. KEGG (Kyoto Encyclopedia of Genes and Genomes, http://www.genome.jp/
kegg/kaas; access on 11 March 2024) and GO (Genes Ontology, http://geneontology.org/;
access on 11 March 2024) enrichment analyses were achieved using KOBAS (version 3.0)
and GO seq package in R (version 4.3), respectively. Significant enrichment terms were
screened out at p-value < 0.05.

2.8. Quantitative RT–PCR Analysis

The RNA was extracted from developing seed samples using a modified CTAB
method [43]. Reverse transcription (RT) was conducted with the Monad 1st Strand cDNA
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https://github.com/jstjohn/SeqPrep
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Synthesis Kit and the qRT-PCR analysis was achieved using Tb Green® Premix Ex Taq™ II
(Takara, Beijing, China) as previously described [44]. All samples had three biological and
technical replicates. The sesame histone gene (SiH3.3) was used as an internal control to
normalize the expression levels of target genes via the 2−∆∆CT method [45]. The NCBI’s
primer designing tool, PRIMER-BLAST (Primer3), was used to design specific primers for
each gene (Table S7).

3. Results and Discussion
3.1. Variation in Antioxidant Activity (AOA), Total Flavonoid (TFC), and Phenolic (TPC)
Contents in the Sesame Population

In order to thoroughly examine the variability of sesame seeds’ antioxidant capabil-
ity, we evaluated the AOA, TPC, and TFC of seeds from 400 diverse sesame accessions
(Table S1). The frequency distribution of the three traits in the population is presented in
Figure S1. In general, the AOA of the seeds varied from 2.03 to 78.5%, with a CV (coefficient
of variation) of 45.12% (Table 1). Meanwhile, the TPC ranged from 2.717 to 21.98 mg
GAE/g, with a CV of 44.52% (Table 1). The TFC varied from 0.072 to 3.104 mg CAE/g,
with a CV of 42.29% (Table 1). These results show a significant variation in sesame seed
antioxidant capacity and polyphenol profiles driven mainly by the genotypes.

Table 1. Variation in antioxidant activity, total phenolic content, and total flavonoid content in
400 sesame seed accessions.

Traits Min Max Mean SD SE CV (%) Skewness Kurtosis

AOA (%) 2.035 78.5 33.57 15.15 0.757 45.12 0.506 0.054
TPC (mg GAE/g) 2.717 21.98 6.9 3.072 0.154 44.52 1.478 3.415
TFC (mg CAE/g) 0.072 3.104 1.255 0.531 0.027 42.29 0.418 0.461

AOA, antioxidant activity (DPPH scavenging); TPC, total phenolic content; TFC, total flavonoid content; Min,
minimum; Max, maximum; SD, standard deviation; SE, standard error; CV, coefficient of variation; GAE, gallic
acid equivalent; CAE, catechin equivalent.

3.2. Correlation between Seed Antioxidant Activity and Seed Phytochemicals

To identify the major seed phytochemicals that govern the variation in antioxidant
capability, we carried out a correlation analysis. The same seeds were previously ana-
lyzed for fatty acid composition and oil content, sesamin and sesamolin (lignans) content,
phytosterols content, melatonin content, and tocopherol (Vitamin E) content [44,46–48].
These previous data were taken into account for the correlation analysis. The analysis
revealed a significantly high positive correlation between AOA and TPC (r = 0.8) and
between AOA and TFC (r = 0.66) (Figures 1A and S2). The AOA showed significant
low positive correlations with sesamin content (r = 0.18), total lignan (r = 0.18), and total
phytosterol (r = 0.11) (Figures 1A and S2). There was a significant negative correlation
between AOA and oil content and no significant correlations with other seed components
(Figures 1A and S2). These results show that polyphenols are the main antioxidants in
sesame seeds. Moreover, they indicate that lignans are not the sole major antioxidants
in sesame seeds and that flavonoids, phenolic acids, and other phenolic compounds also
significantly influence sesame seed antioxidant capability. Plant polyphenols, including
flavonoids and non-flavonoids (stilbenes, phenolic acids, lignans, tannins, etc.), are impor-
tant antioxidants with high pharmacological values [19,20,49].

