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Abstract: These days, many assembly lines are becoming automated, leading to a trend of decreasing
defect rates. However, in assembly lines that have opted for partial automation due to high cost of
construction, defects still occur. The cause of defects are that the location of the work instructions
and the work field are different, which is inefficient and some workers who are familiar with the
process tend not to follow the work instructions. As a solution to establishing a system for object
detection without disrupting the existing assembly lines, we decided to use wearable devices. As
a result, it is possible to solve the problem of spatial constraints and save costs. We adopted the
YOLO algorithm for object detection, an image recognition model that stands for “You Only Look
Once”. Unlike R-CNN or Fast R-CNN, YOLO predicts images with a single network, making it up
to 1000 times faster. The detection point was determined based on whether the pin was fastened
after the worker’s hand appeared and disappeared. For the test, 1000 field data were used and the
object-detection performance, mAP, was 35%. The trained model was analyzed using seven regression
algorithms, among which Xgboost was the most excellent, with a result of 0.15. Distributing labeling
and class-specific data equally is expected to enable the implementation of a better model. Based on
this approach, the algorithm is considered to be an efficient algorithm that can be used in work fields.

Keywords: manual assembly line; assembly position detection; YOLO; regression

1. Introduction

The most common defects during assembly include insufficient clamping force, sub-
assembly material damage, bolt damage, loose bolts and cross threads/floating screws.
Several production lines now use computerized inspection systems or operate smart facto-
ries that rely on computers for all tasks from production to management [1,2] to prevent
these defects. Despite the advantages of automated equipment, such as high productivity
and reduced production costs, its widespread use across all production lines may not be
feasible due to cost and the potential for defects. For delicate work, human workers may
still be necessary, resulting in a hybrid assembly system that leverages the strengths of
both humans and computers [3,4]. Although fault-checking systems caused by the workers
are in place in large-scale sites to mitigate these five types of defects, such systems are not
prevalent in most sites and computers alone cannot prevent all such defects.

Although smart factory facilities are systematically built into the assembly process,
the workers may encounter challenges when executing their tasks. Specifically, the workers
may find it difficult to concentrate on their work due to the opposite location of their
work field and the screen displaying the work instructions. Additionally, workers who are
familiar with the assembly process may deviate from the work instructions, potentially
leading to defects in the manual assembly process, as described above. These problems may
contribute to the occurrence of the five common defects of the manual assembly process
mentioned earlier.
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Most repetitive assembly processes in manufacturing sites are already equipped with
robots and mobile conveyor belts to increase process efficiency. However, the installation of
additional robots was deemed too expensive to be feasible. Instead, a solution for increasing
productivity was proposed to extract judgments, comparisons and results from workers’
eye-level perspectives using a fixed camera [5,6]. Unfortunately, finding a suitable installa-
tion area for such a camera proved difficult. As a result, it was decided to use wearable
body cams to capture necessary images in real time at the worksite [7,8]. Object-detection
accuracy is essential and so the YOLO algorithm was adopted due to its high processing
speed [9]. Regression analysis will be conducted using seven algorithms (Xgboost [10],
Adaboost [11], Bagging [12], Extra-Trees [13], Gradient Boosting [14], Random Forest [15],
Prediction Voting Regressor for Unfitted Estimators [16]) provided by the scikit-learn re-
gression APIs that can be utilized within the Python development environment [17,18].

This paper proposes the use of the YOLO algorithm for classification and localization
to address five common fastening defects in the assembly line. The goal is to enable workers
to receive real-time work instructions, conduct production inspections and receive remote
support at the assembly site [19,20]. To achieve this, we captured a working video in
advance, cut it into one image per 25 frames, completed the labeling and created a weight
file. We then used the weight file with a computer (which will eventually be replaced by a
wearable device) to derive the position information of the worker’s hand. This information
was used to determine whether the tool held by the worker’s hand is classified correctly,
check whether a bolt is attached to the correct position and perform a comparative analysis
to extract data [21,22]. The collected data were organized into time-series data and the
performance was analyzed using the aforementioned seven regression algorithms based on
the location where the pin was fastened to the substrate. Based on the experimental results,
we demonstrate that the proposed algorithm is effective in practical settings.

