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Abstract: Here, we review the literature on neurotypical individuals and individuals with post-stroke
aphasia showing that right-hemisphere regions homologous to language network and other regions,
like the right cerebellum, are activated in language tasks and support language even in healthy
people. We propose that language recovery in post-stroke aphasia occurs largely by potentiating the
right hemisphere network homologous to the language network and other networks that previously
supported language to a lesser degree and by modulating connection strength between nodes of
the right-hemisphere language network and undamaged nodes of the left-hemisphere language
network. Based on this premise (supported by evidence we review), we propose that interventions
should be aimed at potentiating the right-hemisphere language network through Hebbian learning
or by augmenting connections between network nodes through neuroplasticity, such as non-invasive
brain stimulation and perhaps modulation of neurotransmitters involved in neuroplasticity. We
review aphasia treatment studies that have taken this approach. We conclude that further aphasia
rehabilitation with this aim is justified.

Keywords: stroke; aphasia; mechanisms of recovery; language networks; connectivity

1. Introduction

Aphasia refers to deficits in language (comprehension and production, written and
spoken) following damage to the brain. It is distinct from deficits in broader cognition or
articulation (dysarthria, apraxia). Recovery of language function after a stroke causing
aphasia is thought to take place in part through “reorganization” of structure–function rela-
tionships or “take-over” (by undamaged) tissue of functions that are impaired by damaged
tissue. One interpretation of this concept is that neurons are sufficiently pluripotent; that is,
they can change the type of stimulus they are tuned to or that a functional network can
change the type of computation it carries out. Makin and Krakauer [1] review extensive
evidence from animal and human studies against this interpretation of reorganization.
They argue instead that remapping occurs through potentiation (i.e., increases in synaptic
efficacy or strengthening of synapses through activity) of preexisting networks or circuits
that have the necessary representational and computational capacity prior to stroke. Poten-
tiation of preexisting networks that may have been supportive of function such as language
can be facilitated via Hebbian learning and other neuroplasticity mechanisms. Hebbian
learning mechanisms are engaged through repeated patterns of neuronal firing, which is
thought to strengthen these pathways and make them more efficient [2]. Neuroplasticity
refers to the brain’s ability to form new connections and/or reorganize to restore or regain
function after some disruption in function. While Makin and Krakauer mention language
recovery, their paper focuses on motor and sensory recovery after injury.

In this paper, we similarly propose that language recovery takes place largely
through remapping language networks by potentiating the right-hemisphere network
homologous to the language network (hereafter referred to as the “right-hemisphere
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language network”) and by modulating connection strength between nodes of the
right-hemisphere language network and undamaged nodes of the left-hemisphere lan-
guage network. Based on this premise (supported by evidence we review), we propose
that interventions should be aimed at potentiating the right-hemisphere language net-
work through Hebbian learning or by augmenting connections between network nodes
through neuroplasticity (such as non-invasive brain stimulation and perhaps modulation
of neurotransmitters involved in neuroplasticity). The aim of our discussion focuses on
evidence from the most common patterns of hemispheric functional dominance observed
in the population. In the majority of healthy people, functional representations unique
to higher-level language processing are predominantly left-lateralized, while lower-level
processing underpinning language, such as sound identification, is more commonly
associated with a bilateral representation [3].

First, we review a representative sample of evidence from neurotypical control par-
ticipants for the existence of a reliable language network in the left hemisphere as well
as a homologous right-hemisphere language network that together support virtually all
language functions, including phonological (sound based), orthographic (writing based),
semantic (meaning based), and syntactic (grammar based) processes involved in under-
standing and producing spoken and written language. Certainly, an exhaustive review
is impossible in a single paper. However, we review illustrative studies using various
functional resting state and task-related imaging approaches. These networks each include
ventral (sound to meaning [3]) and dorsal (meaning to production [4]) streams [5] com-
posed of cortical regions and their connections as well as the contralateral cerebellum [6].
Although these networks are modulated by subcortical structures such as the basal ganglia
and thalamus, the role of subcortical structures in post-stroke aphasia is likely through
diaschisis (i.e., dysfunction in distant areas of cortex that are otherwise spared but occurs
due to their connections with damaged structures), and recovery from damage to these
subcortical regions may reflect the resolution of diaschisis [7].