We further performed PCA analysis to verify the correlation analysis results. As
shown in Figure 1B, the PCA analysis results were supportive of observed correlations.
The AOA and polyphenol components (TPC, TFC, sesamin, sesamolin, and total lignan)
were projected closely on the PCA plot (Figure 1B). AOA and oil content were projected
in opposite directions, confirming their negative correlations (Figure 1B). Overall, these
findings denote that variation in polyphenol profiles of sesame seeds may be the key
underlying factor of difference in seeds’ antioxidant capabilities. In addition to its inherent
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lignans, sesame seeds may contain diverse other phenolic compounds with important
antioxidant power.
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Figure 1. Correlation and principal component analysis of antioxidant activity (AOA) and seed
phytochemical components. (A) Correlation plot of AOA with seed phytochemical components.
(B) Principal component analysis plot. AOA, antioxidant activity; TPC, total phenolic content; TFC,
total flavonoid content; Smin, sesamin; Slin, sesamolin; T lign, total lignan; Camp, campesterol; 5-Aven,
5-avenasterol; Sitos, sitosterol; Stig, stigmasterol; TPS, total sterols; Vit E, vitamin E (tocopherol); OC,
oil content; OA, oleic acid; Lnic A, linolenic acid; SA, stearic acid; Lneic A, linoleic acid; PA, palmitic
acid; Mel, melatonin.

3.3. Influence of Seed Coat Colors on Sesame Seed Antioxidant Activity

Previous investigations on small numbers of sesame varieties revealed that black seeds
possess higher antioxidant capability than other colored sesame seeds [10,13,14,50]. To
verify these reports, we compared the AOA, TFC, and TPC of black (BkS), yellow (YS),
brown (BnS), and white (WS) sesame seeds (Figure 2). As shown in Figure 2A, most BkS
had higher AOA than the majority of other colored seeds. However, the AOA of BkS and
BnS were not statistically different (Figure 2A). The AOA of YS was significantly the lowest
(Figure 2A). Although white seeds showed significantly lower AOA than black seeds and
similarity to brown seeds, the lowest AOA values were recorded on some dark (black and
brown) accessions (Figure 2A). These results denote that the AOA of sesame seeds is a
complex trait, irrespective of seed coat color. Not all dark sesame seeds may possess high
antioxidant capability. It is therefore required to dissect the molecular network regulating
the sesame seed antioxidants for exploitation in developing novel varieties with improved
antioxidant capability.

Regarding the TPC and TFC, the white, brown, and black seeds exhibited statistically
similar results (Figure 2B,C). The yellow seeds had the lowest TPC and TFC, as per the
AOA (Figure 2B,C). Taken together, these findings infer that the antioxidant capacity of
sesame seeds varies mostly upon the polyphenol profile and the variation characteristics of
each phenolic compound in the different colored seeds.
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3.4. Polyphenol Profiles of High and Low Antioxidant Sesame Seeds

To reveal the major phenolic compounds responsible for variation in sesame seeds’
AOA, we performed comparative widely targeted polyphenol profiling of high-antioxidant
(HA) and low-antioxidant (LA) accessions [34,36]. As shown in Figure S3, the detection
of the metabolites was achieved in both electrospray ionization modes. The repeatability
of the experiment was confirmed by the high correlations (r ≥ 0.99) recorded between
QC samples (Figure S4). We structurally identified a total of 785 phenolic compounds
in sesame seeds, including 41.53% flavonoids, 38.78% phenolic acids, 12.61% lignans,
6.24% coumarins, 0.51% tannins, and 0.38% stilbenes (Figure 3A, Table S3). This result
shows that flavonoids and phenolic acids are the foremost phenolic compounds in sesame
seeds. Accordingly, they may have a greater influence on seed AOA than lignans. It is
reported that lignans are the primary antioxidant compounds in sesame seeds [5,51]. Of the
326 identified flavonoids, flavones (42.94%), flavonols (23.93%), and flavanones (11.66%)
were dominant (Figure 3B). Isoflavones and anthocyanidins accounted for 4.29 and 2.15%,
respectively (Figure 3B).

