
Citation: Oyucu, S.; Aksöz, A.

Integrating Machine Learning and

MLOps for Wind Energy Forecasting:

A Comparative Analysis and

Optimization Study on Türkiye’s

Wind Data. Appl. Sci. 2024, 14, 3725.

https://doi.org/10.3390/app14093725

Academic Editor: Maria da Glória

Gomes

Received: 19 March 2024

Revised: 16 April 2024

Accepted: 24 April 2024

Published: 27 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Integrating Machine Learning and MLOps for Wind Energy
Forecasting: A Comparative Analysis and Optimization Study on
Türkiye’s Wind Data
Saadin Oyucu 1,* and Ahmet Aksöz 2

1 Department of Computer Engineering, Adıyaman University, Adıyaman 02040, Türkiye
2 MOBILERS Team, Sivas Cumhuriyet University, Sivas 58140, Türkiye; aaksoz@cumhuriyet.edu.tr
* Correspondence: saadinoyucu@adiyaman.edu.tr

Abstract: This study conducted a detailed comparative analysis of various machine learning models
to enhance wind energy forecasts, including linear regression, decision tree, random forest, gradient
boosting machine, XGBoost, LightGBM, and CatBoost. Furthermore, it developed an end-to-end
MLOps pipeline leveraging SCADA data from a wind turbine in Türkiye. This research not only
compared models using the RMSE metric for selection and optimization but also explored in detail
the impact of integrating machine learning with MLOps on the precision of energy production
forecasts. It investigated the suitability and efficiency of ML models in predicting wind energy
with MLOps integration. The study explored ways to improve LightGBM algorithm performance
through hyperparameter tuning and Docker utilization. It also highlighted challenges in speeding
up MLOps development and deployment processes. Model performance was assessed using the
RMSE metric, conducting a comparative evaluation across different models. The findings revealed
that the RMSE values among the regression models ranged from 460 kW to 192 kW. Focusing on
enhancing LightGBM, the research decreased the RMSE value to 190.34 kW. Despite facing technical
and operational hurdles, the implementation of MLOps was proven to enhance the speed (latency of
9 ms), reliability (through Docker encapsulation), and scalability (using Docker swarm) of machine
learning endeavors.

Keywords: machine learning; wind energy; MLOps; RMSE; latency

1. Introduction

Wind energy has gained increasing importance in electrical energy production in
recent years and has become an indispensable part of the sustainable energy portfolio. This
technology transforms wind mechanical energy to electrical energy using wind turbine
subsystems. It stands out as a solution for the future of energy production because it is
environmentally friendly, offers an unlimited resource, and keeps carbon emissions to a
minimum. Wind energy production offers great advantages in environmental protection
thanks to the use of a clean and renewable resource. This renewable source decreases CO2
emissions and makes better environmental impact of the energy plants, especially in terms
of air quality. Thus, it plays an effective role in combating climate change. In addition, the
installation of wind power plants prevents environmental destruction and minimizes the
negative effects on ecosystems.

Türkiye is very advantageous in terms of wind energy potential. There is a potential
of 47.849,44 MW, especially in the regions where the Renewable Energy Resource Area
(YEKA) has been declared [1]. Wind farms in these regions make significant contributions
to economic development as well as increasing national energy security. Wind turbines are
designed to convert wind energy, which has kinetic energy, first into mechanical energy
and then into electrical energy [2]. Uninterrupted and strong wind speeds are required for
effective electricity generation; however, wind speed variability is a significant challenge for

Appl. Sci. 2024, 14, 3725. https://doi.org/10.3390/app14093725 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14093725
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3880-3039
https://orcid.org/0000-0002-2563-1218
https://doi.org/10.3390/app14093725
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14093725?type=check_update&version=3

Appl. Sci. 2024, 14, 3725 2 of 20

electricity generation. In order to solve this problem, it is necessary to make short-term wind
speed forecasts. These predictions are used to optimize energy production, prevent damage
to turbines and equipment, and ensure a safe operating environment. Short-term wind
speed forecasts are made by analyzing meteorological data. These predictions are critical
for adjusting turbines’ operating speeds and heights, maximizing energy production, and
ensuring facility safety. The accuracy of these predictions plays a vital role in the efficiency
and sustainability of wind energy facilities.

The concept of machine learning operations (MLOps) has emerged through the inte-
gration of machine learning (ML) applications with DevOps-based software development
processes. MLOps involves the development and maintenance of ML models, incorporat-
ing continuous integration to deliver efficient and dependable service [3]. Professionals
from various fields, including data scientists, DevOps engineers, and software experts,
collaborate in this endeavor. The primary goal of MLOps is to ensure the effective and
efficient production of software, as well as to support ML-based software development [4].
However, the reliance on multiple project management tools can create bottlenecks in
MLOps. Effective delegation of tasks and communication among teams is crucial due to the
collaborative nature of the process. Therefore, MLOps environments should be equipped
with a diverse array of tools to facilitate these interactions [5]. In an MLOps environment
that emphasizes frequent changes to the source model, achieving automatic traceability
across diverse software artifacts following a thorough Change Impact Analysis (CIA) and
Change Propagation (CP) can be challenging [6].

In the field of software engineering, different software process models and devel-
opment methodologies have emerged over time. Methodologies such as waterfall and
agile methods aim to deliver production-ready software products [7]. The concept of
DevOps, which emerged in 2008/2009, aims to reduce problems in software development
and represents more than a methodology. It emphasizes collaboration, communication,
and information sharing, eliminating the gap between development and operations [8].
DevOps promotes continuous integration, delivery, and deployment, while also including
practices such as continuous testing, quality assurance, and monitoring. This new approach
requires developers to not only develop software but also care about running it [9]. DevOps
ensures better software quality and facilitates the successful integration of ML models into
live environments [10,11]. This study highlights the importance of integrating an ML model
developed for wind energy forecasting into the MLOps process. The research aims to detail
the processes of MLOps approaches for data exploration, experimental monitoring, and
model deployment and management. This work is an important step in overcoming current
barriers to implementing ML models into live implementation and providing guidance to
data scientists and software engineers.

The main purpose of the research is to examine how to successfully develop an ML
model, how to effectively take it into the live environment, and what support the method-
ology and tools offered by MLOps can provide in this process. In this context, the focus of
the research is a detailed examination of MLOps approaches, covering stages such as data
analysis, experimental monitoring of wind energy forecast models, model deployment,
and model management throughout the controlled model development process. The study
addresses the factors that prevent the successful integration of ML models into live envi-
ronments and guides data scientists and software engineers on how to turn the developed
ML models into applications using MLOps approaches.

The paper is organized in the following manner. Section 2 provides an overview of the
literature pertaining to wind energy and ML, as the integration of these two ideas forms
the foundation of the MLOps technological framework. Following this, Section 3 outlines
the materials and methods utilized in the study. Moreover, a pipeline design of MLOps
is described in Section 4. Experimental results for the obtained and targeted outputs are
given in Section 5. Section 6, which is a discussion, and Section 7, which presents the
conclusion and future works, conclude the proposed idea with suggestions and possible
future research directions for wind energy-based MLOps.

Appl. Sci. 2024, 14, 3725 3 of 20

2. Literature Background

Proposed models for wind energy prediction can be categorized as physical models,
traditional statistical models, ML models, and other hybrid models [12]. In 2023, Li et al.
proposed a theoretical model of an integrated system based on a conical Concrete-Filled
Double Skin Tube (CFDST) wind turbine, aiming to investigate the dynamic behavior of
the integrated system in the field of wind energy. A model was formulated utilizing the
Lagrangian approach for the governing equation, and it was analytically solved through
the Galerkin method. The developed model was validated with wind tunnel tests of
scaled models, followed by extensive parametric discussions. This study resulted in a
reliable analytical model capable of accurately predicting the fundamental frequency and
displacement response, which has been corroborated [13].

Unlike physical models, statistical models use meteorological information to estimate
wind speed and include a Numerical Weather Prediction (NWP) model to estimate wind
speed [14,15]. The Weather Research Forecast (WRF) model, which considers the intricacies
of the terrain and the resolution of the chosen region, is also employed as an effective
forecasting method for predicting wind speed. It has demonstrated favorable performance
in short-term wind speed prediction [16].

The autoregressive integrated moving average (ARIMA) model is the most used tradi-
tional statistical model. It utilizes historical data to create a prediction model that effectively
captures the linear relationship within the training dataset [14]. As statistical models
and synthetic techniques have advanced, ML models have been introduced to enhance
prediction models [17]. ML-based models, including artificial neural networks (ANNs),
fuzzy logic (FL) methods, and support vector machines (SVMs), are extensively employed
in wind speed prediction [16]. However, it is important to note that no single method
is universally applicable to all datasets [18]. Consequently, hybrid models that combine
traditional statistical models with ML models have been proposed to enhance the accuracy
of wind speed prediction [12]. Numerous studies have focused on integrating individual
prediction models to create improved prediction models. Nevertheless, a review of wind
speed estimation studies has revealed a lack of universally accepted definitions for these
approaches [12]. Additionally, there are other prediction models that combine different
prediction methods, such as hybrid approaches that incorporate parameter optimization,
dataset preprocessing techniques, and error handling techniques [18].