Then, we review evidence from functional imaging studies of people with aphasia
indicating that recovery occurs through remapping and change in connection strength be-
tween nodes of the right- and left-hemisphere language networks as we have defined them.
We include studies of positron emission tomography (PET), resting state and task-related
functional magnetic resonance imaging (fMRI), and functional near-infrared spectroscopy
(fNIRS), although there are also data from electroencephalography (EEG) that are relevant
to the discussion.

Finally, we discuss the types of interventions that have been used in aphasia that
might be utilized to potentiate networks that are supportive of language, including right-
hemisphere language network and right cerebellar–cortical connections. We review inter-
ventions focused on enhancing the supportive roles of the right hemisphere in language
processing through music, drawing, prosody, and manipulations to attention and intention.
Although there is scant evidence that these interventions actually have potentiated, that is,
increased, synaptic strength and efficiency via activity in the right-hemisphere language
network, we provide directions for future studies to evaluate this hypothesis. We also
review studies of treatments aimed at increasing neuroplasticity and connectivity between
language network nodes, including connections between the right cerebellum and language
network. Some of these studies have, in fact, demonstrated changes in connection strength
as predicted by our proposals.

2. The Language Network and Supporting Areas in Neurotypical Controls
2.1. The Left-Hemisphere Language Network

One of the most remarkable findings from functional imaging of language processing
is that the same cortical regions are activated in nearly every language task, even though
damage to distinct regions causes very different deficits. Although “subtraction” designs,
those selected to reveal distinct areas activated for two different language tasks (e.g., reading
aloud irregular words minus reading aloud regular words), can show differences, virtually
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all language tasks activate the same regions of left hemisphere when contrasted with low
level tasks that are primarily attentional or perceptual (e.g., fixation, counting, saying “skip”
to scrambled pictures or scrambled words). Nodes of the language network generally
include the posterior superior temporal cortex (pSTG, often referred to as “Wernike’s area”),
middle temporal gyrus (MTG), inferior temporal gyrus or fusiform gyrus (FuG), posterior
inferior frontal gyrus (pIFG, often referred to as “Broca’s area”), dorsolateral prefrontal
cortex (DLPFC), and inferior parietal cortex (IPC), which includes the supramarginal
gyrus (SMG) and angular gyrus (AG) (list of frequently-occurring abbreviations provided
below). Importantly, recent authors have argued against viewing the language network
as a set of discrete, specialized, regions each contributing a constituent function toward
the emergence of language. Instead, it may be better understood as a synergistic network
acting together [5,8,9].

Activation of this language network is observed in fMRI studies across clinical and
healthy populations with tasks as divergent as word generation/letter fluency [10], word
retrieval (naming and oral reading compared to counting) [11], comprehension and produc-
tion of syntactically complex sentences [12], passive viewing and listening to discourse [13],
detecting sensible vs. not sensible sentences [14], and reading [15]. Early PET studies first
revealed activation in these areas during most language tasks, although PET studies also
frequently showed activation of the cingulate cortex (see [16] and [17] for review). Occipital
areas are activated consistently when visual stimuli are included as part of the task unless
compared to a baseline condition that includes comparable visual demands.

This “language network” is among the networks revealed by task-free (“resting state”)
fMRI. The best known (and first described) network of brain regions that show highly
correlated blood oxygen level-dependent (BOLD) activation at rest is the Default Mode
Network [18]. However, several other networks defined by their “connectivity” (correlated
BOLD activity at rest) have been described, including the language network [19], which
includes the network nodes described above, as well as superior frontal cortex.

Other types of studies have evaluated the interplay between nodes of the language
network during specific tasks. For example, one study of concurrent transcranial magnetic
stimulation and electroencephalography (TMS-EEG) revealed time- and region-specific
causal evidence for a bidirectional flow of activation from the left pSTG/superior temporal
sulcus (STS) to the left posterior inferior frontal gyrus (pIFG) and back during auditory
sentence processing, as well as interplay between left pSTG/STS and left AG [20].