To explore the variability in metabolites between HA and LA seeds, we conducted
HCA and PCA analysis (Figures 3C and S5). As shown in Figure S5, the HCA revealed
remarkable differences between the polyphenol profiles of HA and LA seeds. The ma-
jority of the phenolic compounds showed the highest relative content in HA compared
to LA seeds (Figure S5). The PCA confirmed that the polyphenol profiles of HA and LA
seeds were very different and could be discriminated by PC1 (50.15%) and PC2 (22.42%)
(Figure 3C). These results represent support for the correlation between sesame seed AOA
and polyphenol profile.
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3.5. Differentially Accumulated Phenolic (DAPs) Compounds and KEGG Analysis

In order to uncover DAPs between HA and LA sesame seeds, we carried out OPLS-DA
analysis. The score plot of the OPLS-DA confirmed the great difference in the polyphenol
profiles between the two groups (Figure 4A). The R2Y and Q2 of the pairwise comparison
were 0.997 and 0.874, respectively, indicating the reliability of the model (Figure S6). We
uncovered a total of 320 DAPs, including 311 highly accumulated in HA compared to LA
seeds (Figure 4B, Table S4). The DAPs included 145 phenolic acids, 87 flavonoids, 64 lignans,
23 coumarins, and 1 tannin. Sesamolinol-glucoside and sesamolinol 4′-O-β-D-glucosyl
(1→6)-O-β-D-glucoside were only two differentially accumulated sesame-specific lignans,
supporting that the variation in seeds’ AOA could not be attributed to differences in the
content of specific lignans, such as sesamin, sesamolin, sesamolinol, etc., only. Phenolic
acids, flavonoids, and other lignans are critical for the high AOA of sesame seeds.

To provide insights into differential molecular mechanisms between HA and LA seeds,
we performed a KEEG analysis of DAPs (Figure 4C). The results showed that the main
pathways differentially regulated between HA and LA were phenylalanine metabolism,
biosynthesis of secondary metabolites, flavonoid biosynthesis, phenylpropanoid biosynthe-
sis, and tyrosine metabolism (Figure 4C). Phenolic compounds are synthesized in plants
from phenylalanine, tyrosine, and tryptophan, themselves occurring from chorismate (the
ultimate product of the shikimate pathway) [52,53]. Collectively, these findings infer that
the antioxidant capacity of sesame seeds may be improved by inducing phenylalanine
biosynthesis, phenylpropanoid biosynthesis, and flavonoid accumulation in developing
seeds [54,55]. Investigating gene-metabolite interactions in these pathways may offer
crucial genetic resources for improving sesame seed antioxidant capability.

3.6. Major Highly Accumulated Phenolic Compounds in High-Antioxidant Sesame Seeds

To reveal the major highly accumulated phenolic compounds in HA seeds, we filtered
out the top 50 up-regulated metabolites in HA (Table 2). The top 50 up-regulated DAPs in
HA included 29 flavonoids, 14 phenolic acids, 5 lignans, and 2 coumarins. It was worth
noting that the top 20 highly accumulated phenolic compounds in HA seeds were all
flavonoids (Figure S7). These major up-regulated DAPs in HA merit being investigated in
future studies to better understand sesame seed bioactivities. For instance, tricin, the top
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DAP (|Log2FC| = 9.593), possesses diverse therapeutical potentials, including anti-cancer,
anti-influenza, anti-angiogenic, and antioxidant effects [56–58]. Diosmetin, peonidin, and
apigenin have also recorded pharmacological attributes, such as anti-cancer, antioxidant,
neuroprotective, etc. [59–61]. Matairesinol has demonstrated antioxidant, anti-cancer, neu-
roprotective, and anti-inflammation abilities [62,63]. In addition, the major DAPs could
serve as key biomarkers for analyzing molecular networks regulating polyphenol biosyn-
thesis during sesame seed development. As a support, correlation network analysis among
DAPs revealed significant positive correlations between 22 phenolic acids, 17 lignans, and
10 flavonoids (Figure S8).
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3.7. Differentially Expressed Genes (DEGs) between HA and LA during Seed Development