ML algorithms are designed to identify patterns and correlations within extensive
datasets, enabling them to make optimal decisions and predictions through thorough
analysis [19]. As machine learning applications gain access to larger volumes of data,
their performance improves, and they become increasingly successful. These algorithms
utilize the framework of regression analysis techniques to construct prediction models and
determine the associations between variables [20]. Linear regression (LR) is a supervised
learning algorithm in machine learning that predicts the value of a variable based on another
variable. It utilizes LR calculators with the least squares method to determine the best-fit
line for a set of paired data [21]. On the other hand, random forest (RF) regression improves
prediction accuracy by utilizing the decision tree (DT) method multiple times, with decision
trees being randomly selected subsets from the dataset [22]. XGBoost regression is a
successful method based on the eXtreme Gradient Boosting decision tree algorithm [23].
Since eXtreme Gradient Boosting (XGBoost) uses the parallel working technique when
revealing the decision tree, operations occur quickly. One of its most well-known and
important capabilities is that it can use the observation point in the dataset according to its
weight values to find the appropriate point when classifying data into many trees.

LightGBM, the Light Gradient Acceleration Machines technique, has a histogram-
based infrastructure [24]. In the LightGBM method, the training time of the decision tree has
a non-inverse proportion to the resulting calculation and subsequent division. As a result of
this ability, training time is not long and resource usage is reduced. LightGBM grows trees
leaf-wise rather than level-wise and can handle large-sized data with a significant reduction
in training time [25]. Similar to XGBoost, LightGBM can be applied to wind turbine data

Appl. Sci. 2024, 14, 3725 4 of 20

to predict power output or detect potential faults. Its efficient processing of large datasets
makes it suitable for processing high volumes of data typically generated by wind turbines.
CatBoost, on the other hand, is an algorithm for gradient boosting in decision trees that is
particularly powerful in dealing effectively with categorical features. CatBoost can be used
when wind turbine datasets have a large number of categorical features, such as turbine
models, locations, or operating modes. The ability to naturally process categorical data can
simplify preprocessing steps [25].

ML models were developed for wind energy as part of the study. However, the study
also focused on transforming these ML models into real-life applications. To achieve this,
various research analyses were conducted to explore the potential applications and emerg-
ing trends of MLOps studies. Successful data science projects require the collaboration of
different business layers. Some researchers emphasize the importance of continuous deliv-
ery of MLOps and the automation of various stages of the machine learning workflow [26].
Additionally, data science projects drive the development of hardware capabilities to en-
hance computing power and energy efficiency [27]. As a result, there is a growing interest
within the research community in networking for MLOps [28]. Function-As-A-Service
(FaaS) technologies are considered enablers of MLOps models, and deploying pre-trained
ML models on FaaS can unlock the potential of event-driven AI solutions [29]. Constant
monitoring is essential for ML-based applications to ensure reliable performance in critical
systems. Lastly, traditional version control systems used in software engineering often
struggle to differentiate between machine learning-specific components like models and
datasets. Further research is needed in this area to better support the machine learning life
cycle [30].

3. Material and Methods

In this section, the materials, datasets, software tools, and methodological approaches
used for the integration of the ML model developed for wind energy forecasting into
the MLOps process are explained in detail. By specifying the source, features, and pre-
processing steps of the datasets used in the research, the basis for training the model
is laid.

3.1. Dataset and Preprocessing

The dataset used in this study includes data recorded at 10 min intervals from the
Supervisory Control and Data Acquisition (SCADA) system of an operating wind turbine
in Türkiye [31]. Features in the dataset are as follows: LV (Low Voltage) Actual Power
(kW), which expresses the power produced by the turbine for a certain moment; Wind
Speed (m/s), which shows the wind speed used by the turbine for electricity production;
Theoretical Power Curve (KWh), which expresses the theoretical power values for that
wind speed specified by the turbine manufacturer; and Wind Direction (◦), which shows
the wind direction in which the turbine automatically rotates. Sample data from the dataset
are given in Table 1.

Table 1. Sample data in the dataset.

Index Date Actual Power (kW) Wind Speed (m/s) Thpower (KWh) Wind Direction (◦)

0 1 January 2018 00:00 380.047791 5.311336 416.328908 259.994904
1 1 January 2018 00:10 453.769196 5.672167 519.917511 268.641113
2 1 January 2018 00:20 306.376587 5.216037 390.900016 272.564789

In Table 1, each row represents values over a period of time recorded at 10 min
intervals. ‘Thpower (KWh)’ represents the Theoretical Power Curve. How the wind speed,
and therefore the production capacity, of the wind turbine change over time is given in
Figure 1.

Appl. Sci. 2024, 14, 3725 5 of 20

Appl. Sci. 2024, 14, 3725 5 of 21

2 1 January 2018
00:20

306.376587 5.216037 390.900016 272.564789

In Table 1, each row represents values over a period of time recorded at 10 min inter-
vals. ‘Thpower (KWh)’ represents the Theoretical Power Curve. How the wind speed, and
therefore the production capacity, of the wind turbine change over time is given in Figure
1.

Figure 1. Monthly wind energy production changes in 2018 (in kW).

As seen in Figure 1, it is possible to observe that on some dates, energy production is
almost zero, while at other times it is very close to maximum capacity. These fluctuations
reflect the natural variability of wind and the difficulties in predicting wind energy pro-
duction. A correlation heatmap graph was obtained to show the strength and direction of
the relationship between the variables in the dataset (Figure 2). Correlation is a statistical
metric that quantifies the strength and direction of the association between two variables.
The visualization process commences with the application of the ‘df.corr()’ method, which
calculates the Pearson correlation coefficients within the dataset. This computation yields
a correlation matrix, delineating the correlation coefficients for every possible pair of var-
iables contained within the dataset. To visualize this matrix, the ‘heatmap’ function from
the seaborn library, a data visualization library that extends ‘matplotlib’, is utilized. ‘Sea-
born’ facilitates the creation of graphs that are not only more aesthetically pleasing but
also more comprehensible.

The graph presented in Figure 2 is a correlation heatmap generated from a dataset
comprising wind energy metrics pertinent to this investigation. The heatmap essentially
functions as a matrix that visually encodes the correlation coefficients between disparate
data columns through a spectrum of colors. The color intensity on the heatmap indicates
the strength of the correlation between pairs of variables: hues approaching dark red sig-
nify positive correlations, whereas those approaching dark blue denote negative correla-
tions. The values of correlation coefficients range from −1 t −o +1, where +1 signifies a per-
fect positive linear relationship, −1 signifies a perfect negative linear relationship, and 0
indicates no linear relationship exists [19].

Figure 1. Monthly wind energy production changes in 2018 (in kW).

As seen in Figure 1, it is possible to observe that on some dates, energy production is
almost zero, while at other times it is very close to maximum capacity. These fluctuations
reflect the natural variability of wind and the difficulties in predicting wind energy pro-
duction. A correlation heatmap graph was obtained to show the strength and direction of
the relationship between the variables in the dataset (Figure 2). Correlation is a statistical
metric that quantifies the strength and direction of the association between two variables.
The visualization process commences with the application of the ‘df.corr()’ method, which
calculates the Pearson correlation coefficients within the dataset. This computation yields a
correlation matrix, delineating the correlation coefficients for every possible pair of vari-
ables contained within the dataset. To visualize this matrix, the ‘heatmap’ function from the
seaborn library, a data visualization library that extends ‘matplotlib’, is utilized. ‘Seaborn’
facilitates the creation of graphs that are not only more aesthetically pleasing but also
more comprehensible.

Appl. Sci. 2024, 14, 3725 6 of 21

Figure 2. Correlation heatmap of wind power generation parameters.

Within the context of this study, the variables ‘Actualpower’, ‘Windspeed’,
‘Thpower’, and ‘Winddir’ are considered. ‘Actualpower’ and ‘Thpower’ denote the wind
energy production values; ‘Windspeed’ is indicative of wind velocity; and ‘Winddir’ sig-
nifies the direction of the wind. The heatmap delineates both the magnitude and direction
of the linear correlations among these variables. Notably, there exists a pronounced posi-
tive correlation amongst ‘Actualpower’, ‘Windspeed’, and ‘Thpower’, which implies ro-
bust positive linear interrelations between these variables. ‘Thpower’, or the Theoretical
Power Curve, elucidates the maximum power generation potential of wind turbines un-
der ideal conditions. However, actual conditions or the specific focus of this study may
deviate from these theoretical estimations. Consequently, if the analysis is concentrated
on the actual energy yield, incorporating theoretical values could potentially lead to mis-
conceptions. Therefore, such theoretical values were omitted from this research. Subse-
quently, the dataset was refined to omit records wherein wind speed was between 3 and
26 m/s and the corresponding ‘LV ActivePower’ was recorded as 0 kW. The refined dataset
is portrayed in a matrix combining scatter plots and histograms, as depicted in Figure 3.

Figure 3 shows the positive relationship between Wind Speed and Actual Power.
There is no clear relationship between Wind Speed and Wind Direction. However, it can
provide important information for applications such as choosing appropriate locations for
wind turbines, energy production forecasts, and adjusting the direction of the turbine. For
this reason, the wind rose graph is given in Figure 4.

Figure 2. Correlation heatmap of wind power generation parameters.

Appl. Sci. 2024, 14, 3725 6 of 20

The graph presented in Figure 2 is a correlation heatmap generated from a dataset
comprising wind energy metrics pertinent to this investigation. The heatmap essentially
functions as a matrix that visually encodes the correlation coefficients between disparate
data columns through a spectrum of colors. The color intensity on the heatmap indicates
the strength of the correlation between pairs of variables: hues approaching dark red
signify positive correlations, whereas those approaching dark blue denote negative correla-
tions. The values of correlation coefficients range from −1 t −o +1, where +1 signifies a
perfect positive linear relationship, −1 signifies a perfect negative linear relationship, and
0 indicates no linear relationship exists [19].

