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Abstract: Network transformations are the techniques to obtain new functional schemes 
from available circuits. They are systematic methodologies, since each transformation 
technique can be applied to many circuits to obtain the desired functions or characteristics.  
A convenient network transformation method, exploiting different circuit transformations, 
for deriving linear sinusoidal oscillators from biquadratic band pass filters is proposed. 
This method with generality can be applied to any band pass filter. The oscillation 
frequency of the new obtained oscillator is identical to the center frequency of the original 
band pass filter, and the useful properties of the selected band pass filter can be retained. 
Two examples are illustrated to confirm the feasibility of the proposed approach. The 
workability of the obtained oscillators is verified with PSPICE simulations. 
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1. Introduction 

Sinusoidal oscillators play an essential role in most electronic systems. They find numerous 
applications in instrumentation, measurement, control and communication systems. New oscillator 
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circuits based on various active elements have been proposed continuously [1–4]. Most oscillators 
proposed in the literature have been on an ad hoc basis, i.e., a topology is chosen using an arbitrary 
procedure and is then analyzed. For the design of oscillator circuits, it is useful to follow systematic 
methodologies to obtain novel circuits. This is beneficial in developing analog tools for circuit design 
automation. The first systematic synthesis of canonic oscillators using controlled sources was given  
in [5]. The design of single op-amp single resistance controlled oscillators was reported in [6].  
The generation method by using unity gain cells was given in [7]. Generalized synthesis approach for 
Gm-C oscillators using the signal flow graph approach was given in [8,9]. A systematic state-variable 
approach to the synthesis of canonic current feedback op-amps-based oscillators was given in [10].  
In recent times, the concepts of pathological elements have been proven to be very useful for circuit 
analysis, transformation and synthesis. Their applications have been presented in the literature [11–14]. 
By the use of nodal admittance matrix expansion method and pathological elements, the systematic 
synthesis of the current conveyor-based active RC canonic oscillators was reported in [15,16]. 

To conveniently derive oscillator circuits, a systematic synthesis method is presented in this paper. 
By exploiting circuit transformations to the original biquadratic band pass filter, the oscillator circuit 
can be obtained. It retains some useful properties of the original band pass filter. Two circuit examples 
are given to demonstrate the feasibility of the proposed method. The workability of the derived 
oscillators is verified by PSPICE simulation. 

2. Description of the Proposed Method 

The proposed approach involves the use of complementary and inverse transformations. One  
can obtain a complementary voltage-mode network by interchanging the input and ground of a  
circuit [17,18], as shown in Figure 1. The resulting transfer function (TRANSF) T2 of the obtained 
circuit would be the complement (COMP) of the original voltage transfer function T1; i.e., T2 = 1 − T1. 
According to inverse transformation by interchanging the output norator and the input voltage source 
of a circuit (with its transfer function T3 = Y/U), the inverse transfer function (INV) can be obtained  
as T3' = 1/T3 = Y'/U'), as shown in Figure 2 [12]. The inverse network can also be obtained by 
interchanging the output pathological current mirror and the input source of a circuit [19]. To obtain a 
sinusoidal oscillator from the biquadratic band pass filter, the combination of circuit transformations 
can be exploited, as the stages shown in Tables 1 and 2. 

Figure 1. The complementary transformation for voltage-mode a network. (a) Original 
network; (b) complementary network of (a).  
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Figure 2. The inverse transformation of a circuit. (a) Original network; (b) inverse 
network of (a). 
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Table 1. The combination of complementary-inverse transformation (TRANSF) for a  
voltage-mode network. COMP, complement; INV, inverse transfer function. 

Procedure Stage (0)  
Stage (1):  

COMP of (0) 
Stage (2):  
INV of (1) 

Stage (3):  
COMP of (2) 

TRANSF T 1-T 
1

1-T
 T

T-1
 

Table 2. Another combination of complementary-inverse transformation for  
a voltage-mode network. 

Procedure Stage (0)  
Stage (1):  
INV of (0) 

Stage (2):  
COMP of (1) 

Stage (3):  
INV of (2) 

TRANSF T 1/T 
T-1
T

 T
T-1

 

To describe the synthesis method clearly, a biquadratic voltage-mode band pass filter with its 
transfer function given by Equation (1) is considered. The pole frequency ωo and bandwidth (BW) of 
the filter can be computed as ωo = c  and BW = ωo/Q = b, where Q is the quality factor of the filter. 
The coefficient b and c are always greater than zero for a stable system. 

