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Abstract: Optical microcavities have been widely used in nonlinear optics, quantum optics, and laser
technologies. Here we demonstrate the self-injection locking of a distributed feedback diode laser
using home-made high-finesse Fabry-Perot microcavity. The Fabry-Perot microcavity is fabricated
from an x-cut lithium niobate crystal with highly reflective coatings. Frequency pulling effect can
be observed for a successful locking, and results in a single-longitudinal mode lasing with narrow
linewidth. The lasing wavelength and output power are found robust to the laser-diode current and
temperature variations, in comparison to the free-running case. We further characterize the laser
linewidth with beat note measurement with a high-performance external cavity diode laser, with
beat-note linewidth of 601.85 kHz. This results shows a new method for laser frequency stabilization
in a simple setup, and may find applications in telecommunication and spectroscopy.
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1. Introduction

Optical microcavities are important for optical integration in practical applications [1–9]. Among
them, Fabry-Perot microcavities (FPMC) are relatively simple to fabricate with high finesse [10–12],
which is important for nonlinear optics applications, e.g., second-harmonic generation [12–16],
parametric amplification [17–19], frequency-comb generation [20], and entangled photon generation [21].
Efficient nonlinear processes can be achieved due the cavity enhancements, with high-reflective coatings
over nonlinear optical material like LiNbO3 (LN) and KTiOPO4 (KTP) [22–25].

On the other hand, semiconductor lasers are key components in coherent telecommunication
and dense wavelength-multiplexing transmission systems, due to their convenience and low cost.
However, the above applications require narrow linewidth and high wavelength stability, which can be
challenging for normal diode lasers. Even with narrow-linewidth designs, as in distributed feedback
lasers or distributed Bragg reflector laser, their output wavelength can be easily affected by the current
and temperature fluctuations, and relatively high sidebands, which exist in their spectra. Several
approaches have been developed to stabilize the diode lasers [26–30], including the external feedback
from the high-finisse cavity.

In this work, we fabricate a FPMC, with high-finesse of up to 55.5. This FPMC is used for the
self-injection locking of a semiconductor distributed feedback (DFB) laser. The locked DFB laser shows
low wavelength drift, which is free from current and temperature variation. A 402 kHz beat-note
linewidth can be observed, showing a good and stable locking.
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2. The Fabry-Perot Microcavity

The FPMC we used is made from an x-cut lithium niobate crystal sheet, and high-reflection coated
on both facets. The lithium niobate crystal is, first, finely-polished down to the thickness of ~100 µm,
with sub-micron surface roughness. The thickness of each coating layer is optimized for the desired
reflectivity, which is 94.5% at 1550 nm wavelength. The total thickness of Ta2O5 and SiO2 layers were
1179.9 nm, and 1801.2 nm, respectively for both surfaces, and 15 periods are used to guarantee a
sufficient reflection [31]. The exact thickness of each layer is listed in the Appendix A (Table A1).

The surface roughness of the Ta2O5 and SiO2 coating (via evaporation) is essential in achieving a
high finesse for FPMC. Figure 1a,c show the atomic-force microscope (AFM) image of the front, and
rear surfaces of the coated crystal, respectively. Figure 1b,d shows zoom-in of the central parts in
Figure 1a,c. It can be seen that for both surfaces, the roughness fluctuates within 3 nm, which is key to
suppressing the light scattering and to achieve the high finesse. Figure 1e plots the measured cavity
resonance by sweeping the frequency of a tunable laser, indicating the full-width half-maxima (FWHM)
linewidth of ~12 GHz. The theoretical linewidth of FPMC is estimated as ∆ν = c

2πnd
1−r
√

r
, where n is

refractive index, d is cavity length, r is surface reflectivity and c is vacuum speed of light. This gives
12.204 GHz, which is quite close to measured value. The free-spectral range (FSR) of the cavity is
measured as ~678.7 GHz, giving the finesse of ~55.5 and the Q (central frequency over linewidth) of
1.62 × 104. One typical sample of the FPMC is shown in Figure 1e (The inset picture).
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Figure 1. (a) Surface morphology of the front and (c) rear surface of the sample. (b),d) Surface roughness
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3. Self-injection Locking of a DFB Laser

The experimental set-up for the injection locking of a DFB laser (model number
LSDLD155-5-S-0-2-SMFA with current driver LDTC0520) is sketched in Figure 2. The output beam of a
DFB laser passes through an optical circulator, and collimated into free-space to pass he FPMC. The
transmission is then sent back into the laser via a 90:10 fiber beam splitter. The transmission into the
FPMC is measured to be ~86%. A series of half-wave plates (HWP) and quarter-wave plates (QWP)
are applied to ensure that the light beam is injected back to the DFB laser with the same polarization
output. An optical spectrum analyzer (OSA) is used to characterize the laser spectrum.
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Figure 2. Sketch of experimental setup. FPMC, Fabry-Perot microcavity; QWP, quarter-wave plate;
HWP, half-wave plate; BS, beam-splitter; PD, photodetector. OSA, optical spectrum analyzer.