Within the context of this study, the variables ‘Actualpower’, ‘Windspeed’, ‘Thpower’,
and ‘Winddir’ are considered. ‘Actualpower’ and ‘Thpower’ denote the wind energy
production values; ‘Windspeed’ is indicative of wind velocity; and ‘Winddir’ signifies the
direction of the wind. The heatmap delineates both the magnitude and direction of the
linear correlations among these variables. Notably, there exists a pronounced positive
correlation amongst ‘Actualpower’, ‘Windspeed’, and ‘Thpower’, which implies robust
positive linear interrelations between these variables. ‘Thpower’, or the Theoretical Power
Curve, elucidates the maximum power generation potential of wind turbines under ideal
conditions. However, actual conditions or the specific focus of this study may deviate from
these theoretical estimations. Consequently, if the analysis is concentrated on the actual
energy yield, incorporating theoretical values could potentially lead to misconceptions.
Therefore, such theoretical values were omitted from this research. Subsequently, the
dataset was refined to omit records wherein wind speed was between 3 and 26 m/s and the
corresponding ‘LV ActivePower’ was recorded as 0 kW. The refined dataset is portrayed in
a matrix combining scatter plots and histograms, as depicted in Figure 3.

Appl. Sci. 2024, 14, 3725 7 of 21

Figure 3. Matrix consisting of scatter plot and histogram.

Figure 4. Wind rose chart.

Figure 3. Matrix consisting of scatter plot and histogram.

Figure 3 shows the positive relationship between Wind Speed and Actual Power. There
is no clear relationship between Wind Speed and Wind Direction. However, it can provide
important information for applications such as choosing appropriate locations for wind

Appl. Sci. 2024, 14, 3725 7 of 20

turbines, energy production forecasts, and adjusting the direction of the turbine. For this
reason, the wind rose graph is given in Figure 4.

Appl. Sci. 2024, 14, 3725 7 of 21

Figure 3. Matrix consisting of scatter plot and histogram.

Figure 4. Wind rose chart. Figure 4. Wind rose chart.

Figure 4 shows the direction (in degrees) and speed (in meters/seconds) of the wind.
The wind vane has sections extending outward from the center, indicated by different
colors for different wind speeds. Each slice represents the frequency and speed at which
the wind blows from that direction. Figure 4 shows that the wind blows most frequently
from the northeast (N-E) and southeast (S-E). The highest wind speeds (e.g., over 20.2 m/s)
were observed in northeasterly winds.

3.2. Feature Engineering and Data Cleaning

Machine learning models perform better when trained on representative examples
from the dataset. For this reason, it is aimed for the model to learn the real relationship be-
tween wind speed and energy production by removing zero power records that disrupt the
relationship between energy production and wind speed. Likewise, there may be records
where the wind speed is sufficient for energy production but the turbine does not produce
active power. These records must be removed. Therefore, when W represents the wind
speed, data were removed from the dataset according to the condition W ≤ 3||W ≥ 26 .

The ‘Date/Time’ column in the dataset was processed to reveal important information
that will contribute to time series analysis. Time units such as year, month, day, hour, and
minute were separated in detail, thus making it possible to comprehensively examine time-
related patterns. Additionally, categorical variables such as ‘Season’ and ‘Day’ were added
to integrate seasonal effects and various time periods of the day into the models. However,
before this stage, ‘NULL’ data were removed from the dataset. A total of 47,033 data
were used in the dataset; 80% of the data in the dataset was reserved for training and 20%
for testing.

Appl. Sci. 2024, 14, 3725 8 of 20

3.3. Machine Learning Model Descriptions

The application of machine learning models is of strategic importance in wind energy
forecasting. However, the data must be processed correctly. In this context, the dataset was
examined using advanced analytical techniques and a series of regression models were
evaluated for their ability to predict wind turbine active power production data. Each
model was examined and compared in terms of various aspects such as predictive accuracy,
computational efficiency, and ease of use.

3.3.1. Linear Regression

Distinguished by its simplicity and widespread application, linear regression is impor-
tant for predictive analytics. Its ability to distinguish relationships between dependent and
independent variables and to make continuous variable projections leads to its widespread
use. It is developed by estimating the linear relationship between one or more variables
and often using the least squares method for optimization [32].

3.3.2. Decision Tree and Random Forest

Decision trees are a modeling technique used in classification and regression problems
and are widely preferred in the fields of data mining and machine learning [33]. A decision
tree is a hierarchical structure that represents a dataset and consists of a set of decision rules.
The purpose of this structure is to separate the samples in the dataset into classes using
simple decision structures. While creating the decision tree, the feature that best divides the
dataset is selected at each node. Starting from the root of the tree, each branch classifies the
data or makes regression predictions until the last leaf nodes. Advantages of decision trees
include the ease of understanding of the model, the low need for data preprocessing, and
the ability to work with both numerical and categorical data. However, decision trees can
be prone to overfitting; this is when the model fits the training data very well but performs
poorly on new, unseen data [25].

Random forest (RF) is a powerful machine learning algorithm based on combining
predictions produced by multiple decision trees, used for classification and regression
problems [33]. By combining the predictions made by decision trees, RF minimizes the
overfitting problem that a single decision tree may encounter and generally produces
more stable results. This method, developed by Leo Breiman in 2001, is based on the
principle of training each decision tree on randomly selected subsets and thus increases the
diversity and robustness of the model. Random forests are preferred in many application
areas, thanks to their capacity to determine the importance of variables, especially in
high-dimensional datasets. The success of this method can be further increased by the
appropriate selection of the number of variables and number of trees depending on the
size and complexity of the dataset.

3.3.3. Gradient Boosting Machines

Gradient boosting machines (GBMs) represent a class of highly efficient and flexible
machine learning algorithms known for their ability to solve a variety of predictive model-
ing problems [23]. GBMs improve prediction accuracy by iteratively combining multiple
weak models, usually decision trees, into a robust ensemble estimator. GBMs are adaptively
tuned to minimize a given loss function by leveraging gradient descent optimization in the
function space. This feature makes them applicable in a wide variety of tasks with different
data distributions and levels of complexity. The working principle of a GBM is shown in
Equation (1).

Fm(x) = Fm−1(x) + pmhm(X) (1)

In Equation (1), Fm(x) is m-th iteration model forecast, Fm−1(x) is the prediction from
the previous iteration, hm(x) is a weak learner added in the current iteration (usually a
decision tree), and pm is the coefficient that measures the weak learner’s contribution. A
GBM learns patterns and complexities in the dataset step by step. At each step, it adds
a new weak learner that will reduce the model’s previous errors. This process continues

Appl. Sci. 2024, 14, 3725 9 of 20

iteratively to minimize a specified loss function. Thus, the overall prediction performance
of the model increases throughout the iterations.

3.3.4. XGBoost

XGBoost, an application of GBM, stands out because of its efficiency and performance,
especially when working with complex and high-dimensional data. The structure of the
model allows the integration of multiple weak predictors to create a robust final model
that can address a variety of predictive modeling challenges. XGBoost uses both linear and
tree learning algorithms to improve prediction accuracy [23]. Due to its adaptability and
scalability, this technique has been chosen to tackle the complex problem of potential wind
energy estimation.

The XGBoost algorithm is an advanced ensemble tree method that produces predic-
tions using a large number of multiple regression trees. The basic step of the algorithm
is to make the first prediction (base score); this is usually accomplished with a default
initial value of 0.5. This value provides an iterative convergence towards the result with
the improvements made in the next steps of the algorithm. By following the gradient boost-
ing methodology, XGBoost adds a new decision tree to minimize existing errors in each
iteration. In this process, each decision tree is constructed to learn the deviations (residuals)
from previous predictions. These residuals are calculated as the difference between the
actual values and the model’s predictions. The power of the algorithm lies in the fact that
the sum of these weak learners can form a strong overall model by systematically reducing
errors. In XGBoost, the branching of each decision tree is performed by optimization to
minimize a customized objective function [34].

3.3.5. LightGBM

Light Gradient Boosting Machine (LightGBM) is a machine learning algorithm built
on the gradient boosting framework. LightGBM is known for offering high efficiency and
speed, low memory usage, and high accuracy rates on large datasets. Unlike traditional gra-
dient boosting methods, instead of randomly selecting samples in the dataset, LightGBM
processes the data using innovative techniques such as gradient-based one-sided sam-
pling (GOSS) and exclusive feature bundling (EFB). These strategies significantly reduced
the computational load and memory usage, making LightGBM widely used in energy
forecasting systems [25].

3.3.6. CatBoost

The CatBoost algorithm integrates gradient boosting decision tree (GBDT) technol-
ogy with advances in the effective use of categorical features. This approach improves
the model’s ability to efficiently process and learn categorical data without the need for
extensive preprocessing. CatBoost uses unregistered trees, which contributes to its high
performance and accuracy by simplifying the handling of categorical variables. This
methodology significantly helps in minimizing overfitting and thus improves the gen-
eralization capabilities of the model. CatBoost can be applied to both regression and
classification problems and shows particularly high performance on large datasets. One of
the main advantages of the algorithm is that it can use categorical variables directly without
requiring preprocessing, which simplifies and speeds up the modeling process [25].

CatBoost works by creating a set of decision trees that are weighted to reduce the
prediction error of the target variable at each step. Before adding each tree, the model
randomly selects a subset of the dataset and performs gradient calculations for each element
in that subset. These gradients determine how new trees are created, helping the model
reduce its error rate. Additionally, CatBoost has the ability to calculate the importance of
each feature, which allows the model to make more accurate predictions.