Structural imaging studies, for example, using diffusion tensor imaging (DTI), also
have revealed the major white matter tracts that connect the nodes of the left-hemisphere
language network [21,22]. In the dorsal stream of language processing (meaning to
production), the three segments of the arcuate fasciculus with distinct connections and
the frontal aslant tract provide the main connections within the language network. In
the ventral stream, the connections are provided by the inferior longitudinal fasciculus,
inferior fronto-occipital fasciculus, middle longitudinal fasciculus, uncinate fasciculus,
and temporo-frontal extreme capsule fasciculus. The frontal aslant tract is a recently
described short monosynaptic association tract connecting the lateral IFG to the superior
frontal gyrus, an area that may have a supportive role in language, along with the
cingulate cortex.

2.2. The Right-Hemisphere (Homologous) Language Cortex

The language network, as defined by task-free fMRI connectivity, also includes the
right pSTG [19]. This finding fits well with current models of language processing that
propose left-dominant dorsal and ventral streams of language processing, but also more
bilateral processing of phonology in right and left pSTG. Virtually all fMRI studies of
language processing by neurotypical controls show activation of at least some of the
right hemisphere homologues of the language networks, although these areas are rarely
discussed. For example, control participants presented with sensible sentences versus not
sensible sentences activated right IFG, DLPFC, and MTG, as well as the left-hemisphere
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language network. Generally, activation of the right-hemisphere language network
is lower than the left hemisphere homologues or may not include all of the language
network [16,23]. While this may contribute to the trend of not acknowledging when
bilateral activation is observed, it seems likely that a prepotent belief about hemispheric
dominance also discourages investigators from interpreting right hemisphere activation
as truly necessary to healthy language processing. When discussed, right hemisphere
activation has sometimes been attributed to processing the prosody of language stimuli
(e.g., emotional prosody [24]), recognizing multiple meanings of words (e.g., [25–27]),
extracting the main idea or “gist” of discourse [28], or auditory processing of either the
stimuli or one’s own spoken output.

Other studies have specifically evaluated the role of the right hemisphere in language
tasks. For example, Patel and colleagues carried out an fMRI study of neurotypical par-
ticipants producing and listening to discourse on a variety of topics [29]. They identified
regions where similar neural activity was predicted by semantic similarity. They found
that spoken discourse on similar topics elicited similar activation patterns in a widely
distributed and bilateral brain network. This bilateral network was more extensive but
overlapped with regions where similar activation was associated with similar topics during
comprehension. Semantic similarity effects were bilateral, even while univariate activation
contrasts of these data were left-lateralized. This result suggests that the right hemisphere
homologues of the language network encode semantic properties even when they do
not show significant activation over baseline. The authors concluded that right hemi-
sphere homologues have a supportive role in processing the meaning of discourse during
comprehension and production.

Another study evaluated inter- and intra-hemispheric connectivity in processing un-
ambiguous versus semantically ambiguous words (homophonic homographs, such as bark
on a tree and bark of a dog, and heterophonic homographs, such as bass the fish vs. bass the
instrument) in neurotypical adults. For heterophonic homographs, they observed increased
connectivity within the left hemisphere, indicating top-down re-activation of orthographic
representations by phonological representations to process alternative meanings. For ho-
mophonic homographs, they showed bidirectional flow of information from left to right
and from right to left, indicating a greater role of the right hemisphere in understanding
these words [30].

2.3. The Role of the Cerebellum

Several recent reviews have discussed neuroanatomical and functional imaging evi-
dence for a strongly lateralized involvement of the right cerebellum in a variety of nonmotor
(as well as motor) language functions through functional and structural connections be-
tween the right cerebellum and language cortex [31–33]. The right cerebellum is at least
involved in monitoring and coordinating functions of the cortical language network. Many
functional imaging studies of language show activation of the right or bilateral cerebellum
as well as the right hemisphere homologues of the language network, although these
areas are often not mentioned in the text [34]. A recent coordinate-based meta-analysis of
the language processing of 403 experiments found that language primarily engaged the
bilateral fronto-temporal cortices, with the highest activation in the left pIFG but also the
left fusiform gyrus (FuG), bilateral auditory, and left postcentral regions. Importantly, they
also found strong bilateral subcortical and cerebellar contributions. The right cerebellum
was activated during a variety of speech production and visual and phonological language
tasks [35].