To verify the implication of phenylpropanoid metabolism in variation in sesame seeds
AOA, we carried out a comparative transcriptome analysis of HA and LA varieties at
three seed developmental stages, including 10, 20, and 30 DPA (days post-anthesis). The
summary of the high-throughput RNA sequencing data is presented in Table S5. The
reliability of the RNA-seq data was confirmed through qRT-PCR analysis of eight randomly
selected genes, with a consistency of R2 of 0.91 (Figure S9). Analyses revealed 2357, 1597,
and 627 DEGs between HA and LA at 10, 20, and 30 DPA, respectively (Figure 5A). Of these
DEGs, 1114, 885, and 347 were up-regulated in HA at the respective developmental stages
(Figure 5A). A Venn diagram showed that only 170 genes were differentially expressed
between the two seed types along with the seed development (Figure 5B).
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Table 2. List of the 50 top up-regulated phenolic compounds in high-antioxidant sesame seeds.

Categories Sub-Class Compounds Formula VIP p-Value FDR |Log2FC|

Flavonoids Flavones Tricin (5,7,4′-Trihydroxy-3′,5′-dimethoxyflavone) C17H14O7 1.149 0.413 0.548 9.593
Flavanones Persicoside C23H26O11 1.081 0.419 0.548 9.457

Flavones 5,7,4′,5′-Tetrahydro-3′,6-dimethoxyflavone C17H14O8 1.409 0.349 0.548 7.906
Flavones 8-Methoxyapigenin C16H12O6 1.075 0.415 0.548 7.409
Flavones 6,7,8-Tetrahydroxy-5-methoxyflavone C16H12O6 1.033 0.417 0.548 7.143
Flavones 5,7,3′,5′-tetrahydroxy-6-methylfavanone C16H12O6 1.030 0.417 0.548 7.138
Flavones Scutevulin C16H12O6 1.057 0.416 0.548 7.083

Isoflavones Tectorigenin C16H12O6 1.036 0.416 0.548 7.081
Flavones 5,6,7-Tetrahydroxy-8-methoxyflavone C16H12O6 1.037 0.416 0.548 7.076

Isoflavones 5,7,4′-Trihydroxy-3′-methoxyisoflavone; 3′-O-methylorobol C16H12O6 1.028 0.417 0.548 7.022
Flavones Rhamnocitrin (7-methylkaempferol) C16H12O6 1.026 0.417 0.548 7.015
Flavones Chrysoeriol-7-O-gentiobioside C28H32O16 1.147 0.405 0.548 6.910

Anthocyanidins Peonidin-3-O-(6′-O-caffeoyl)glucoside C31H29O14+ 1.039 0.411 0.548 6.664
Flavones Chrysoeriol-7,4′-di-O-glucoside C28H32O16 1.049 0.412 0.548 6.643

Other Flavonoids 9,11-dimethoxy-2h-[1,3]dioxolo [4,5-b]xanthen-10-one C16H12O6 1.066 0.413 0.548 6.631
Flavones Gnetifolin B C16H12O6 1.084 0.412 0.548 6.583

Isoflavones Aracarpene 2 C16H12O6 1.075 0.412 0.548 6.560
Flavones 5,7,2′-Trihydroxy-8-methoxyflavone C16H12O6 1.080 0.412 0.548 6.553
Flavones Diosmetin (5,7,3′-Trihydroxy-4′-methoxyflavone) C16H12O6 1.060 0.413 0.548 6.553