Appl. Sci. 2024, 14, 3725 10 of 20

4. MLOps Pipeline Design

In this study, MLOps was used to integrate machine learning models into the software
development process. A methodology leveraging DevOps practices was implemented to
effectively automate and monitor ML models in the development environment. The study
highlighted the key components of the MLOps development process, including model
design and training data editing, and discusses how MLOps facilitates more accessible,
faster, and less risky software development. The need for technical automation is outlined
to drive continuous development phases and thus increase productivity through rapid
model building, high-quality machine learning models, and rapid deployment.

4.1. MLOps Pipeline Architecture

Model deployment, which involves running, scaling, maintaining, and integrating
models into applications, remains a significant challenge across different industries. This
process is crucial to transforming ML models into operational solutions that can drive
real-world applications and outcomes. Successful deployment of models requires a robust
infrastructure that can handle the computational demands of machine learning algorithms,
as well as continuous monitoring and updates to ensure models remain effective over time.
The MLOps pipeline architecture is a structure that automates the development, testing,
deployment, and monitoring processes of machine learning projects. This architecture
includes basic components such as data preparation, model training, model evaluation,
model deployment, and continuous monitoring of the model’s performance. Similarly,
DevOps represents a significant transformation in software development over the last
decade. The DevOps approach aims to deliver software products and features faster and
more reliably. The DevOps process generally includes planning, development, testing,
packaging, deployment, configuration, and monitoring steps. The DevOps architecture is
given in Figure 5.

Appl. Sci. 2024, 14, 3725 11 of 21

Figure 5. DevOps pipeline architecture.

When the architecture in Figure 5 is examined, it is seen that it represents a constantly
renewed and active working process. The depicted architecture in Figure 5 epitomizes the
structured progression of the DevOps pipeline, elucidating the systematic sequence of
operations from conception to deployment. It commences with the ‘Plan’ phase, wherein
strategic initiatives are formulated, encompassing requirement elicitation and delineation
of developmental trajectory. This is succeeded by the ‘Create’ phase, where the amalgam-
ation of coding practices comes to fruition through collaborative and iterative develop-
ment. After the creation phase is ‘Verify’, a critical juncture wherein the developed fea-
tures undergo rigorous automated validation to ensure adherence to predefined quality
benchmarks and functional integrity. Upon successful verification, the ‘Package’ phase
ensues, entailing the encapsulation of validated features into deployable entities, primed
for integration into the user environment. The ‘Release’ phase marks the deployment of
the application into the production milieu, orchestrated to minimize manual intervention
and foster seamless operational continuity. This is closely followed by the ‘Configure’
phase, which involves the meticulous tuning of the application within its deployment eco-
system to ensure optimal performance parameters are met. Crucially, the ‘Monitor’ phase
encapsulates the ongoing surveillance of application performance post-deployment, serv-
ing as a feedback conduit to the ‘Plan’ phase, thereby instituting a cyclical paradigm of
continuous enhancement and evolution. This feedback mechanism is pivotal, facilitating
empirical insights that drive the iterative refinement of the subsequent developmental it-
erations.

Different technologies can be used at each step of the DevOps architecture. DevOps
can use tools like JIRA for planning, Git and IDEs for code generation, Docker for pack-
aging, Jenkins for deployment, and Prometheus/Grafana for monitoring. Flexibility here
may vary depending on the developer’s current hardware requirements. Just as DevOps
has introduced new approaches to software development, MLOps has brought a similar
transformation to ML operations. Although progress has been made in integrating ML
into different applications and technological products, a solid structure is needed to en-
sure fast and reliable delivery of ML products. Therefore, ML needs to be operationalized.
Figure 6 shows the MLOps architecture inspired by DevOps.

Figure 5. DevOps pipeline architecture.

When the architecture in Figure 5 is examined, it is seen that it represents a constantly
renewed and active working process. The depicted architecture in Figure 5 epitomizes
the structured progression of the DevOps pipeline, elucidating the systematic sequence of
operations from conception to deployment. It commences with the ‘Plan’ phase, wherein
strategic initiatives are formulated, encompassing requirement elicitation and delineation of
developmental trajectory. This is succeeded by the ‘Create’ phase, where the amalgamation
of coding practices comes to fruition through collaborative and iterative development. After
the creation phase is ‘Verify’, a critical juncture wherein the developed features undergo
rigorous automated validation to ensure adherence to predefined quality benchmarks and
functional integrity. Upon successful verification, the ‘Package’ phase ensues, entailing the
encapsulation of validated features into deployable entities, primed for integration into
the user environment. The ‘Release’ phase marks the deployment of the application into
the production milieu, orchestrated to minimize manual intervention and foster seamless
operational continuity. This is closely followed by the ‘Configure’ phase, which involves
the meticulous tuning of the application within its deployment ecosystem to ensure optimal
performance parameters are met. Crucially, the ‘Monitor’ phase encapsulates the ongoing

Appl. Sci. 2024, 14, 3725 11 of 20

surveillance of application performance post-deployment, serving as a feedback conduit to
the ‘Plan’ phase, thereby instituting a cyclical paradigm of continuous enhancement and
evolution. This feedback mechanism is pivotal, facilitating empirical insights that drive the
iterative refinement of the subsequent developmental iterations.

Different technologies can be used at each step of the DevOps architecture. DevOps
can use tools like JIRA for planning, Git and IDEs for code generation, Docker for pack-
aging, Jenkins for deployment, and Prometheus/Grafana for monitoring. Flexibility here
may vary depending on the developer’s current hardware requirements. Just as DevOps
has introduced new approaches to software development, MLOps has brought a similar
transformation to ML operations. Although progress has been made in integrating ML into
different applications and technological products, a solid structure is needed to ensure fast
and reliable delivery of ML products. Therefore, ML needs to be operationalized. Figure 6
shows the MLOps architecture inspired by DevOps.

Appl. Sci. 2024, 14, 3725 12 of 21

Figure 6. MLOps architecture.

The adaptation of DevOps processes to the MLOps process aims to meet the unique
needs of ML using open-source technologies. This process covers the life cycle stages of
ML models such as data preparation, model training, model versioning, deployment, and
monitoring. With this adaptation, ML models are managed at the same level as the soft-
ware development discipline, ensuring seamless integration into products and services.
The ‘CREATE’ phase shows the development phase where the code of the product is writ-
ten. In the MLOps process, relevant ML models are created using libraries such as Tensor-
Flow and Keras, with the help of any editor such as Jupyter. In this study, ML models
were developed using Jupyter and Python’s sklearn library. The ‘VERIFY’ step refers to
the quality control processes where code is tested and verified. At this stage, the accuracy
of ML models was tested using metrics such as root mean squared error (RMSE). The
‘PACKAGE’ phase is the part where the software is packaged for distribution. In this
study, docker was used for package processing. In the ‘CONFIGURE’ phase, web services
were prepared to enable ML models to work in different systems. The ‘MONITOR’ phase
includes the process of monitoring the performance of the software in the production en-
vironment and detecting potential problems. Although at this stage Postman is primarily
a tool used for the development and testing of application programming interfaces (APIs),
it has been used to test the health and response times of APIs.

4.2. Model Training and Evaluation Process
Within the framework of MLOps, model training and evaluation processes include

steps such as training the model on data, testing its performance, and adjusting hyperpa-
rameters. The training process of various machine learning models for ‘LV ActivePower
(kW)’ prediction based on SCADA data was carried out. The process started with the
preparation of the data and dividing the data into training and test sets. Models were
developed by defining various regression models in a pipeline, including LR, DT, RF,
GBM, XGBoost, LightGBM, and CatBoost. RMSE was used as the evaluation criterion for
each model.

Models were developed using the sklearn library in Python’s scikit-learn library. Lin-
earRegression works by fitting a linear model with coefficients to minimize the residual
sum of squares between the observed targets in the dataset and the targets predicted by
the linear approximation. The model then calculates the best-fitting coefficients for the
features that provide a best-fit line for the data. In the RF model, multiple decision trees
are created and combined to obtain a more accurate and stable prediction. In GBR, a model
is created on a stage-by-stage basis, like other strengthening methods. However, its gen-
eralization is achieved by allowing the optimization of a differentiable loss function.
Model training was carried out by adding trees sequentially, each correcting the errors
made by the previously trained trees.

Figure 6. MLOps architecture.

The adaptation of DevOps processes to the MLOps process aims to meet the unique
needs of ML using open-source technologies. This process covers the life cycle stages of
ML models such as data preparation, model training, model versioning, deployment, and
monitoring. With this adaptation, ML models are managed at the same level as the software
development discipline, ensuring seamless integration into products and services. The
‘CREATE’ phase shows the development phase where the code of the product is written. In
the MLOps process, relevant ML models are created using libraries such as TensorFlow
and Keras, with the help of any editor such as Jupyter. In this study, ML models were
developed using Jupyter and Python’s sklearn library. The ‘VERIFY’ step refers to the
quality control processes where code is tested and verified. At this stage, the accuracy of ML
models was tested using metrics such as root mean squared error (RMSE). The ‘PACKAGE’
phase is the part where the software is packaged for distribution. In this study, docker was
used for package processing. In the ‘CONFIGURE’ phase, web services were prepared
to enable ML models to work in different systems. The ‘MONITOR’ phase includes the
process of monitoring the performance of the software in the production environment and
detecting potential problems. Although at this stage Postman is primarily a tool used for
the development and testing of application programming interfaces (APIs), it has been
used to test the health and response times of APIs.