2.4. The Language Networks and Supporting Areas: Summary

This brief review of evidence from language processing in neurotypical individuals
supports the view that there exists a reliable left-hemisphere cortical language network that
includes the superior, middle, and inferior temporal cortex, Fu, pIFG, DLPFC, and IPC and
their connections. Additionally, there are left hemisphere areas that seem to be frequently



Brain Sci. 2024, 14, 419 5 of 13

engaged in language that may have a supportive role, including the superior frontal
gyrus (which includes the supplementary motor area (SMA) and the pre-supplementary
motor area (pre-SMA)), the cingulate gyrus, and their connections, especially with the
IFG. Additionally, both right hemisphere homologues of the language network and the
right cerebellum play critical supporting roles in neurotypical individuals. We propose
that these areas and their connections might be potentiated to help recover language after
stroke. Furthermore, connections between undamaged language network nodes and these
supporting regions can be strengthened to support recovery. In the next section, we review
imaging studies of language recovery in post-stroke recovery that provide some support
for this type of remapping underlying aphasia recovery.

3. Imaging Recovery via the Pre-Existing Right-Hemisphere Language Network

The dominant underlying mechanisms driving aphasia recovery are thought to shift
over time after stroke. Acute functional recovery is attributable to restoration of local
blood flow in perilesional (i.e., surrounding) tissue [36–38]. Over time, the mechanisms
of recovery shift. Subacute recovery is supported by increased activation of the right-
hemisphere language network [39] and driven by lesion extent and location within the left
hemisphere [7]. That is, while spared ipsilateral perilesional tissue plays a key role [40,41]
where left-hemisphere language network tissue is damaged, homologous contralateral
regions are engaged to a greater degree. If the entire left hemisphere is damaged, the right
MTG, SMG, and AG become most active in language [42].

More selective lesions are associated with more restricted right hemisphere engage-
ment. For example, a meta-analysis contrasting those with and without lesions in the left
IFG demonstrated that in those for whom the left IFG was preserved, activation of the
right frontal areas was limited to the anterior pars triangularis and MTG [9]. However,
in those for whom the left IFG was damaged, right-sided activation extended from the
pars triangularis to the dorsal pars opercularis, pars orbitalis, and pre- and post-central
gyrus. Irrespective of IFG lesion, activation of the right ventral pars opercularis and
left MFG was noted. Sebastian et al. longitudinally examined four participants with
naming deficits following stroke in the posterior cerebral artery (PCA, which does not
supply the traditional language network, so these areas were structurally intact) using
task-based and resting-state functional MRI [43]. During language tasks, participants
generally demonstrated robust activation of the bilateral language network, even when
measured acutely. Language recovery from the acute to chronic phase was associated
with greater balance of left- and right-dominant activation within the language network
and its homologues.

Language recovery in aphasia is supported further by domain-general processes
that arise from a bilateral network [44–46]. Because language tasks are presumably more
difficult for people with disordered language than those without, there may be greater
activation of regions supporting attention and cognitive control during language tasks
in people with aphasia than in those without. This can lead to ambiguity about how to
best interpret bilateral frontal activation in people with aphasia. However, taken together,
there is relative consensus that recovery of language involves the right STG and likely
the right SMA, middle frontal gyrus, precentral gyrus, AG, MTG, temporal pole, pSTS,
precuneus, insula, and anterior cingulate cortex [41], reflecting both domain-specific and
domain-general regions.

Multiple studies have observed changes in bilateral and right hemisphere homolo-
gous network connectivity associated with functional improvement following treatment
of aphasia. For example, in one trial, naming impairment was associated with poor co-
herence of low frequency BOLD fluctuations within and across the ipsilesional left and
contralesional right language cortex at the acute stage after PCA stroke, and functional
connectivity improved over time only in participants who showed good naming recov-
ery [43]. Another trial contrasted pre- and post-treatment connectivity and found that
pre-treatment fluctuations in BOLD signal and synchrony of fluctuations across regions
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(amplitude of low-frequency fluctuations) measured in the right MTG were associated with
greater treatment response [47]. In the same sample, post-treatment fluctuations in the left
MTG and STG and right IFG were associated with greater treatment response. Treatment
was associated with restored connectivity between the left MTG and STG and between
the right and left IFG. Connectivity of the right pars triangularis [48] and bidirectionally
between the right pars triangularis and left fusiform gyrus [49] have been associated more
specifically with recovery of concrete words.