A wearable device equipped with a camera that does not cause inconvenience to
workers on the production line is used to film the assembly process. In real time, the
captured video is compared with a pre-trained model to monitor the work order and detect
poor assembly according to the work instructions [23]. The aim is to provide workers with
real-time information on productivity, quality and lead time efficiency, as well as to enable
them to conduct self-inspections. This approach helps to create a safe working environment
by reducing workers’ faults. The information is displayed on a screen for easy access and
provides a more efficient and accurate way to monitor the assembly process.

The paper is structured as follows. Section 2 provides an explanation of the assembly
process, the object-recognition algorithm and the problems that need to be addressed.
In Section 3, we describe YOLO, the configuration of hand position/point datasets for
regression with the YOLO algorithm and the configuration of regression algorithms and
pre-processing. Sections 4 and 5 cover the system configuration used in the experiment,
the experimental results and our analysis of the results. Finally, in the conclusion, we
summarize our findings and offer recommendations for future research.

2. Background
2.1. Assembly Process

The assembly process refers to all the processes in a factory that are required to
complete a product with sub-parts of the product. Its purpose is not only to complete
the product, but also to minimize labor costs by employing as few skilled workers as
possible. Additionally, by conducting assembly simulations when building assembly
lines in advance, the necessary components or assembly costs can be calculated, which
can ultimately help reduce production costs. Through all these processes, the goals of
minimizing lead time and improving the completeness of the product can be achieved [24].

2.2. Object-Detection Algorithm

This paper utilizes the YOLO algorithm, which prioritizes speed over accuracy, result-
ing in the development of multiple versions of the model. In the previous version, YOLOv3,
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an approximately 12% performance enhancement was observed by utilizing CSPDarknet53
as a backbone. CSPDarknet53 divides the feature map into two and merges it into the sub-
sequent layer, contributing to this improvement [20]. In our proposed approach, we utilize
object detection with YOLO to estimate the location information of screws for assembly by
leveraging the bounding box information of the hand and driver.

2.3. Problem Statements

We will utilize an assembly-position-determination algorithm to organize the data
generated during the screwing of pins or bolts to the substrate in a production line as time-
series data. During the analysis of this time-series data, it will be possible to identify feature
points. Next, we will use regression algorithms to compare and identify characteristics
between the five types of screwing and normal assembly by using these reference points.
Using the worker’s hand position and timing, YOLO will estimate the substrate state and
derive the results. Through this process, we aim to decrease the defect rate and reduce the
lead time in the production line.

3. Proposed Methodology
3.1. Proposed Algorithm

Figure 1 shows the algorithm process which consists of three stages: dataset creation,
data inference and analysis. The first stage involves video data of the production process
using a camera. The resulting video is segmented into frames and each frame is labeled.
The YOLO configuration file is then set up based on the development environment and this
algorithm is used to create a dataset for terminal recognition of the substrate. If the training
results fall below expectations, the process goes back to the previous step and the settings,
such as batch size and image resizing value, are modified before retraining is carried out.

YOLO

Divide to frame

To film assembly line

labelingsetting

Weight 
file

First process

Test film

Make csv file

Sorting time series 
data using csv files

Find feature points of screw 
assembly position and time

Second process Third process

Use regression 
model to analysis 

Figure 1. Schematic diagram of the proposed methodology.

The second stage, data inference, involves using the dataset generated in the previous
process to obtain satisfactory result values. The field image is used as input data and the
frame-specific result value is saved as a CSV file. By organizing the CSV file into time-series
data, the bounding box coordinates and frames of the class called “hand” and “hand with
screw” can be obtained. With this information, the feature point can be checked in the
time-series data and it can be confirmed that the pin is combined immediately after the op-
erator’s hand disappears from the screen when comparing the feature with the input data.

In the third stage, the regression algorithm is utilized to determine whether the as-
sembly process is normal or if any problems have occurred based on the feature points
organized in the previous steps. The algorithm works by comparing the characteristics
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between the five types of screwing and normal assembly, using the reference points. This
enables the identification of any deviations from the standard assembly process, such as
poor assembly, incorrect timing or other issues that may arise during production. Overall,
the third stage plays a critical role in ensuring the smooth and efficient operation of the
production line, while also maintaining high-quality standards. The use of advanced algo-
rithms and data-analysis techniques can help to identify potential issues before they become
major problems, thereby ensuring that the assembly process runs smoothly and efficiently.