4.2. Model Training and Evaluation Process

Within the framework of MLOps, model training and evaluation processes include
steps such as training the model on data, testing its performance, and adjusting hyperpa-
rameters. The training process of various machine learning models for ‘LV ActivePower
(kW)’ prediction based on SCADA data was carried out. The process started with the prepa-
ration of the data and dividing the data into training and test sets. Models were developed
by defining various regression models in a pipeline, including LR, DT, RF, GBM, XGBoost,
LightGBM, and CatBoost. RMSE was used as the evaluation criterion for each model.

Appl. Sci. 2024, 14, 3725 12 of 20

Models were developed using the sklearn library in Python’s scikit-learn library.
LinearRegression works by fitting a linear model with coefficients to minimize the residual
sum of squares between the observed targets in the dataset and the targets predicted by the
linear approximation. The model then calculates the best-fitting coefficients for the features
that provide a best-fit line for the data. In the RF model, multiple decision trees are created
and combined to obtain a more accurate and stable prediction. In GBR, a model is created
on a stage-by-stage basis, like other strengthening methods. However, its generalization is
achieved by allowing the optimization of a differentiable loss function. Model training was
carried out by adding trees sequentially, each correcting the errors made by the previously
trained trees.

4.3. Automatic Model Deployment and Update

Automated model deployment and update is a process that automates the integration
of machine learning models into production environments and the management of updates
to these models. Tools that can be used in the automatic model deployment and update
phase include continuous integration and continuous deployment (CI/CD) tools such
as Jenkins, Spinnaker, ad Argo CD. There are container management systems such as
Kubernetes and Docker, and platforms that offer machine learning-specific features such as
MLflow and TFX (TensorFlow Extended). These tools enable the model to be seamlessly
integrated into the live environment, monitor its performance, and make automatic updates
when necessary.

During the automatic model deployment and update phase, Docker ensures that
models are packaged in containers and run consistently and isolated in any environment.
This process starts by using a structure in the Dockerfile where the application and its
dependencies are defined. A Docker image is created and can be stored in registries such
as Docker Hub. Then, using the created image, containers are quickly deployed and run in
the production environment or development and test environments. This method ensures
the consistency and portability of the application across different environments. Figure 7
shows the Docker architecture used in the model distribution structure used in this study.

Appl. Sci. 2024, 14, 3725 13 of 21

4.3. Automatic Model Deployment and Update
Automated model deployment and update is a process that automates the integration

of machine learning models into production environments and the management of up-
dates to these models. Tools that can be used in the automatic model deployment and
update phase include continuous integration and continuous deployment (CI/CD) tools
such as Jenkins, Spinnaker, ad Argo CD. There are container management systems such
as Kubernetes and Docker, and platforms that offer machine learning-specific features
such as MLflow and TFX (TensorFlow Extended). These tools enable the model to be
seamlessly integrated into the live environment, monitor its performance, and make au-
tomatic updates when necessary.

During the automatic model deployment and update phase, Docker ensures that
models are packaged in containers and run consistently and isolated in any environment.
This process starts by using a structure in the Dockerfile where the application and its
dependencies are defined. A Docker image is created and can be stored in registries such
as Docker Hub. Then, using the created image, containers are quickly deployed and run
in the production environment or development and test environments. This method en-
sures the consistency and portability of the application across different environments. Fig-
ure 7 shows the Docker architecture used in the model distribution structure used in this
study.

In the architecture shown in Figure 7, hardware with an i7 processor and 16 GB RAM
capacity was used as the infrastructure. Windows 10 was preferred as the operating sys-
tem. In the Docker container engine section, a structured container containing dependen-
cies for artificial intelligence models was created. Libraries such as NumPy and scikit-
learn were defined as requirements. Efficient use and sharing of resources are ensured
without requiring separate operating systems. Thanks to the container engine, system re-
sources are effectively shared through the Docker engine while applications are run in
isolated environments. This approach contributed to speeding up deployment and in-
creasing application consistency. In the APP section, an API was developed using the
FastAPI library. API requests trigger the base model in the container engine section. When
the base model Docker is first started up, it is loaded into memory and stands ready for
API requests.

Figure 7. MLOps Docker architecture.

5. Experimental Results

Figure 7. MLOps Docker architecture.

Appl. Sci. 2024, 14, 3725 13 of 20

In the architecture shown in Figure 7, hardware with an i7 processor and 16 GB RAM
capacity was used as the infrastructure. Windows 10 was preferred as the operating system.
In the Docker container engine section, a structured container containing dependencies
for artificial intelligence models was created. Libraries such as NumPy and scikit-learn
were defined as requirements. Efficient use and sharing of resources are ensured without
requiring separate operating systems. Thanks to the container engine, system resources
are effectively shared through the Docker engine while applications are run in isolated
environments. This approach contributed to speeding up deployment and increasing
application consistency. In the APP section, an API was developed using the FastAPI
library. API requests trigger the base model in the container engine section. When the base
model Docker is first started up, it is loaded into memory and stands ready for API requests.

5. Experimental Results

In this study, the effectiveness of analyses and machine learning models in estimating
wind energy production and managing supply in the energy market was examined. It
details how model training and automatic deployment processes can be optimized with the
use of Docker, MLOps tools, and various machine learning algorithms. The performance of
the developed models, their accuracy in energy production forecasts, and their contribution
to market supply planning were evaluated.

5.1. Model Performance and Evaluation

RMSE as a metric in the experimental results section serves to assess the accuracy of
statistical forecasts made by the developed models. RMSE calculates the square root of
the average of the squared differences between predicted and actual values. This measure
is critical for evaluating how closely the model’s predictions match the real-world data,
providing insight into the model’s predictive performance and its applicability for energy
production forecasting and market supply planning.

RMSE =

√√√√ n

∑
i=1

(âi − ai)
2

n
(2)

When evaluating a developed model using RMSE, a lower value is desirable, indicating
closer alignment between predictions and actual values. Conversely, a high RMSE suggests
significant discrepancies, signaling poor model performance. Thus, lower RMSE values
denote more accurate predictions, reflecting better model effectiveness.

5.2. Model Comparison Using RMSE

A comparative analysis of various machine learning models was performed using
RMSE. In the analysis, the models developed within the scope of the study were discussed.
RMSE scores of each model show the performance of the model on the dataset. Model
comparisons will help determine how well models work on different datasets and in
what situations they may be preferred. Figure 8 shows the graph comparing the results.
Moreover, error bars representing the 95% confidence intervals have been incorporated
into the bar charts that display the average error metrics for each machine learning model.
This enhancement provides critical insights into the statistical reliability of the performance
measures across models.

Appl. Sci. 2024, 14, 3725 14 of 20

Appl. Sci. 2024, 14, 3725 14 of 21

In this study, the effectiveness of analyses and machine learning models in estimating
wind energy production and managing supply in the energy market was examined. It
details how model training and automatic deployment processes can be optimized with
the use of Docker, MLOps tools, and various machine learning algorithms. The perfor-
mance of the developed models, their accuracy in energy production forecasts, and their
contribution to market supply planning were evaluated.

5.1. Model Performance and Evaluation
RMSE as a metric in the experimental results section serves to assess the accuracy of

statistical forecasts made by the developed models. RMSE calculates the square root of the
average of the squared differences between predicted and actual values. This measure is
critical for evaluating how closely the model’s predictions match the real-world data,
providing insight into the model’s predictive performance and its applicability for energy
production forecasting and market supply planning.

𝑅𝑀𝑆𝐸 = (â − 𝑎)𝑛 (2)

When evaluating a developed model using RMSE, a lower value is desirable, indicat-
ing closer alignment between predictions and actual values. Conversely, a high RMSE
suggests significant discrepancies, signaling poor model performance. Thus, lower RMSE
values denote more accurate predictions, reflecting better model effectiveness.

5.2. Model Comparison Using RMSE
A comparative analysis of various machine learning models was performed using

RMSE. In the analysis, the models developed within the scope of the study were dis-
cussed. RMSE scores of each model show the performance of the model on the dataset.
Model comparisons will help determine how well models work on different datasets and
in what situations they may be preferred. Figure 8 shows the graph comparing the results.
Moreover, error bars representing the 95% confidence intervals have been incorporated
into the bar charts that display the average error metrics for each machine learning model.
This enhancement provides critical insights into the statistical reliability of the perfor-
mance measures across models.

Figure 8. RMSE results for machine learning models in kW. Figure 8. RMSE results for machine learning models in kW.

The comparisons in Figure 8 are expected to guide important decisions at the model
selection stage and play a critical role in achieving success in machine learning applications.
As seen in the graph, while the LR model has the highest RMSE value, the GBM model has
the lowest RMSE value among these models. It is seen that the linear regression model
predicts the dataset the worst compared to other models, while the GBM model has the best
prediction performance among these models. However, it is observed that LightGBM and
RF models perform well with similar low RMSE values. In line with these observations,
LightGBM was reconsidered, and the model was improved. In addition, the RMSE values
of the XGBoost and CatBoost models are close to each other, and it can be said that they
exhibit a moderate performance compared to other advanced models.

5.3. LightGBM Hyperparameter Optimisation

An ideal model should make predictions with high accuracy and produce results as
close as possible to the real values. Based on RMSE values, the best performers among
the examined models are discussed in detail. In this context, it is discussed in detail
that LightGBM performs well among the models examined, based on its RMSE values.
Important points such as the advantages and limitations of LightGBM, the cases in which
these models should be preferred, and the relationship between the characteristics of the
dataset and model performance are emphasized. A regression model was created using
the LightGBM algorithm, and cross-validation and hyperparameter tuning of this model
were performed.