Figure 3a plots the measured laser wavelength as a function of the driving current before (black)
and after (red) the injection locking. Before locking, the laser output is directed to OSA without the
feedback loop. The threshold current of the free-running DFB laser is ~11.3 mA. When the laser is
injection-locked, the threshold (10 mA) is lower than the free-running case, due to the extra external
feedback. It can be seen that, before the injection locking, the laser wavelength increases with the
driving current, while after locking, the output wavelength is stabilized to the FPMC resonance
(1550.24 nm). This indicates that the output power of the locked laser can be modulated without
varying its wavelength, which is beneficial for telecommunication applications. Figure 3b compares
the lasing wavelength (red) and the FPMC resonance (black) at different FPMC temperature. To control
the temperature of the FPMC, it is put inside an oven with temperature-control accuracy of 0.01 ◦C.
It can be seen that, after the locking, the laser wavelength follows the variation of the change of FPMC
resonance. In this measurement, the current is set 24.8 mA, which is far above the threshold (5 mA).
Figure 3c compares the measured laser spectrum before and after injection locking, and the result
shows that the sidebands of the free-running laser can be suppressed by ~9 dB. Figure 3d displays the
laser output wavelength, measured after the 10% port of the 90:10 fiber beam splitter, as a function of
laser temperature. In the free-running case, the laser wavelength increased as the temperature of the
laser diode (black line), mainly due to the refractive index dependence of the temperature. However,
when the laser is locked, the output wavelength is stabilized.
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Figure 3. (a) Measured laser wavelength versus driving current before (black) and after (red) the
self-injection locking. (b) Laser output wavelength of as a function the FPMC temperature (red) and
that of FPMC resonance (black). (c) Measured laser spectrum before (black) and after (red) locking.
(d) Laser output wavelength as a function of its case temperature.

The free-running DFB laser we used has a relatively large linewidth, which can be reduced by
the self-injection locking with the FPMC. We used heterodyne detection [32,33] to measure the beat
note between the locked laser and the high-performance reference external cavity diode laser (Santec
TSL-710, 200 kHz linewidth). For the free-running case shown in Figure 4a (blue curve), the captured
oscilloscope trace of the beating signal is a distorted sinusoidal function. Figure 4b shows the measured
beat spectrum using an electric spectrum analyzer (resolution bandwidth 50 Hz). A sharp peak at
102.5 MHz is clearly visible, corresponding the beat frequency between the free-running laser and
Laser 1 (zoom-in of the marked regime shown in inset picture). The measured FWHM linewidth is
7.1 MHz, indicating the free-running laser linewidth at this level. When the laser is locked, the temporal
waveform appears more regularly, as shown in Figure 4c. Figure 4d shows the measured beat spectrum
using the same electric spectrum analyzer setting. The beat-note linewidth is fit to be 402 kHz FWHM
(assuming Lorentzian shape), which is orders of magnitude narrower than the free-running case. In this
measurement, the temperature was 23.997 ◦C and the current was 24.8 mA.
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Figure 4. (a) Time domain beat signal measured by an oscilloscope with the free-running DFB laser.
(b) The beating spectrum in the free-running case. Inset: zoom-into around the peak showing the
beat frequency of 7.1 MHz. (c) Time domain beat signal measured with the injection-locking. (d) Beat
spectrum in the self-injection locked case. Inset: zoom-into around the beating frequency.

4. Conclusions

We fabricated a FPMC with high-finesse of 55.5, for the self-injection locking of a semiconductor
DFB laser. High-quality injection locking has been presented in this paper with clear frequency-pulling
effects, which stabilizes the laser output to the FPMX resonance. Narrow linewidth is confirmed with
significantly reduced beat-note linewidth of 402 Hz FWHM, in comparison to 7.1 MHz FWHM in the
free-running case. Here, we focus on the locking of a DFB laser, similar setup can be used to lock laser
diodes of other types. This result may find broad application prospects in the fields of remote optical
communication networks, optical sensing, and quantum information technologies, with a simple and
compact setup.
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Appendix A

Table A1. Thickness of each coated layer in FPMC.

Layer Material Thickness (nm)

1 SiO2 84.90
2 Ta2O5 79.82
3 SiO2 289.63
4 Ta2O5 189.36
5 SiO2 269.93
6 Ta2O5 187.44
7 SiO2 269.10
8 Ta2O5 187.15
9 SiO2 268.84
10 Ta2O5 187.12
11 SiO2 268.80
12 Ta2O5 187.11
13 SiO2 268.96
14 Ta2O5 161.89
15 SiO2 81.04
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