However, sustained, greater than normal interhemispheric connectivity is not a posi-
tive sign for all individuals when considering all paired regions and functions. The complex
landscape of changing function and changing activation is only beginning to be disentan-
gled [50]. However, the granular knowledge of these systems will be crucial to individualiz-
ing treatment and predicting outcomes in future individuals. Predictably, it is the extent to
which connectivity is preserved at baseline that significantly predicts treatment outcomes
(in fMRI [51], EEG [52–54], and in functional near-infrared spectroscopy [55]). While acute
interhemispheric connectivity in stroke survivors with language deficits is below that of
normal age-matched adults, the magnitude of change can reflect an over-correction or
“hyper-normalization” and can be negatively correlated with functional improvement. For
example, greater magnitude of increased functional connectivity between the right and left
dorsal frontoparietal and dorsal prefrontal areas has been associated with poorer response to
treatment of spelling [56]. However, the authors note that connectivity after treatment was
not associated with poorer accuracy (just a smaller change in accuracy), arguing against
a maladaptation interpretation of their findings. In an electroencephalographic dynamic
causal modeling study, reduced coupling between the right IFG and pSTG was associ-
ated with the best recovery [53]. Consistently, normal-like levels of connectivity within
a left-dominant language network result in optimal levels of function and the greatest
improvement [14,57,58]. This association is also found when examining global measures of
network fidelity [59,60] and dynamics [61,62].

These observations add nuance to our understanding of the right-hemisphere language
network’s role in functional recovery. Studies converge in showing that the best recovery is
generally seen when the normal, left-hemisphere language network is adequately spared
such that enhanced dependence on the right homologous network is not needed. However,
when the normal left-hemisphere language network is sufficiently damaged such that
normal or compensatory intrahemispheric connectivity cannot be restored, at least part of
the right homologous network is often recruited to support language recovery.

4. Treatments Aimed to Engage Supportive Areas or Connections to Promote Recovery
4.1. Treatments Thought to Engage Right Homologous Network

Various intervention strategies for aphasia are thought to stimulate the right-hemisphere
language network, such as those that incorporate music, musical techniques, and drawing.
Often, multimodal approaches are introduced in combination to provide communication
intervention and support for people with aphasia. Studies have also explored methods
involving experimental manipulations to attention and intention, as well as neurostimula-
tion of the right cerebellum, with the aim of improving outcomes. While not all of these
approaches have been employed sufficiently broadly and diversely to generate the highest
quality evidence of their efficacy (e.g., clinical trials of individual strategies and subsequent
meta-analyses), taken together, they provide an important line of evidence for the utility of
incorporating right-hemisphere dominant tasks in language treatment.

4.2. Music-Based Treatments

Music-based approaches incorporate such elements as intoned speech, melodic con-
tour, metrical timing, rhythmic tapping, and unison production and are broadly aimed at
facilitating speech output by improving one’s speech fluency [63,64]. Treatment protocols
for aphasia involving music and musical techniques include Melodic Intonation Therapy
(MIT [65]), Speech Music Therapy for Aphasia [66], SIPARI® [67], and other music-based
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methods that incorporate singing, melody, and rhythm [64,68]. MIT—which has the largest
research evidence base of the music-based intervention approaches for aphasia— integrates
melody via varied intonation and rhythm via left-hand tapping during verbal expres-
sion [69]. During MIT, the participant is guided to produce a slower rate of articulation
with continuous voicing, which is thought to reduce dependence on the left hemisphere and
engage the right hemisphere. The participant is also guided to tap their left hand, which is
thought to provide pacing and continuous cueing for syllable production and to engage
the sensorimotor network in the right hemisphere [69,70]. Treatment progresses along
hierarchies of token complexity and clinician support, initially beginning with two-syllable
words/phrases and greater clinician support and advancing to longer phrases with less or
no clinician support [70].