Hyperparameter optimization was performed using GridSearchCV. The aim is to
find the combination that gives the best performance by trying different combinations of
the specified parameters, including ‘n_estimators’, ‘learning_rate’, and ‘max_depth’. In
the LightGBM model, the ‘n_estimators’ parameter specifies the number of trees to be
constructed within the model. Generally, a greater number of trees can enhance the model’s
complexity and potentially its performance; however, it also increases computational costs
and the risk of overfitting. Therefore, it must be selected with care. The ‘learning_rate’ pa-
rameter governs the rate of learning in each iteration. A lower learning rate typically leads
to slower learning and better generalization performance but may require more iterations
to converge to a suitable solution. Conversely, a very high learning rate can cause the model
to learn rapidly, yet it might also lead to overfitting. The ‘max_depth’ parameter determines
the maximum depth of a tree, that is, the maximum level of decision nodes. This parameter
controls the complexity of the model and the level of detail in the relationships it can
capture within the dataset. Deeper trees can model more complex relationships but again
raise the risk of overfitting. The GridSearchCV method attempts all specified combinations

Appl. Sci. 2024, 14, 3725 15 of 20

of these three hyperparameters and evaluates the model’s performance for each combi-
nation through cross-validation. Afterward, a new LightGBM model was created using
the best hyperparameters, and the performance of this model was measured again using
cross-validation. The model was developed with the hyperparameters (‘learning_rate’:
0.01, ‘max_depth’: 6, ‘n_estimators’: 500) producing the best results. The results obtained
were compared with the RMSE scores of the initial model (Figure 9).

Appl. Sci. 2024, 14, 3725 16 of 21

Figure 9. Comparisons of LightGBM models.

The first column in the chart shows the RMSE of the initial LightGBM model. This
value represents the initial performance of the model before adjusting the hyperparameter
(‘learning_rate’: 0.1, ‘max_depth’: 3, ‘n_estimators’: 100). The second column shows the
final RMSE value obtained after hyperparameter tuning, which is approximately 190.34.
Since the purpose of hyperparameter tuning is to improve the performance of the model,
we can observe an improvement over the initial model in this case. This comparison shows
that tuning the model’s hyperparameters can significantly improve model performance,
but it is important to note that this improvement may not always be successful. Further-
more, the practical significance of these changes must be evaluated in the context of a
particular problem and depending on the characteristics of the dataset.

5.4. MLOps Model and Latency
In this study, the processes of developing a LightGBM-based regression model, con-

tainerization, distribution through web services, and subsequent monitoring and updat-
ing are discussed. The LightGBM model was developed based on the characteristics of the
dataset and the target variable. After the model training was completed, it was prepared
in the Docker package. The integration of the LightGBM model into Docker enabled the
model to work consistently across different environments.

The model is exposed as a web service using Representational State Transfer (REST-
ful) APIs at the application layer. These APIs have made it possible for users and applica-
tions to remotely call the model and make predictions by providing data inputs. API test-
ing and development tools such as Postman were used to test and monitor the perfor-
mance of the model after it was presented via web services at the application layer. In this
process, the response time performance of the model was evaluated by making API calls
based on various scenarios via Postman. In the experiments carried out, 100 different val-
ues were prepared and sent to the API sequentially. Thus, information about the response
time of the model was obtained. The average response time (latency) of the model was
determined to be 9 ms.

6. Discussion
The model selection process is particularly difficult in wind energy forecasting. The

variable nature of wind and the complexity of datasets make it difficult for models to ac-
curately reflect real-world data. Challenges include ensuring models accurately predict
factors such as highly variable wind speed and direction. In addition, it is necessary to

Figure 9. Comparisons of LightGBM models.

The first column in the chart shows the RMSE of the initial LightGBM model. This
value represents the initial performance of the model before adjusting the hyperparameter
(‘learning_rate’: 0.1, ‘max_depth’: 3, ‘n_estimators’: 100). The second column shows the
final RMSE value obtained after hyperparameter tuning, which is approximately 190.34.
Since the purpose of hyperparameter tuning is to improve the performance of the model,
we can observe an improvement over the initial model in this case. This comparison shows
that tuning the model’s hyperparameters can significantly improve model performance, but
it is important to note that this improvement may not always be successful. Furthermore,
the practical significance of these changes must be evaluated in the context of a particular
problem and depending on the characteristics of the dataset.

5.4. MLOps Model and Latency

In this study, the processes of developing a LightGBM-based regression model, con-
tainerization, distribution through web services, and subsequent monitoring and updating
are discussed. The LightGBM model was developed based on the characteristics of the
dataset and the target variable. After the model training was completed, it was prepared
in the Docker package. The integration of the LightGBM model into Docker enabled the
model to work consistently across different environments.

The model is exposed as a web service using Representational State Transfer (RESTful)
APIs at the application layer. These APIs have made it possible for users and applications
to remotely call the model and make predictions by providing data inputs. API testing
and development tools such as Postman were used to test and monitor the performance of
the model after it was presented via web services at the application layer. In this process,
the response time performance of the model was evaluated by making API calls based on
various scenarios via Postman. In the experiments carried out, 100 different values were
prepared and sent to the API sequentially. Thus, information about the response time of
the model was obtained. The average response time (latency) of the model was determined
to be 9 ms.

Appl. Sci. 2024, 14, 3725 16 of 20

6. Discussion

The model selection process is particularly difficult in wind energy forecasting. The
variable nature of wind and the complexity of datasets make it difficult for models to
accurately reflect real-world data. Challenges include ensuring models accurately predict
factors such as highly variable wind speed and direction. In addition, it is necessary
to select appropriate hyperparameters and maintain the generalizability of the model
by avoiding situations such as overfitting or underfitting. The difficulties that may be
encountered in this process have been reduced thanks to the careful work carried out in the
data preprocessing step. Steps such as model testing and hyperparameter tuning ensure
that the correct model is selected, or the selected model is improved.

Hyperparameter adjustments of the LightGBM model played an important role in
maximizing the performance of the model on the data. These adjustments helped the
model avoid problems such as overfitting or underfitting, and improve prediction accu-
racy. Deploying the model using Docker ensured that the model worked consistently in
different environments. Dependency management is simplified, and deployment of the
model is accelerated. These strategies were implemented by performing hyperparameter
optimization using GridSearchCV and packaging and deploying the model in a Docker
container. When these two strategies are combined, the overall performance of the model
is increased, ensuring application flexibility and deployment efficiency.

Although the integration of machine learning and MLOps has significantly accelerated
model development and deployment processes, some limitations have been encountered.
These limitations include technical and operational challenges, high startup costs (for
researchers using licensed software infrastructure), expertise and training requirements,
managing model updates, and difficulties in ensuring consistency across different environ-
ments. In addition, difficulties in maintaining the generalization ability of the model in
complex datasets and real-world scenarios are also important. However, MLOps overcomes
technical and operational challenges and has allowed model updates to be managed more
regularly and effectively. Therefore, using MLOps offers the benefits of managing com-
plexity and facilitating collaboration while increasing the speed, reliability, and scalability
of machine learning projects. Table 2 shows the comparison of the proposed model with
previous studies. However, the data, methods, and success rates obtained varied from
study to study.

Table 2. Performance comparison of previous studies in the literature.

Method Ref. RMSE Latency (ms)

MTK (Modified Taylor Kriging) [15] 15.23% -
Random Forest Spatial Interpolation (RFSI) [22] 25% 305.2

LightGBM [35] 24% -
XGBoost [36] 56.85%

Auto Arima, Prophet, and ProLoaF [37] 12.81% 38
BiGRU, BiLSTM, BiRNN, and unidirectional LSTM [38] 47.25% 12.3

LightGBM and MLOps The proposed study 58.61% 9

In Table 2, the performance of various regression and classification algorithms reported
in the literature is evaluated. The referenced studies [15,22,35–38] focus on developing
novel time series forecasting methods. Liao et al. integrated the LightGBM model with four
traditional meteorological features as inputs and computed an RMSE value. To improve the
outcomes, they combined the LightGBM model with the Mutual Information Coefficient
(MIC). This enhanced model, when fed with eleven meteorological features (such as gravity
wave stress and heat flux), showed a 24% improvement in RMSE. These results indicate that
the selection of meteorological data by MIC significantly enhances prediction accuracy [35].

Park et al. focused on two types of GBM prediction models, considering the seasonal
nature of wind. One model included a training set with data from July, matching the test
set’s month. The other model’s training set consisted of data from the same season as the

Appl. Sci. 2024, 14, 3725 17 of 20

test set, specifically chosen from the summer season, spanning June to August. The model
trained with monthly data demonstrated slightly improved prediction accuracy, achieving
an RMSE value of 4.11% in terms of Megawatts (MW) [39].

In a separate study, Samikshya et al. developed a KNN and LightGBM model using
data from wind farms and weather data. A comparison of these two models revealed that
the LightGBM model provided superior performance with a 13.26% RMSE, showcasing its
improved predictive accuracy. Pathak et al. conducted a comparative evaluation of five
different regression models in wind energy forecasting, identifying XGBoost as the most
effective model [40].

A review of similar studies indicates that model development has been undertaken
on various datasets, incorporating different meteorological features. The study in [15]
proposed the modified Taylor Kriging (MTK) method, which was found to be more accurate
than the popular ARIMA method for predicting wind speed direction, with an average
improvement of 15.23% in RMSE. In [22], the random forest spatial interpolation (RFSI)
method was proposed for precipitation and temperature case studies, showing a prediction
time of 6.83 s for 5000 points, compared to 312.12 s with the random forest for spatial
prediction (RFsp), and a 25% improvement in RMSE with the RFSI method.