( ) 0
2= =
+ +in

V asT s
V s bs c

 (1) 

Applying the proposed procedure in Tables 1 or 2 to this filter, we obtain its new transfer function 
as Equation (2). 

( ) ( )
0

2
in

V asT s
V s b a s c

′ = = −
+ − +

 (2) 

Namely, the new filter with ωo = c  and ωo/Q = (b − a) is derived. 
For a positive-feedback system in Figure 3 with a stable amplifier stage A(s) and a  

frequency-selective network B(s) connected in a positive-feedback loop, the closed-loop gain Af(s) can 
be expressed by: 
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1 ( ) ( )f

in

X A sA s
X A s B s

= =
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 (3) 

If at a specific pole frequency ωo the loop gain A(s)B(s) is equal to unity, Af will be infinite. That is, 
at this frequency, the system defined as an oscillator will have a finite output for zero input signal. 
Thus, the condition for the feedback loop of Figure 3 to provide sinusoidal oscillations of  
frequency ωo is: 

1 ( ) ( ) 0o oA j B j− ω ω =  (4) 

This is known as the Barkhausen criterion. Therefore, a linear oscillator can be synthesized by zeroing 
the input source of the filter [18]. The obtained characteristic equation of the oscillator can be 
expressed as Equation (5). The oscillation condition is given by Equation (6) and oscillation frequency 
can be expressed by ωo = c . 

( ) ( )2 0s s b a s c∆ = + − + =  (5) 

b − a = 0 (6) 

In general, Equation (6) can be easily satisfied by selecting suitable passive components of the original 
band pass filter. 

Figure 3. A positive-feedback system with a stable amplifier stage, A, and a  
frequency-selective network, B. 
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It is known that the grounded nullator and norator will be conductive to lower active sensitivities of 
a circuit [20]. The proposed oscillator synthesis procedure includes performing inverse transformation 
and zeroing the input signal source. This will result in the circuit processes grounded nullator and 
norator (as we add a series nullator-norator pair between the outputted node and the ground and then 
interchange the inputted signal source with outputted norator to perform inverse transformation). 
Therefore, an oscillator with lower active sensitivities may be derived. Therefore, the obtained 
oscillator has identical passive sensitivities and may have improved active sensitivities with respect to 
the original band pass filter. 

3. Application Examples and Discussion 

To demonstrate the feasibility of the proposed method, we first consider the voltage-mode low 
active and passive sensitivities band pass filter modified from the filter circuit in Figure 1 of [21],  
as redrawn in Figure 4a. Its transfer function is given by Equation (7). By using the transformation in 
Table 1, the obtained circuit with its transfer function given by Equation (8) is shown in Figure 4b.  
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A series nullator-norator pair is added during performing the inverse transformation. By zeroing the 
input signal source, we obtain the oscillator in Figure 5a. The nullator-norator pair in Figure 5a can  
be realized by a second generation current conveyor (CCII-) [16], as shown in Figure 5b. Taking into 
account the non-idealities of a current conveyor, namely IZ = ±αIX, VX = βVY, where α = 1 − ei and  
ei denotes the current tracking error, β = 1 − ev and ev denotes the voltage tracking error of a current 
conveyor, respectively, the non-ideal characteristic equation of the oscillator is expressed by  
Equation (9). Its oscillation condition and oscillation frequency ωo are given by Equations (10)  
and (11), respectively. The sensitivities of ωo to active and passive components are given in  
Equation (12). It is clear that the obtained oscillator has identical passive sensitivities and has 
improved active sensitivities compared to the original band pass filter [21]. In addition, the oscillation 
frequency and the oscillation condition are independently adjustable through with R3 and R1. In reality, 
R1 must be slightly greater than R2/α1 for the startup of oscillation [22]. 

Figure 4. (a) A CCII-based band pass filter; (b) the obtained filter after applying the 
transformations in Table 1. 
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Figure 5. (a) The obtained oscillator; (b) realization of the obtained oscillator in (a). 