3.2. Dataset for YOLO

Deepsort was run using a weight file generated with YOLO. Deepsort is an algorithm
that applies YOLO during the detection stage of the Simple Online and Realtime Tracking
(SORT) algorithm, which detects objects in real time [25].

The dataset used in this study includes 15 classes in the Figure 2, which can be divided
into 12 types of classes related to the screwing process and 3 types of classes related
to the tracking process. The screwing process include male screws, female screws and
connected status, for instance Screw, Connecter1 (a flat-shaped connector), ConnecterY (a
connector shaped like the letter Y) and ConnecterSet (a combination of several connectors).
In additional, the tracking process includes three classes for tracking the worker’s hand,
including AutoDriver, ManualDriver and Hand. The dataset was created by filming a
production process with a camera and labeling the frames with the appropriate class labels
using YOLO. The resulting dataset was then used to train and evaluate the performance of
the proposed algorithm for detecting and tracking the screwing driver and worker’s hands
in real time.

Screw_male ConnecterY_female

Screw_female ConnecterY_done

Screw_done ConnecterSet_male

Connecter1_male ConnecterSet_female

Connecter1_female ConnecterSet_done

Connecter1_done HAND

ConnecterY_male

HAND_w_Auto

Driver

HAND_w_Manual

Driver

Figure 2. Class definition for object detection of the proposed process.

Figure 3 illustrates the tracking results obtained using Deepsort. The class and the
boundary box coordinates of the objects were extracted from the results. Based on these
coordinates, we generated time-series data that corresponded to the points where the
worker’s hand was performing tasks, as shown in Figure 4. However, it is noteworthy
that in Figure 4, the graph for the HAND_Driver_w_Manual class differs from those of
HAND and Auto classes, as it displays only one graph. This occurred because the objects
belonging to this class were not detected during the experiment, resulting in all boundary
box coordinates being measured as 0. We conducted a regression analysis based on the
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point where the worker’s hand class appeared and disappeared in each frame, using the
point of substrate change as the reference.

Figure 3. Deepsort results of the corresponding class for the proposed methodology.

Figure 4. Time series information for regression of the manual assembly timing and position.

3.2.1. Pre-Processing for the Regression of the Assembly Timing and Position

For the regression process, we labeled Yreggi ∈ R3, the timing of screw fastening and
the corresponding x and y coordinates in the i − th fastening operations, denoted as Wscrewi

as in Figure 5. The labeled data coordinates were stored for training of the regression
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algorithm. To prepare the input data for regression, we reorganized the time-series data
for Hand, Hand_w_Manual Driver and Hand_w_autoDriver classes in the corresponding
csv file into a time series of TSWscrew_i ∈ R12×nWscrewi for each task Wscrewi , where nWscrewi

is
the length of the time series of Wscrewi . These time series were then assigned to a buffer
vector BFTS ∈ R12×nmax

wscrew where nmax
wscrew is the maximum number of time steps across all

Wscrewi tasks.
The regression was performed using the input buffer vector XBFTS ∈ RkTOT×(12·nmax

wscrew )

and the labeled output Yregg ∈ RkTOT×3 where kTOT = 102 is the total operation number
of the manual assembly process. The objective was to identify the feature points, i.e., the
timing of the screw fastening, based on the worker’s hand position and timing information.
We compared the characteristics of the five types of fastening and normal assembly by
using the reference points and identified any anomalies in the assembly process. The
results of the regression analysis were used to estimate the substrate state and optimize the
production process to reduce the defect rate and lead time.

Manual assembly
i-th operation

(HAND,
HAND_w_Auto_Driver
HAND_w_Manual_Driver)

(x, y, T)

…
…

12

12

12

…
…

Re-order to vector

…
…

3
1

3
1

3
1

3

Figure 5. Data pre-processing diagram of the proposed methodology.