Accurate forecasting of wind and weather conditions is crucial for energy produc-
tion, with studies in [15,22] significantly contributing to the precise forecasting of wind
energy production. Moreover, the advancement of sustainable energy sources requires
the development of robust forecasting tools for efficient energy management. Accurate
predictions of solar energy production, similar to wind energy, are vital for optimizing
output, minimizing costs, and ensuring grid stability.

In [41], load forecasts generated using the ProLoaF forecasting tool and the auto-
machine learning models and Facebook Prophet were proposed and compared. After
designing the ML pipeline, an encoder–decoder RNN model was used to predict the
net load under uncertainty, alongside these auto-machine learning models. The results
demonstrated that choosing ProLoaF led to more acceptable RMSE values by 12.81% and
a faster forecasting time by 38 ms. The role of TinyML and modern ML methods such
as BiGRU, BiLSTM, BiRNN, and unidirectional LSTM in intelligent solar forecasting was
also examined [38]. The BiLSTM method provided the best RMSE value against other
ML methods, particularly being 47.25% better than LSTM and 12.3 ms faster. Studies
across daily, monthly, and yearly intervals have underscored the importance of accurately
predicting the power output of each wind turbine. Obtaining seasonal characteristics over
extended periods is crucial for improving the performance of developed models, as they
significantly influence wind energy production forecasting.

Concerning latency, emphasis has been placed on the delay experienced in collecting
data from wind turbines and farms for centralized processing, which is particularly crucial
for achieving hourly power predictions. However, the latency anticipated due to the
computational complexity of models developed with extensive training data and higher
hyperparameters has not been addressed [42]. It is expected that high-performance ML
models will deliver optimal responses without delay, even on low hardware infrastructure.
Thus, researchers are encouraged to consider latency alongside model development efforts.
A review of the results obtained in this study shows that although the RF and DT algorithms
performed similarly well, the integration of LightGBM with MLOps stood out by achieving
the lowest error rate and latency, with an RMSE of 190.34 kW and a latency of 9 ms. These
findings suggest that the effective application of MLOps and integration with LightGBM
positively impacts success rates and response times.

7. Conclusions and Future Trends

This study examined the effectiveness of machine learning models and MLOps inte-
gration for wind energy forecasting. A detailed comparative analysis of various machine
learning models was conducted to enhance wind energy forecasts, including linear regres-
sion, decision tree, random forest, gradient boosting machine, XGBoost, LightGBM, and

Appl. Sci. 2024, 14, 3725 18 of 20

CatBoost. An end-to-end MLOps pipeline was developed, leveraging SCADA data from a
wind turbine in Türkiye.

The research compared models using the RMSE metric for feature selection and
optimization and explored in detail the impact of integrating machine learning with MLOps
on the precision of energy production forecasts. Hyperparameter adjustments of models
such as LightGBM increased model performance, and the difficulties encountered in the
use of Docker and ML models were emphasized. While the integration of MLOps has
accelerated development and deployment processes, technical and operational challenges
were highlighted.

Model performance was assessed using the RMSE metric, conducting a comparative
evaluation across different models. The findings revealed that the RMSE values among
the regression models ranged from 460 to 192. Focusing on enhancing LightGBM, the
research decreased the RMSE value to 190.34. Despite facing technical and operational
hurdles, the implementation of MLOps has proven to enhance the speed (latency of 9 ms),
reliability (through Docker encapsulation), and scalability (using Docker swarm) of machine
learning endeavors.

Future studies can focus on researching new ML models, improving MLOps processes,
and integrating real-time data analysis, thus improving the accuracy of wind energy fore-
casts and the operational efficiency of enterprises. Applying machine learning algorithms
and automating the model lifecycle with MLOps can increase the accuracy and reliabil-
ity of energy production forecasts, contributing to more effective resource management
and decision-making processes of energy companies and grid operators. This approach
accelerates data-driven decisions and improves operational efficiency, enabling a proactive
response to fluctuations in renewable energy and better planning of energy supply. The
unique point of this study is to accelerate the integration, development, and distribution
processes of ML studies carried out on wind energy and wind energy potential in Türkiye
with MLOps. Thus, a study that will be a reference for future studies will be created and
wind energy forecast accuracy will be increased efficiently.

Future studies can focus on examining ML models to increase the accuracy of wind
energy forecasts for different geographical regions by covering larger and more diverse
datasets. A more comprehensive application of deep learning techniques and time series
analysis can significantly improve forecasting performance. Additionally, work on au-
tomation and optimization of MLOps processes can further accelerate model development
and deployment processes and increase efficiency. Integration of real-time data streams
can instantly update wind energy forecasts and provide flexibility in energy production
planning. These approaches will support operational efficiency and sustainability in the
wind energy sector, allowing for more accurate and reliable forecasts in energy markets.

Author Contributions: Conceptualization, S.O. and A.A.; methodology, S.O.; software, S.O.; val-
idation, A.A. and S.O.; formal analysis, A.A.; investigation, S.O.; resources, A.A. and A.A.; data
curation, A.A.; writing—original draft preparation, S.O.; writing—review and editing, A.A. and S.O.;
visualization, S.O. and A.A.; supervision, A.A.; project administration, S.O.; funding acquisition, A.A.
All authors have read and agreed to the published version of the manuscript.

Funding: This paper is supported by the European Union’s Horizon Europe research and innovation
program under grant agreement No. 101084323, project BLOW (Black Sea Floating Offshore Wind).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Internet: Wind Turbine Scada Dataset. Available: https://www.kaggle.
com/datasets/berkerisen/wind-turbine-scada-dataset (accessed on 3 April 2024).

Acknowledgments: The research was conducted collaboratively by the MOBILERS team at Sivas
Cumhuriyet University. The authors also acknowledge Horizon Europe for the support of our
research groups. The authors also acknowledge Munur Sacit Herdem for his English proofreading
and editing.

https://www.kaggle.com/datasets/berkerisen/wind-turbine-scada-dataset
https://www.kaggle.com/datasets/berkerisen/wind-turbine-scada-dataset

Appl. Sci. 2024, 14, 3725 19 of 20

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Internet: Republic of Türkiye Ministry of Energy and Natural Resources. Available online: https://enerji.gov.tr/eigm-

yenilenebilir-enerji-kaynaklar-ruzgar (accessed on 18 March 2024).
2. McKinnon, C.; Carroll, J.; McDonald, A.; Koukoura, S.; Infield, D.; Soraghan, C. Comparison of New Anomaly Detection

Technique for Wind Turbine Condition Monitoring Using Gearbox SCADA Data. Energies 2020, 13, 5152. [CrossRef]
3. Alla, S.; Adari, S.K. What Is MLOps? In Beginning MLOps with MLFlow: Deploy Models in AWS SageMaker, Google Cloud, and

Microsoft Azure; Apress: Berkeley, CA, USA, 2021; pp. 79–124.
4. Pendyala, V. Tools and Techniques for Software Development in Large Organizations: Emerging Research and Opportunities; IGI Global:

Hershey, PA, USA, 2020; pp. 1–223. [CrossRef]
5. Spjuth, O.; Frid, J.; Hellander, A. The machine learning life cycle and the cloud: Implications for drug discovery. Expert Opin.

Drug Discov. 2021, 16, 1071–1079. [CrossRef] [PubMed]
6. Fursin, G.; Guillou, G.; Essayan, N. CodeReef: An Open Platform for Portable MLOps, Reusable Automation Actions and

Reproducible Benchmarking. Available online: http://arxiv.org/abs/2001.07935 (accessed on 19 March 2024).
7. Royce, W.W. Managing the Development of Large Software Systems. In Ideas That Created the Future: Classic Papers of Computer

Science; MIT Press: Cambridge, MA, USA, 2021. [CrossRef]
8. Dyck, A.; Penners, R.; Lichter, H. Towards definitions for release engineering and DevOps. In Proceedings of the 2015 IEEE/ACM

3rd International Workshop on Release Engineering, Florence, Italy, 19 May 2015; p. 3.
9. Katal, A.; Bajoria, V.; Dahiya, S. DevOps: Bridging the gap between Development and Operations. In Proceedings of the 2019 3rd

International Conference on Computing Methodologies and Communication, Erode, India, 27–29 March 2019; p. 1. [CrossRef]
10. Leite, L.; Rocha, C.; Kon, F.; Milojicic, D.; Meirelles, P. A Survey of DevOps Concepts and Challenges. ACM Comput. Surv. 2019,

52, 1–35. [CrossRef]
11. Perera, P.; Silva, R.; Perera, I. Improve software quality through practicing DevOps. In Proceedings of the International Conference

on Advances in ICT for Emerging Regions, Colombo, Sri Lanka, 6–9 September 2017; p. 1. [CrossRef]
12. Tascikaraoglu, A.; Uzunoglu, M. A review of combined approaches for prediction of short-term wind speed and power. Renew.

Sustain. Energy Rev. 2014, 34, 243–254. [CrossRef]
13. Li, D.; Zhang, Z.; Zhou, X.; Zhang, Z.; Yang, X. Cross-wind dynamic response of concrete-filled double-skin wind turbine towers:

Theoretical modelling and experimental investigation. J. Vib. Control 2023, 1–13. [CrossRef]
14. Cassola, F.; Burlando, M. Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model

output. Appl. Energy 2012, 99, 154–166. [CrossRef]
15. Liu, H.; Shi, J.; Erdem, E. Prediction of wind speed time series using modified Taylor Kriging method. Energy 2010, 35, 4870–4879.

[CrossRef]
16. González-Mingueza, C.; Muñoz-Gutiérrez, F. Wind prediction using Weather Research Forecasting model (WRF): A case study in

Peru. Energy Convers. Manag. 2014, 81, 363–373. [CrossRef]
17. Esen, H.; Ozgen, F.; Esen, M.; Sengur, A. Modelling of a new solar air heater through least-squares support vector machines.