In terms of behavioral outcomes in people with aphasia, reviews of MIT report positive
effects on participants’ word and sentence repetition ability, story retelling, and phrase
length, with smaller effects seen in measures of functional, everyday communication and
variable effects seen in measures of comprehension [71–73] One group [73] conducted a
review of MIT clinical trials that included imaging and found that the right hemisphere
brain regions activated by MIT included areas of the frontal motor cortex, including the
pIFG, auditory cortex (including the STG and MTG), and the parietal cortex (including the
angular gyrus and gyrus). Another study [63] found evidence of changes in activation in
various right hemisphere regions, including the pSTG, pIFG, inferior pre-central gyrus,
postcentral gyrus, pre-SMA, and SMG, following participation in MIT. In reviews of other
music-based interventions, improvements in speech outcomes, such as word and sentence
repetition, and language outcomes, such as improved conversational informativeness,
are noted [74,75]. Interestingly, individuals with co-occurring aphasia and motor speech
deficits seem to benefit more from music-based interventions compared to participants with
aphasia without co-occurring motor speech deficit. This may suggest a motor-speech-based
mechanism of improvement [64].

4.3. Drawing

Drawing is another modality used in aphasia interventions that is thought to engage
the right hemisphere. While drawing often serves as an alternative, compensatory means
of communication for people with aphasia (i.e., in lieu of verbal speech in moments
of anomia), it is also used as a treatment element in multimodal, restorative treatment
approaches designed to facilitate improvements in verbal speech. Drawing is thought to
facilitate a different level of semantic processing and a different approach to accessing
one’s semantic system by increasing the person’s attention to an object’s structural and
perceptual characteristics—or in other words, its visual features [76,77]. This differs from
other modalities such as writing, which relies on a lexical route to phonological output
and engages the left hemisphere [78]. Drawing has been found to increase accurate
naming in significantly more instances than writing [76,78]. Relatedly, fMRI studies have
shown that in a group of people with aphasia, drawing produces stronger activation
in the right hemisphere compared to writing, indicating that drawing differentially
engages the brain compared to a linguistically-based task like writing [76,79]. When
drawing an object, its semantic features are activated, which is thought to potentially
eliminate semantic competitors that do not share semantic features with the target and
to subsequently facilitate target retrieval and production [78]. Additionally, it has been
proposed that the fixed nature of drawn symbols may facilitate success in retrieving or
activating an object’s name by serving as a non-transient representation of the underlying
concept [80].

Systematic reviews assessing the effectiveness of drawing in improving language
outcomes are limited in number, primarily because drawing is typically integrated as
one of several components within multimodal treatments for aphasia. Consequently,
these reviews cannot parse out the unique contributions of drawing on improvements
seen in language outcomes following such multi-modal treatment approaches. Alongside
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gesturing and writing, drawing is one of the modalities included in Multi-Modality Aphasia
Therapy [81], Promoting Aphasics’ Communicative Effectiveness [82], and the ongoing
clinical trial for treating subacute-chronic post-stroke aphasia via telemedicine, PICTURE IT
(NCT05845047). Reports examining the effectiveness of multimodal approaches that include
drawing combined with semantic feature cueing and other communicative modalities
(e.g., gesturing) generally report improvements in naming [83]. Case reports and treatment
studies that have isolated drawing as the sole element of treatment, such as Back to the
Drawing Board [84] and Functional Drawing Training [85], primarily aim to increase people
with aphasia’s use of drawing as a means of communication (e.g., in the case of severe
expressive aphasia) or to improve their drawing ability/quality, and thus, the extent to
which such approaches result in improvements in the more standardized, impairment-
based language outcomes is not clear.

4.4. Attention and Intention Treatments

Manipulations to attention and intention have also emerged as promising strategies
to engage the right hemisphere during language tasks. Manipulating spatial attention
during naming/treatment activities, by directing attention to the left visual space, is
hypothesized to transfer language function to the right hemisphere [86]. Several studies
have demonstrated that placing stimuli in the left hemispace, which may be engaging
spatial attention mechanisms in the intact right hemisphere, can improve people with
aphasia’s language performance [86–88]. Intention treatments aim to shift the lateralization
of language production to right frontal structures by incorporating complex left-hand
movements that engage the pre-SMA area [89]. A number of studies have reported that
performing complex, multi-stage movements with the left-hand during naming tasks results
in improved naming accuracy and can lead to higher concentrations of activity in the right
frontal lobe following the treatment [90–92]. In one study [93], the investigators compared
naming outcomes in a cohort of 34 people with moderate to profound aphasia following
both attention and intention treatment conditions. They found that all participants showed
significant improvements in naming following both treatment conditions; however, the rate
of improvement was greater in the intention treatment condition for those with moderate
and severe aphasia. These findings underscore the potential that attention and intention
manipulations can enhance recovery outcomes.