Other Flavonoids 3-(3,4-dihydroxybenzyl)-5,7-dihydroxy-6-methoxychroman-4-one
diglucoside C29H36O17 1.015 0.410 0.548 6.465

Flavones 5,7,3′,4′-Tetrahydroxy-6-methoxyflavone-8-C-[glucosyl-(1-2)]-glucoside C28H32O17 1.018 0.410 0.548 6.204
Flavonols Patuletin-3-O-gentiobioside C28H32O18 1.097 0.397 0.548 5.734
Flavones Gardenin B 5-(6′-Malonyl)glucoside C28H30O15 1.430 0.100 0.542 5.393
Flavonols Herbacetin C15H10O7 1.385 0.244 0.548 5.178
Flavonols Azaleatin (5-O-methylquercetin) C16H12O7 1.476 0.113 0.542 5.142
Flavones Tricetin-5-O-(6′-malonyl)glucoside C24H22O15 1.417 0.126 0.542 5.123

Other Flavonoids 2′,7-Dihydroxy-3′,4′-dimethoxyisoflavan C17H18O5 1.375 0.170 0.542 5.076
Flavones Viscumneoside III (Homoeriodictyol-7-O-apiosyl-(1-2)-glucopyranoside) C27H32O15 1.472 0.038 0.542 5.061
Flavones 6-Hydroxyluteolin C15H10O7 1.380 0.231 0.548 4.950

Lignans and
coumarins Coumarins Peucedanol C14H16O5 1.381 0.318 0.548 5.637

Lignans Sanshodiol C20H22O6 1.475 0.090 0.542 5.400
Lignans Matairesinol C20H22O6 1.469 0.092 0.542 5.268
Lignans Erythro-guaiacylglycerol-β-coniferyl ether C20H24O7 1.449 0.150 0.542 5.119
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Table 2. Cont.

Categories Sub-Class Compounds Formula VIP p-Value FDR |Log2FC|

Lignans Lappaol C C30H34O10 1.479 0.086 0.542 4.945
Coumarins Esculin glucoside C21H26O14 1.172 0.369 0.548 4.757

Lignans Sesamolinol 4′-O-β-D-glucosyl (1→6)-O-β-D-glucoside C32H40O17 1.430 0.196 0.548 4.703
Phenolic acids Phenolic acids 2′-Acetylacteoside C31H38O16 1.293 0.310 0.548 6.452

Phenolic acids 10-Hydroxymajoroside C17H24O11 1.504 0.017 0.542 5.658
Phenolic acids Echinacoside C35H46O20 1.356 0.230 0.548 5.642
Phenolic acids 6-O-Feruloyl-β-D-glucose C16H20O9 1.458 0.124 0.542 5.583
Phenolic acids Syringoyl-D-glucose C15H20O10 1.208 0.185 0.542 5.137
Phenolic acids 1′-O-(3,4-Dihydroxyphenethyl)-O-caffeoyl-glucoside C23H26O11 1.498 0.083 0.542 5.047
Phenolic acids Arillatose B C22H30O14 1.482 0.040 0.542 5.010
Phenolic acids 5-O-β-D-Glucopyranosyl-3-hydrobenzo(b)fu-ran-2-one C14H16O8 1.486 0.040 0.542 4.954
Phenolic acids Rosmarinic acid methyl ester C19H18O8 1.500 0.043 0.542 4.927
Phenolic acids Isoferulic acid C10H10O4 1.394 0.178 0.542 4.860
Phenolic acids Purpureaside C C35H46O20 1.312 0.255 0.548 4.842
Phenolic acids 1,7-bis(4-hydroxy-3-methoxyphenyl)hept-1-ene-3-ol C21H26O5 1.491 0.067 0.542 4.716
Phenolic acids Tetrahydrorengyoxide-glucose-caffeoyl C23H26O11 1.472 0.085 0.542 4.712

Phenolic acids 3,4,5-Trihydroxy-6-[4-[[(2R)-5-oxooxolan-2-yl]methyl]phenoxy]oxane-2-
carboxylic acid C17H20O9 1.495 0.052 0.542 4.667