Expert Syst. Appl. 2009, 36, 10673–10682. [CrossRef]
18. Ren, C.; An, N.; Wang, J.; Li, L.; Hu, B.; Shang, D. Optimal parameters selection for BP neural network based on particle swarm

optimization: A case study of wind speed forecasting. Knowl.-Based Syst. 2014, 56, 226–239. [CrossRef]
19. Wang, G.; Fearn, T.; Wang, T.; Choy, K.L. Machine-Learning Approach for Predicting the Discharging Capacities of Doped

Lithium Nickel-Cobalt-Manganese Cathode Materials in Li-Ion Batteries. ACS Cent. Sci. 2021, 7, 1551–1560. [CrossRef] [PubMed]
20. Tu, J.V. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical

outcomes. J. Clin. Epidemiol. 1996, 49, 1225–1231. [CrossRef] [PubMed]
21. Tran, M.K.; Panchal, S.; Chauhan, V.; Brahmbhatt, N.; Mevawalla, A.; Fraser, R.; Fowler, M. Python-based scikit-learn machine

learning models for thermal and electrical performance prediction of high-capacity lithium-ion battery. Int. J. Energy Res. 2022, 46,
786–794. [CrossRef]

22. Sekulić, A.; Kilibarda, M.; Heuvelink, G.B.M.; Nikolić, M.; Bajat, B. Random Forest spatial interpolation. Remote Sens. 2020,
12, 1687. [CrossRef]

23. Chen, T.; He, T.; Benesty, M. R Package, version 0.71-2. XGBoost: eXtreme Gradient Boosting. R Core Team: Vienna, Austria, 2018;
pp. 1–3.

24. He, K.; Yang, Q.; Ji, L.; Zou, Y. Financial Time Series Forecasting with the Deep Learning Ensemble Model. Mathematics 2023,
11, 1054. [CrossRef]

25. Al Daoud, E. Comparison between XGBoost, LightGBM and CatBoost Using a Home Credit Dataset. Int. J. Comput. Inf. Eng.
2019, 13, 6–10.

26. Diaz-De-Arcaya, J.; Torre-Bastida, A.I.; Zárate, G.; Miñón, R.; Almeida, A. A Joint Study of the Challenges, Opportunities, and
Roadmap of MLOps and AIOps: A Systematic Survey. ACM Comput. Surv. 2023, 56, 1–30. [CrossRef]

27. Lê, M.T.; Wolinski, P.; Arbel, J. Efficient Neural Networks for Tiny Machine Learning: A Comprehensive Review. arXiv 2023,
arXiv:2311.11883.

https://enerji.gov.tr/eigm-yenilenebilir-enerji-kaynaklar-ruzgar
https://enerji.gov.tr/eigm-yenilenebilir-enerji-kaynaklar-ruzgar
https://doi.org/10.3390/en13195152
https://doi.org/10.4018/978-1-7998-1863-2
https://doi.org/10.1080/17460441.2021.1932812
https://www.ncbi.nlm.nih.gov/pubmed/34057379
http://arxiv.org/abs/2001.07935
https://doi.org/10.7551/mitpress/12274.003.0035
https://doi.org/10.1109/ICCMC.2019.8819631
https://doi.org/10.1145/3359981
https://doi.org/10.1109/ICTER.2017.8257807
https://doi.org/10.1016/j.rser.2014.03.033
https://doi.org/10.1177/10775463231186708
https://doi.org/10.1016/j.apenergy.2012.03.054
https://doi.org/10.1016/j.energy.2010.09.001
https://doi.org/10.1016/j.enconman.2014.02.024
https://doi.org/10.1016/j.eswa.2009.02.045
https://doi.org/10.1016/j.knosys.2013.11.015
https://doi.org/10.1021/acscentsci.1c00611
https://www.ncbi.nlm.nih.gov/pubmed/34584957
https://doi.org/10.1016/S0895-4356(96)00002-9
https://www.ncbi.nlm.nih.gov/pubmed/8892489
https://doi.org/10.1002/er.7202
https://doi.org/10.3390/rs12101687
https://doi.org/10.3390/math11041054
https://doi.org/10.1145/3625289

Appl. Sci. 2024, 14, 3725 20 of 20

28. Burrello, A.; Garofalo, A.; Bruschi, N.; Tagliavini, G.; Rossi, D.; Conti, F. DORY: Automatic End-To-End Deployment of Real-World
DNNs on Low-Cost IoT MCUs. IEEE Trans. Comput. 2021, 70, 1253–1268. [CrossRef]

29. Chahal, D.; Ojha, D.; Ramesh, M.; Singhal, R. Migrating Large Deep Learning Models to Serverless Architecture. In Proceedings
of the IEEE International Symposium on Software Reliability Engineering Workshops, Coimbra, Portugal, 12–15 October 2020.
[CrossRef]

30. Idowu, S.; Strüber, D.; Berger, T. Asset Management in Machine Learning: State-of-research and State-of-practice. ACM Comput.
Surv. 2022, 55, 1–35. [CrossRef]

31. Internet: Wind Turbine Scada Dataset. Available online: https://www.kaggle.com/datasets/berkerisen/wind-turbine-scada-
dataset (accessed on 3 April 2024).

32. Maulud, D.; Abdulazeez, A.M. A Review on Linear Regression Comprehensive in Machine Learning. J. Appl. Sci. Technol. Trend
2020, 1, 140–147. [CrossRef]

33. Banfield, R.E.; Hall, L.O.; Bowyer, K.W.; Kegelmeyer, W.P. A comparison of decision tree ensemble creation techniques. IEEE
Trans. Pattern Anal. Mach. Intell. 2007, 29, 173–180. [CrossRef]

34. Yin, J.; Li, N. Ensemble learning models with a Bayesian optimization algorithm for mineral prospectivity mapping. Ore Geol. Rev.
2022, 145, 104916. [CrossRef]

35. Liao, S.; Tian, X.; Liu, B.; Liu, T.; Su, H.; Zhou, B. Short-Term Wind Power Prediction Based on LightGBM and Meteorological
Reanalysis. Energies 2022, 15, 6287. [CrossRef]

36. Rahul, M.; Neeraj, K.; Aayush, A.; Anshul, T.; Amit, K.; Rajat, G. Short term wind power forecasting using k-nearest neighbor
(KNN). J. Inf. Optim. Sci. 2022, 43, 251–259.

37. Gürses-Tran, G.; Monti, A. Advances in time series forecasting development for power systems’ operation with MLOPS.
Forecasting 2022, 4, 501–524. [CrossRef]

38. Hayajneh, A.M.; Alasali, F.; Salama, A.; Holderbaum, W. Intelligent Solar Forecasts: Modern Machine Learning Models; tinyml
Role for Improved Solar Energy Yield Predictions. IEEE Access 2024, 12, 10846–10864. [CrossRef]

39. Park, S.; Jung, S.; Lee, J.; Hur, J. A Short-Term Forecasting of Wind Power Outputs Based on Gradient Boosting Regression Tree
Algorithms. Energies 2023, 16, 1132. [CrossRef]

40. Pattanaik, S.S.; Sahoo, A.K.; Panda, R. A Comparative Analysis of KNN and Light GBM Algorithms for Wind Energy Forecasting.
In Proceedings of the 2023 1st International Conference on Circuits, Power and Intelligent Systems (CCPIS), Bhubaneswar, India,
1–3 September 2023; pp. 1–4. [CrossRef]

41. Menculini, L.; Marini, A.; Proietti, M.; Garinei, A.; Bozza, A.; Moretti, C.; Marconi, M. Comparing Prophet and Deep Learning to
ARIMA in Forecasting Wholesale Food Prices. Forecasting 2021, 3, 644–662. [CrossRef]

42. Solomon, T.A.; Mesfin, B.A.; Migbar, A.Z.; Temesgen, A.M. Adama II wind farm long-term power generation forecasting based
on machine learning models. Sci. Afr. 2023, 21, e01831. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TC.2021.3066883
https://doi.org/10.1109/ISSREW51248.2020.00047
https://doi.org/10.1145/3543847
https://www.kaggle.com/datasets/berkerisen/wind-turbine-scada-dataset
https://www.kaggle.com/datasets/berkerisen/wind-turbine-scada-dataset
https://doi.org/10.38094/jastt1457
https://doi.org/10.1109/TPAMI.2007.250609
https://doi.org/10.1016/j.oregeorev.2022.104916
https://doi.org/10.3390/en15176287
https://doi.org/10.3390/forecast4020028
https://doi.org/10.1109/ACCESS.2024.3354703
https://doi.org/10.3390/en16031132
https://doi.org/10.1109/CCPIS59145.2023.10291700
https://doi.org/10.3390/forecast3030040
https://doi.org/10.1016/j.sciaf.2023.e01831

	Introduction
	Literature Background
	Material and Methods
	Dataset and Preprocessing
	Feature Engineering and Data Cleaning
	Machine Learning Model Descriptions
	Linear Regression
	Decision Tree and Random Forest
	Gradient Boosting Machines
	XGBoost
	LightGBM
	CatBoost

	MLOps Pipeline Design
	MLOps Pipeline Architecture
	Model Training and Evaluation Process
	Automatic Model Deployment and Update

	Experimental Results
	Model Performance and Evaluation
	Model Comparison Using RMSE
	LightGBM Hyperparameter Optimisation
	MLOps Model and Latency

	Discussion
	Conclusions and Future Trends
	References