4.5. Non-Invasive Brain Stimulation

Non-invasive brain stimulation (NIBS) techniques most commonly refer to the appli-
cation of repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current
stimulation (tDCS), though transcranial alternating current stimulation (tACS) has also
been explored [94]. In contrast to the behavioral approaches to aphasia rehabilitation
reviewed thus far, NIBS may be applied concurrently with (theoretically) any behavioral
approach in the hope of enhancing the therapeutic benefit due to the physiological effects of
neurostimulation on synaptic plasticity (that is, generating or inhibiting action potentials).
While TMS and tDCS are applied using differing devices and, subsequently, have differing
safety profiles, the underlying physiological mechanism of proposed augmentation is
comparable. One way in which strategies for applying NIBS differ beyond stimulation
site is in whether they apply inhibitory stimulation to the homologous regions in the right
hemisphere or excitatory stimulation to the ipsilateral, ideally preserved regions. There are
multiple systematic reviews of the literature on the efficacy of NIBS in the treatment of apha-
sia [95–98]. These meta-analyses generally conclude that there is a small but measurable
augmentative effect of NIBS, though it may vary due to individual factors (e.g., genetics,
age) and lesion characteristics [99,100].

An example application of neurostimulation that provides unique insight into the
present discussion of the right-hemisphere language network is the application of tDCS
to the right cerebellum. Two studies investigating the efficacy of neuromodulation to the
right cerebellum have demonstrated that pairing right cerebellar transcranial direct current
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stimulation (tDCS) with behavioral treatment may be a promising avenue through which
to augment behavioral treatment outcomes. In one study, a participant who had sustained
bilateral strokes and was experiencing anarthria participated in a course of therapy in
which right cerebellar tDCS (initially a sham condition followed by an active condition)
was coupled with behavioral spelling therapy [101]. Results included significant improve-
ments in the participant’s spelling accuracy (to dictation) for both trained and untrained
words following both conditions; however, improvements were greater in the active tDCS
condition compared to the sham condition. Notably, improvements in spelling accuracy for
untrained words and generalization to written picture naming were exclusively observed
following the active tDCS condition [101]. Furthermore, imaging results indicated increased
cerebro-cerebellar resting state functional connectivity following treatment, suggesting
potential modifications to the underlying networks supporting spelling as a result of right
cerebellar tDCS. In another study, a group of 21 participants with chronic post-stroke apha-
sia participated in a randomized, double-blind, sham-controlled, within-subject crossover
design experiment in which the right cerebellar tDCS (again, either sham or active) was
coupled with a computerized program of word picture matching [102]. Similar to the
findings from the case study, improvements in the outcome for untrained targets were
only seen following the active condition. These findings suggest that tDCS over the right
cerebellum (with concomitant behavioral treatment) enhances language recovery compared
to sham stimulation. Additionally, it appears to increase connectivity between the right
cerebellum and the right and left language networks as well as within the right and left
language networks.

5. Conclusions

Here we have reviewed studies that have shown that a network of right hemisphere
areas homologous to the language network and the right cerebellum have a supportive
role in language in neurotypical individuals. We have also reviewed evidence that some
people with aphasia remap language to these supportive areas or show increased functional
connections between these areas and left-hemisphere language network as they recover
language. Finally, we discussed behavioral interventions designed to engage the right
hemisphere to promote language recovery using music, drawing, gesture, attention, or
pragmatics. Other studies have shown the benefit of stimulating the right cerebellum to
increase connections between the cerebellum and language network areas in both hemi-
spheres to augment aphasia recovery. Together, these studies indicate that one successful
approach to language improvement is to augment remapping of language to the right
hemisphere, or right cerebellar–cortical connections.
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