Note. VIP, value importance in projection; FDR, false discovery rate; FC, fold change.
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GO (gene ontology) analysis revealed that the DEGs at 10 DPA were mostly enriched to
the membrane and its components, oxidoreductase activity, lipid storage, and carbohydrate
metabolic process (Figure S10A). Meanwhile, the main enriched GO terms at 20 DPA
were intracellular non-membrane, ribosome, structural constituent of ribosome, structural
molecule activity, and peptide and amide metabolic processes (Figure S10B). At 30 DPA, the
most enriched GO terms were extracellular region, carbohydrate metabolic process, and
iron ion binding (Figure S11). These results indicate different metabolism regulations during
HA and LA seed developmental processes. KEGG enrichment analysis of DEGs revealed
that phenylpropanoid biosynthesis, flavonoid biosynthesis, and stilbenoid biosynthesis
were the most significantly differentially regulated pathways between HA and LA at
early and late seed developmental stages (Figure 6A,B). Meanwhile, ribosome metabolic
processes were the main processes differentially regulated at 20 DPA (Figure S12). Taken
together, these results show that differences in the regulation of flavonoid and phenolic
acid biosynthesis are the key driven mechanisms of variation in sesame seed AOA.
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3.8. Expression Patterns of Phenylpropanoid Biosynthesis-Related DEGs

Based on the above results, we found it important to examine the expression patterns of
phenylpropanoid pathway-related DEGs to identify potential target genes for modulating
the sesame polyphenol profile. As shown in Figure 7, most phenylpropanoid structural genes,
such as phenylalanine ammonia-lyase (SINPZ0401548 and SINPZ0501377), caffeoyl-CoA
O-methyltransferase (SINPZ1000220 and SINPZ0500891), caffeic acid 3-O-methyltransferase
(SINPZ0200654 and SINPZ1301001), coumarate 3-hydroxylase (SINPZ0500257), isoflavone 3′-
hydroxylase (SINPZ0200776), cinnamoyl-CoA reductase (SINPZ0900932), vestitone reduc-
tase (SINPZ0102078), etc., were up-regulated in HA, particularly at 10 DPA. Meanwhile, the
main up-regulated genes in LA included cinnamoyl-CoA reductase 1 (SINPZ0602168), trans-
cinnamate 4-monooxygenase (SINPZ0900538 and SINPZ0501091), UDP-glycosyltransferase
71E1 (SINPZ1200248), cytochrome P450 CYP73A100 (SINPZ0501086), caffeic acid 3-O-
methyltransferase (SINPZ0000553), anthocyanidin 3-O-glucosyltransferase 2 (SINPZ1200253),
and flavone 3′-O-methyltransferase 1 (SINPZ0501322) (Figure 7). These genes represent
important resources for quality improvement in sesame.
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3.9. Key Differentially Expressed Transcription Factors (TFs)

TFs play critical regulatory functions in phenylpropanoid biosynthesis, particularly
MYB and NAC [26,64]. We screened out 49 key differentially expressed TFs, including 9
with considerable expression fold changes (Figure 8A, Table S6). Three genes, including
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SINPZ0500871 (C3H), SINPZ0000571 (MYB), and SINPZ0401118 (NAC), and were highly
induced in HA along with the seed development (Figure 8D,F,H). The gene SINPZ0300035
(MYB) was down-regulated at 10 DPA and subsequently highly up-regulated at 20 and
30 DPA in HA (Figure 8I). The NAC gene SINPZ0900373 was down-regulated in HA
except at 20 DPA (Figure 8B). Four genes, including SINPZ0801455 (MADS), SINPZ1300846
(MYB), SINPZ0100001 (bHLH), and SINPZ0501303 (Trihelix), were highly induced in LA
compared to HA (Figure 8C,E,G,J). These genes need to be functionally characterized for a
deep understanding of the regulatory network of phenolic compounds’ biosynthesis and
accumulation in sesame seeds.
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Another correlation plot of AOA with seed phytochemical components; Figure S3. Multiple reaction 
monitoring (MRM) graphs of QC samples showing the total ions current (TIC) of some identified 
metabolites; Figure S4. Correlation analysis between QC samples; Figure S5. Hierarchical clustering 
analysis (HCA) of the polyphenol profiles of high (HA) and low (LA) antioxidant seeds; Figure S6. 