3.2.2. Regression Algorithms

Regression algorithms are commonly used in machine learning to predict a continuous
target variable based on one or more predictor variables. They can be used for a variety of
tasks, such as time-series forecasting, regression analysis and prediction modeling. Popular
regression algorithms include linear regression, logistic regression and polynomial regres-
sion. Table 1 is a type of regression algorithm, and the criteria for selection depends on the
type of problem being solved and the characteristics of the data being analyzed.
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Table 1. Explanation of Regression algorithms.

Regression Algorithm Description

Xgboost

Xgboost is an algorithm that utilizes decision trees and hyper
parameters Γ and ∆ to prevent overfitting, which can occur in
Gradient Tree Boosting. Its structure reduces the loss function
by weighting learning in the ensemble process and supports
parallel processing, resulting in faster speeds.

Adaboost

Adaboost is a similar algorithm to Random Forest, which uses
stumps (single-condition decision trees) for classification.
In Adaboost, the result value for each stump influences the
weight and classification of subsequent stumps, a process
known as boosting.

Bagging

Bagging is an algorithm that uses bootstrapping, which is a
method of randomly sampling and extracting a certain amount
of data from a given dataset with replacement. The learning
process is then repeated n times to obtain an average and
the final prediction result is derived through higher prediction
values or majority voting. These characteristics have the
advantage of being able to offset errors in the classifier.

Extra-Trees

Extra-Trees is an algorithm with a structure similar to Random
Forest, but it differs from Random Forest in that it selects the
data with the highest score during the process of extracting
random data. This prevents overfitting and enables node
segmentation to be performed quickly, resulting in high
accuracy and speed.

Gradient Boosting

Gradient Boosting is a structure similar to Adaboost, consisting
of a stump. In Gradient Boosting, new learning is conducted by
assigning high weights to data that were incorrectly predicted
from the results of previous learning. The algorithm repeats this
process to learn in the direction of minimizing the loss function.
However, a disadvantage of Gradient Boosting is its long learning
time.

Random Forest

Random Forest is an algorithm that consists of several decision
trees. The decision tree is used as a solution to overfitting,
which occurs when the learning data are insufficient or the
number of features is large and shows the same results as
the learning data.

Prediction Voting
Regressor for

Unfitted Estimators

The Prediction Voting Regressor for Unfitted Estimators is an
algorithm that uses multiple estimators to predict the entire
dataset and calculates their average to make the final prediction.
This approach increases the reliability of the prediction due to
the use of multiple estimators. However, there is a risk of
overfitting during the random parameter specification process.

4. Method Validation Setup
System Configuration

The system configuration is categorized into two parts. The first part consists of a
body cam that captures images to create a dataset and the second part includes a computer
necessary for labeling, YOLO and regression. According to Figure 6 and Table 2, body
cam has a resolution of 1080p and can shoot at 30fps, while the computer specifications
include an i5-9400 CPU and a GTX1660ti GPU. The programs used for setting up YOLO
were cmake-3.17.2, cuda-10.2, cudnn-10.2 and opencv-4.1.0.
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Figure 6. Model name: Drift X3.

Table 2. Body cam information.

Specification Item Details

Video Format MP4 (H.264), 1080P@30FPS

Lens Type 140 wide angle

Input Type-c usb, TRRS port

Bluetooth Build-in, remote control compatible

Size (L × W × H) 47 mm × 92 mm × 35 mm

Photo model 4, 8, 12 Mega pixels

Battery 3000 mAh rechargeable

memory Micro sd, SDHC, SDXC, up to 256 gb

Waterproof IP × 7 waterproof

Weight 97 g

Sensor type SONY 12MP

Microphone Build-in

Wi-Fi 2.4/5.8 G

5. Numerical Results and Discussion
5.1. YOLO Training and Reasoning Results

Figure 7 shows the loss graph of YOLO learning with a batch size set to 320 × 320,
15 classes and 10,000 iterations. The model was trained with 800 input data for training
and 200 for validation. The mAP result indicates a 35% learning accuracy (1).

mAP =
1

15

15

∑
i=1

APi, (1)

where i represents the number of classes used in the training.
AP is the abbreviation for Average Precision, which is a metric indicating the precision

of an object-detection model as

AP = ∑
i
(ri+1 − ri)ρinterp(ri+1), (2)

and ri represents the i-th recall, which is a metric indicating how well an object-detection
model detects all actual accurate objects that exist.
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The interpolated precision value e for the threshold ri+1 is defined as

ρinterp(ri + 1) = max
r̃:r̃≥ri+1

ρ(r̃), (3)

where max
r̃:r̃≥ri+1

ρ(r̃) represents obtaining the maximum precision value for all recall values r̃
that are greater than or equal to the threshold ri+1.