X

Y
ZCCII+

CCII-

X

Y
Z

1C1R
3R

2C

2R

outV
CCII-

X

Y
Z

( )1
( )2

( )3

X

Y
Z

CCII+
CCII-

X

Y
Z

1C
1R

3R

2C

2R

outV

( )1
( )2

 
(a) (b) 

  

 



Appl. Sci. 2014, 4 487 
 

( )
( )

2

2

2 2
1 2

1 2 3

( )
1

= =
+ +

out

in

Cs RV T s
CV s C C s R R R

 (7) 

( )
2

2

2
1 2 2

1 2 2 3

1 1 1

  
 ′ = −

 
+ − + 
 

Cs R
T s

s C C C s
R R R R

 (8) 

( )2
1 2 2 1 1 2 1 2 1 2 3 0+ −α + α α β =s C C sC G G G G  

(9) 

1 1 2αG G=  (10) 

1 2 1 2 3
0

1 2

G G
C C

α α β
ω =  (11) 

0 0

1 2 1 2

0 0 0 0 0

2 3 1 2 1

, ,
1 ; 0
2

1 ; 0
2G G C C G

S S

S S S S S

ω ω
α α β β

ω ω ω ω ω

= =

= = − = − = =
 

(12) 

The second example considers the single CCII-based voltage-mode band pass filter, which is 
obtained from [23], as shown in Figure 6a. Using the transformed procedure mentioned in Table 2,  
the derived circuit with its transfer function shown in Equation (13) is given by Figure 6b. Figure 7a 
shows the derived oscillator by grounding the input source of the circuit in Figure 6b. The nullator and 
norator in Figure 7a can be realized by a CCII-, as shown in Figure 7b. The characteristic equation of 
the obtained oscillator can be expressed by Equation (14). The oscillation condition and the oscillation 
frequency can be respectively given by Equations (15) and (16) with R2 = R3 = R and C1 = C2 = C.  
It can be found that the oscillation condition and oscillation frequency are orthogonal adjustable.  
It must be noted that R1 must be slightly less than R/3 for the startup of oscillation. 
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Figure 6. (a) A CCII-based band pass filter; (b) the obtained filter after applying the 
transformations in Table 2. 
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Figure 7. (a) Grounding input of Figure 6b; (b) realization of the obtained oscillator in (a). 
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Moreover, it can be found that the oscillator in Figure 7b possesses an electrically controllable 
function of the oscillation condition by using a controlled current conveyor (CCCII-) to realize the 
CCII- and R1. It is known that the ground node of a nullor-based oscillator can be chosen arbitrarily 
without affecting the characteristic equation [24]. Therefore, the grounded capacitor oscillator can be 
obtained by selecting Node A in Figure 7b as the ground. In addition, more oscillators can be obtained 
by applying adjoint network theorem or RC-CR transformation. 

It must be noted that the proposed method can be applied to any band pass filters, so it has  
better generality compared to the transformed method in [25], which can only be applied to the filters 
with specific configuration and cascadable property. Furthermore, since the oscillation frequency of 
the synthesized oscillator is identical to the center frequency of the original band pass filter, one can 
obtain high-performance oscillators by choosing the suitable band pass filters for transformation. For 
example, the aforementioned band pass filters with low-sensitivity or electronically adjustability can 
be selected to obtain useful oscillators. Furthermore, current-mode linear oscillators can also be 
derived according to the proposed method, because the complementary and inverse transformations 
can be applied to current-mode circuits. 
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4. Simulation Results 

To verify the theoretical prediction of the proposed method, PSPICE simulations were performed 
for the obtained linear oscillators in Figures 5b and 7b. The CCII+ and CCII- were realized by current 
feedback operational amplifier (AD844) ICs [26,27]. The macromodels of AD844 were employed for 
the simulations with a DC supply of ±15 V. For the circuit in Figure 5b, we chose C1 = C2 = C = 0.1 µF 
and R2 = R3 = 1.6 kΩ. As shown in Figure 8, the oscillation eventually died out with R1 = 1.6 kΩ, and 
the circuit produced a pure sinusoidal waveform with R1 = 1.68 kΩ. Figure 9 shows the oscillation 
frequency for various values of C. It confirms the independently tunability of the oscillation frequency. 
For the oscillator in Figure 7b, we choose C1 = C2 = 27 nF and R2 = R3 = 3.3 kΩ. Figure 10 shows the 
outputted waveforms with R1 = 1.07 kΩ and R1 = 1.1 kΩ. All if the simulation results are consistent with 
our prediction in Section 3. 

Figure 8. The output waveforms for the oscillator in Figure 4b with different  
oscillation conditions. 
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Figure 10. The output waveforms for the oscillator in Figure 6 with different  
oscillation conditions. 
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5. Conclusions 

In this article, a simple and convenient approach to obtain new linear oscillators from biquadratic 
band pass filters is presented. The proposed method can be applied to any band pass filters, and the 
derived oscillators retain some useful properties of the original band pass filters. The practicability of 
the proposed method is illustrated by two circuits. PSPICE simulation results validate the workability 
of the obtained oscillators. 
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