Figure 8. Key differentially regulated transcription factors (TFs) between HA and LA. (A) Venn dia-
gram indicating the number of key TFs. (B–J) Expression fold changes in major differentially regulated
TFs, including SINPZ0900373 (NAC), SINPZ0801455 (MADS), SINPZ0500871 (C3H), SINPZ1300846
(MYB), SINPZ0000571 (MYB), SINPZ0100001 (bHLH), SINPZ0401118 (NAC), SINPZ0300035 (MYB),
and SINPZ0501303 (Trihelix).

4. Conclusions

In summary, this study offers an understanding of the biochemical and molecular
basis of variation in sesame seeds’ antioxidant capability through integrated phytochemical
analysis, polyphenol profiling, and transcriptome sequencing. It revealed a significant
variation in seeds’ AOA, TPC, and TFC in a panel of 400 sesame accessions. Analyses
showed that although sesame-specific lignans have very high AOA, they contribute less to
the differences in the AOA of seeds from different genotypes. Differences in phenolic acid
and flavonoid profiles are the prime contributors to seed antioxidant capacity variation,
irrespective of seed coat color. Other seed components, such as fatty acids, melatonin,
tocopherol, etc., have no significant correlations with AOA. In total, 311 highly accumulated
phenolic compounds in HA seeds were identified. It was worth noting that the top 20
up-regulated DAPs in HA were all flavonoids. DEGs between HA and LA were identified
and functionally annotated. The key molecular mechanisms governing the variation
in seed AOA were flavonoid biosynthesis, phenylpropanoid biosynthesis, and stilbene
biosynthesis. Furthermore, key differentially regulated phenylpropanoid structural genes
and candidate TF genes were filtered out. Our findings bring to light key mechanisms and
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sesame seed antioxidants driving the variation in seed antioxidant capacity. Moreover, they
offer fundamental resources for improving sesame’s medicinal value.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/antiox13050514/s1. Figure S1. Frequency distribution of antioxidant
activity (A), total phenolic content (B), and total flavonoid content (C) of the 400 seeds from different
accessions; Figure S2. Another correlation plot of AOA with seed phytochemical components;
Figure S3. Multiple reaction monitoring (MRM) graphs of QC samples showing the total ions
current (TIC) of some identified metabolites; Figure S4. Correlation analysis between QC samples;
Figure S5. Hierarchical clustering analysis (HCA) of the polyphenol profiles of high (HA) and low
(LA) antioxidant seeds; Figure S6. Permutation plot of OPLS-DA results of pairwise comparison
between high (HA) and low (LA) antioxidant seeds; Figure S7. Top 20 highly accumulated phenolic
compounds in high antioxidant sesame seeds; Figure S8. Correlation analysis network between
49 DAPs; Figure S9. qRT-PCR validation of the RNA-seq data; Figure S10. (A) and (B) GO analysis
results of DEGs between LA and HA varieties at 10 and 20DPA, respectively; Figure S11. GO analysis
results of DEGs between LA and HA varieties at 30DPA; Figure S12. KEGG analysis results of DEGs
between LA and HA varieties at 20DPA; Table S1. List of the 400 sesame accessions analyzed in this
study; Table S2. Liquid chromatography and mass spectrometry conditions; Table S3. List of the
785 identified phenolic compounds and their relative contents in high (HA) and low (LA) antioxidant
seeds; Table S4. List of the 320 differentially accumulated phenolic compounds; Table S5. Summary of
the high-quality transcriptome sequencing data; Table S6. List of the 49 key differentially expressed
transcription factor-related genes; Table S7. Primers used for the qRT-PCR.
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