Figure 7. Learning result of Dataset.

Figure 8 shows the performance-analysis results by class. The AP figure for each
class varies significantly, with a minimum value of 37% and a maximum value of 100%.
Although there are 15 classes, only 9 classes were observed in the video used for testing.
This is because the labeling process did not evenly distribute the learning data, resulting in
a low mAP. The results indicate that evenly distributing the data per class during labeling is
crucial to achieving a high mAP. Additional labeling work could lead to better performance.

5.2. Regression Results

Time-series graphs (Figures 9–12) represent values up to the second decimal place
using seven regression algorithms. The x-coordinate indicates the number (frame) of data
used in the regression, while the y-coordinate shows the coordinate value and error of
the recognized object for each data point. Among the three algorithms used, Extra-Trees,
Gradient Boosting and Prediction Voting Regressor for Unfitted Estimators showed a single
frame value with an average y_prediction value, in contrast to the other four algorithms.

The performance of Xgboost (Figure 9) is 0.15, which implies that the screw-fastening
position and timing are largely consistent. This paper compared the performance of
regression algorithms using RMSE for the performance measure as

RMSE =

√
1

total_ f rame
· Σ(y(predict)− y(GT))2. (4)

RMSE has the characteristics of preventing values from becoming negative and in-
creasing the sensitivity of errors by squaring them (in this experiment, total_frame is 102).
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Figure 8. Performance-analysis results by class.

The results show that Xgboost (Figure 9) performed the best, with Adaboost (Figure 9)
and Random Forest showing values of 84.47 and 191.23 (Figure 10) respectively. The graph
clearly shows a significant difference between the predicted and ground-truth values for
these two algorithms. In other cases, Bagging (Figure 10), Prediction Voting Regressor for
Unfitted Estimators (Figure 11), Extra-Trees (Figure 11) and Gradient Boosting (Figure 12)
produced results where the predicted values were close to 1 and the error values were
opposite to the ground-truth values. As a result, the RMSE was the lowest for Bagging at
273.22 and the highest for Gradient Boosting at 714.78.

Xgboost : 0.15 Adaboost : 84.47

Figure 9. Regression results of the Xgboost and Adaboost.

As a result of the comparative analysis, it was found that Xgboost performed sig-
nificantly better than other regression algorithms, producing the most ideal error values.
Therefore, Xgboost was selected for regression in the subsequent experiments.
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Random Forest : 191.23 Bagging : 273.22

Figure 10. Regression results of the Random Forest and Bagging.

Prediction voting regressor for 
unfitted estimators : 712.29

ExtraTrees : 714.77

Figure 11. Regression results of the Prediction Voting and Extra Trees.

Gradient Boosting : 714.78

Figure 12. Regression results of the Gradient Boosting.
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5.3. Visualization Results
5.3.1. Object-Detection Results Of YOLO

Figure 9 shows a section of the site data. After testing the data in Figure 9 with the
input values, the corresponding results were obtained, as shown in Figures 13 and 14. The
obtained AP values for each class range from 0.37 to 1.00. As the threshold value was not
specified, the focus was on whether the recognition functioned properly. Thus, although
the recognition was deemed successful, its accuracy was considered inadequate.

Figure 13. Test data for object detection for the manual assembly process.

Figure 14. Result of the test data for object detection for the manual assembly process.

5.3.2. Regression

The first picture in Figure 15 shows the time-series regression results using Xgboost. The
other three pictures show the locations where the pin was fastened immediately after the
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worker’s hand holding the driver appeared and disappeared, marked with red circles on the
coordinates. The red circles here indicate the positions in the actual video corresponding to the
coordinate values predicted by Xgboost. The coordinate values for each of the three frames are
as follows: frame_61 (1017, 488), frame_72 (686, 822) and frame_101 (1063, 507). The coordinate
values predicted via Xgboost are as follows: frame_61 (1017, 488), frame_72 (686, 822) and
frame_101 (1063, 507). The error values per frame are as follows: frame_61 (−0.01, −0.012),
frame_72 (−0.001, 0.006) and frame_101 (−0.005, 0.003). Testing all 102 data points revealed that
the predicted values were in compliance.

(a) xgboost (b) Frame : 61

(c) Frame : 72 (d) Frame : 101

Figure 15. Regression results of the screwing position of the manual assembly process corresponding
timing (frame).

5.4. Discussion and Future Works

Our proposed method employs the YOLO algorithm to detect objects. The detection
trigger is set at the point where a pin is fastened, coinciding with the worker’s hand appear-
ing and then disappearing. Additionally, we assessed the performance of our trained model
using nine different regression algorithms. We anticipate that by ensuring an equal distri-
bution of labeling and class-specific data, we can develop a more robust model. However,
our methodology might be improved by adopting state-of-the-art object-detection/pose-
estimation algorithms such as YOLO-NAS [26]. YOLO-NAS is designed to detect small
objects, enhance localization accuracy and improve the performance-per-compute ratio
for real-time application in edge-device environments. While it can be applied to pose
estimation, the focus of our proposed paper is not on estimating the pose of workers, but
rather on identifying fastening locations and timings in manual assembly.

For future work, we aim to extend the capabilities of our system by integrating more
advanced versions of YOLO-NAS that are optimized for even lower computational over-
head and greater efficiency on edge devices. This would enable us to handle more complex
scenes in manual assembly environments with higher accuracy and faster processing times.
Additionally, we plan to explore the feasibility of adapting our system for real-time pose
estimation of workers to further enhance safety and ergonomics in industrial settings.
These improvements will contribute to smarter, more adaptive automation technologies in
manufacturing processes.

Also, in our future research, we will also conduct a comparative analysis of our model
against the YOLO-NAS Pose models, which have demonstrated state-of-the-art accuracy
and latency on the COCO Val 2017 dataset. Specifically, the nano version of YOLO-NAS
Pose, capable of achieving output speeds up to 425 fps on a T4 GPU and its larger counter-
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part, which reaches up to 113 fps, will be evaluated as potential competitors. By assessing
these models, we aim to benchmark our system’s performance and identify areas for en-
hancement, ensuring that our solution remains competitive in high-speed, high-accuracy
applications in industrial environments.

In our upcoming research efforts, we will incorporate improvements to the loss func-
tions used during the training phase, as inspired by Deci’s advancements. We plan to
enhance our model’s accuracy for both bounding box detection and pose estimation by
adopting a dual metric approach. Alongside the traditional Intersection by Union (IoU)
score, we will also incorporate an Object Keypoint Similarity (OKS) score, which assesses
the accuracy of predicted key points against actual key points. Furthermore, we will explore
the implementation of the OKS forward regression method, which has been shown to out-
perform the conventional L1 and L2 loss methods in similar applications. This advancement
will potentially lead to more precise and reliable model predictions in real-world scenarios.

6. Conclusions

In this study, the algorithm based on the YOLO algorithm was developed to detect
errors in manual assembly processes on production lines using data on the position of
objects and the worker’s hand. The algorithm was evaluated using actual field data and
a mAP value of 35% was achieved. However, to improve the algorithm’s accuracy, the
class-specific data in labeling and training should be evenly distributed to create weights.

Based on the results of this study, a comparison of performance using video input data
captured from the worker’s viewpoint and a fixed height will be conducted to determine
an alternative solution. By combining YOLO with the accurate determination of the screw-
fastening moment and location, further research can be conducted to verify whether the
screw is properly fastened at that moment and location. This can lead to the development
of a more reliable and efficient system for detecting errors in manual assembly processes
on production lines. Additionally, the proposed algorithm can also be extended to other
applications, such as monitoring and detecting errors in similar manual processes.
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